GAS HYDRATE RESERVOIR INVERSION AND SATURATION PREDICTION
-
摘要:
沉积物含天然气水合物后通常会引起速度的增加,与周围地层形成较大的波阻抗差异,利用地震波阻抗反演技术可识别出这种差异,从而预测天然气水合物的分布。测井资料具有较高的纵向分辨率,而地震资料横向分辨率较高,通过井震联合反演可获得天然气水合物准确的空间展布形态。利用井震联合反演技术对南海北部神狐海域天然气水合物储层进行了精细刻画,研究表明,该矿区天然气水合物储层表现为高波阻抗特征,其值域范围为3 450~4 500 m/s·g/cm3,同时根据有效介质模型建立了岩石物理量版,预测了天然气水合物储层的孔隙度和饱和度数据,预测结果与测井解释结果吻合度较高,为天然气水合物的资源评价提供了比较准确的物性数据。
Abstract:Seismic velocity in sediment will increase when gas hydrate occurs, and the impedance of the sediment is greatly different form surrounding sediments. Therefore, seismic impedance inversion technology, which may identify the difference between the sediments with and without gas hydrate, is used to predict the distribution of natural gas hydrate. Since logging data have high vertical resolution and seismic data have high lateral resolution, accurate spatial distribution of gas hydrate can be obtained by joint inversion of well data and seismic data. The gas hydrate reservoir in Shenhu sea area, northern South China Sea, was characterized by such well-seismic inversion technology. The study shows that the gas hydrate reservoir in the area is characterized by high impedance, ranging between 3450-4500m/s*g/cm3. At the same time, the petrophysical templates for porosity and saturation prediction was established according to the effective medium model. The predicted porosity and saturation data of gas hydrate reservoir are in good agreement with the log interpretation results, which provides more accurate physical property data for calculation of gas hydrate reserves.
-
-
图 4 W1合成地震记录标定(位置见图 8)
Figure 4.
表 1 测井解释饱和度与反演预测饱和度对比
Table 1. Comparison of interpreted saturation to reversion saturation
井位 W4 W6 W7 W8 W1 W2 W5 测井解释饱和度平均值 0.45 0.34 0.35 0.33 0.26 0.22 0.37 反演预测饱和度平均值 0.43 0.33 0.31 0.32 0.32 0.28 0.29 饱和度差值 -0.02 -0.01 -0.04 -0.01 0.06 0.06 -0.08 -
[1] Makogon Y F, Holditch S A, Makogon T Y. Natural gas-hydrates—A potential energy source for the 21st Century[J]. Journal of Petroleum Science & Engineering, 2007, 56(1): 14-31. https://www.sciencedirect.com/science/article/abs/pii/S0920410506001859
[2] 郭依群,乔少华,吕万军.基于声波速度分析神狐海域水合物垂向分布特征[J].海洋地质前沿,2011,27(7):7-12. http://www.cqvip.com/QK/98440A/201107/38764842.html
[3] 梁 劲,王明君,陆敬安,等.南海北部神狐海域含天然气水合物沉积层的速度特征[J].天然气工业,2013,33(7):29-35. http://d.old.wanfangdata.com.cn/Periodical/trqgy201307005
[4] 陈建文,闫桂京,吴志强,等.天然气水合物的地球物理识别标志[J].海洋地质动态,2004,20(6):9-12. doi: 10.3969/j.issn.1009-2722.2004.06.004
[5] 徐华宁,杨胜雄,郑晓东,等.南中国海神狐海域天然气水合物地震识别及分布特征[J].地球物理学报,2010,53(7):1691-1698. doi: 10.3969/j.issn.0001-5733.2010.07.020
[6] 沙志彬,郑 涛,杨木壮,等.基于波阻抗反演的天然气水合物地震检测技术[J].现代地质,2010,24(3):481-488. doi: 10.3969/j.issn.1000-8527.2010.03.010
[7] 薛 花,张宝金,徐云霞,等.波阻抗反演在琼东南海域水合物检测中的应用[J].海洋地质与第四纪地质,2016,36(2):173-180. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201602024
[8] 杨 睿,吴能友,雷新华,等.波阻抗反演在南海北部神狐海域天然气水合物勘探中的应用[J].现代地质,2010,24(3):495-500. doi: 10.3969/j.issn.1000-8527.2010.03.012
[9] 张永刚.地震波阻抗反演技术的现状和发展[J].石油物探,2002,41(4):385-390. doi: 10.3969/j.issn.1000-1441.2002.04.001
[10] 方 红,陈 昌,徐 锐.地震反演技术在辽河兴隆台地区沙三段储层预测中的应用[J].海洋地质前沿,2013,29(4):65-70. http://www.cnki.com.cn/Article/CJFDTotal-HYDT201304014.htm
[11] Lee M R, Hutchinson D R, Collett T S, et al. Seismic velocities for hydrate-bearing sediments using weighted equation[J]. Journal of Geophysical Research, 1996, 101(B9): 20347-22035. doi: 10.1029/96JB01886
[12] Carcione J M, Tinivella U. Bottom-simulating reflectors: Seismic velocities and AVO effects[J]. Geophysics, 2000, 65(1): 54-67. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ029683871/
[13] Lee M W. Modified Biot-Gassmann theory for calculating elastic velocities for unconsolidated and consolidated sediments[J]. Marine Geophysical Researches, 2002, 23: 403-412. doi: 10.1023/B:MARI.0000018195.75858.12
[14] Lee M W. Biot-Gassmann theory for velocities of gas hydrate-bearing sediments[J]. Geophysics, 2002, 67(6): 1711-1719. doi: 10.1190/1.1527072
[15] Dvorkin J, Prasad M, Sakai A, et al. Elasticity of Marine sediments:Rock physics modeling[J]. Geophysical Research Letters, 1999, 26(12): 1781-1784. doi: 10.1029/1999GL900332
[16] Helgerud M B, Dvorkin J, Nur A, et al. Elastic-wave velocity in Marine sediments with gas hydrates: Effective medium modeling[J]. Geophysical Research Letters, 1999, 26(13): 2021-2024. doi: 10.1029/1999GL900421
[17] 高红艳,钟广法,梁金强,等.应用改进的Biot-Gassmann模型估算天然气水合物的饱和度[J].海洋地质与第四纪地质,2012,32(4):83-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201204010
[18] 宋海斌,Osamu M, 杨胜雄,等.含天然气水合物沉积物的岩石物性模型与似海底反射层的AVA特征[J].地球物理学报,2002,45(4):546-556. doi: 10.3321/j.issn:0001-5733.2002.04.012
[19] 刘欣欣,印兴耀,栾锡武.天然气水合物地层岩石物理模型构建[J].中国科学: 地球科学,2018,48(9):1248-1266. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201809009.htm
[20] Ecker C, Dvorkin J, Nur A M. Estimating the amount of g as hydrate and free gas from Marine seismic data[J]. Geophysics, 2000, 65(2): 565-573. doi: 10.1190/1.1444752
[21] Lee M W. Elastic velocities of partially gas-saturated unconsolidated sediments[J]. Marine and Petroleum Geology, 2004, 21: 641-650. doi: 10.1016/j.marpetgeo.2003.12.004
-