加拿大魁北克省奥陶系Utica海相页岩矿物分析及孔隙结构特征

鲍衍君, 张鹏辉, 梁杰, 薛路, 付奕霖. 加拿大魁北克省奥陶系Utica海相页岩矿物分析及孔隙结构特征[J]. 海洋地质前沿, 2020, 36(10): 57-67. doi: 10.16028/j.1009-2722.2020.095
引用本文: 鲍衍君, 张鹏辉, 梁杰, 薛路, 付奕霖. 加拿大魁北克省奥陶系Utica海相页岩矿物分析及孔隙结构特征[J]. 海洋地质前沿, 2020, 36(10): 57-67. doi: 10.16028/j.1009-2722.2020.095
BAO Yanjun, ZHANG Penghui, LIANG Jie, XUE Lu, FU Yilin. MINERALOGY AND PORE STRUCTURES OF THE ORDOVICIAN UTICA SHALE IN QUEBEC, CANADA[J]. Marine Geology Frontiers, 2020, 36(10): 57-67. doi: 10.16028/j.1009-2722.2020.095
Citation: BAO Yanjun, ZHANG Penghui, LIANG Jie, XUE Lu, FU Yilin. MINERALOGY AND PORE STRUCTURES OF THE ORDOVICIAN UTICA SHALE IN QUEBEC, CANADA[J]. Marine Geology Frontiers, 2020, 36(10): 57-67. doi: 10.16028/j.1009-2722.2020.095

加拿大魁北克省奥陶系Utica海相页岩矿物分析及孔隙结构特征

  • 基金项目: 国家自然科学基金(41702162);江苏省研究生科研与实践创新计划(KYCX20_0522);中央高校基本科研业务费项目(B200202144)
详细信息
    作者简介: 鲍衍君(1996—),男,在读硕士,主要从事海洋地质研究工作. E-mail:baoyj025@163.com
    通讯作者: 张鹏辉(1986—),男,博士,讲师,主要从事沉积学、储层地质学和石油地质学等方面的教学与研究工作. E-mail:zph010@163.com
  • 中图分类号: P736.21;618.13

MINERALOGY AND PORE STRUCTURES OF THE ORDOVICIAN UTICA SHALE IN QUEBEC, CANADA

More Information
  • 北美圣劳伦斯地台发育的奥陶系Utica海相页岩是加拿大魁北克省的页岩油气潜在有利区。以这套页岩为研究对象,基于野外露头和钻井岩心样品,综合运用了场发射扫描电镜、TIMA集成矿物分析系统和有机地球化学分析等多种分析测试手段,系统研究了Utica页岩的矿物组成和有机质特征,分析了孔隙特征及其影响因素。研究结果表明:Utica页岩经历了从成熟—高成熟阶段至过成熟阶段的热演化过程,有机质含量较高;Utica页岩矿物成分以方解石、石英、长石和黏土矿物为主,含少量白云石及黄铁矿等,且页岩样品随热演化程度的增加而表现为方解石含量逐渐减小,长石和石英含量逐渐增加,黏土矿物含量变化不大;其孔隙类型主要为基质孔隙(粒间孔隙和粒内孔隙)、有机质孔隙和裂隙,且平均孔隙度随埋藏深度的增加呈现降低的趋势;埋藏热演化和成岩作用对孔隙影响较为明显,成熟—高成熟阶段主要的孔隙类型为有机质孔隙,碳酸盐胶结会显著降低孔隙度,黏土矿物粒内孔隙较为发育并对总孔隙度有一定贡献,而过成熟阶段的压实作用构成了该阶段孔隙演化的主要因素,进一步降低了页岩孔隙空间,孔隙类型则多以基质孔隙为主。

  • 加载中
  • 图 1  圣劳伦斯地台地质简图和早古生代地层层序

    Figure 1. 

    图 2  圣劳伦斯地台地质剖面图及Utica页岩发育特征

    Figure 2. 

    图 3  基于TIMA矿物集成分析系统确定Utica页岩矿物组分及分布特征

    Figure 3. 

    图 4  Utica页岩和龙马溪组页岩岩性三角图

    Figure 4. 

    图 5  场发射扫描电镜镜下的Utica页岩孔隙特征

    Figure 5. 

    图 6  场发射扫描电镜镜下的Utica页岩孔隙特征

    Figure 6. 

    图 7  Utica页岩孔隙发育影响因素分析

    Figure 7. 

    表 1  Utica页岩矿物组分分析及不同技术方法结果对比

    Table 1.  Mineral composition statistics and comparison based on XRD or TIMA analysis of Utica shale

    矿物Utica页岩岩心样品
    (XRD分析结果)
    Utica页岩岩心样品
    (XRD分析结果)
    Utica页岩岩心样品(XRD分析结果)Utica页岩Cap Santé剖面样品
    (本次TIMA集成矿物分析结果)
    400~700 m2 000 mUtica上段Utica下段
    (1 487 m)
    Utica下段
    (1 584 m)
    方解石(55.5±14.6)%(47.2±7.3)%30%~80%20%~25%65%~70%55%~60%45%
    石英和长石(15.1±4.2)%(22.8±5.1)%≥30%25%~30%10%~15%10%~15%30%
    白云石2.65%3.9%2%
    黏土矿物≈23%≈22%20%~30%25%~30%5~10%5%~15%16%
    注:①岩心样品取自Junex Saint Augustin De Desmaures 1井、Junex Becancour 8井和Talisman Energy Saint-Edouard 1井;②岩心样品取自本区水力压裂测试井;③岩心样品取自圣劳伦斯Lowlands 地区钻井;Utica页岩岩心样品XRD分析结果据文献[12, 34, 41]整理总结。
    下载: 导出CSV

    表 2  魁北克Utica页岩与其他地区页岩矿物成分对比

    Table 2.  Comparison of mineral composition between Utica shale in Quebec and the shale in other areas

    地区石英和长石 方解石 白云石 黏土矿物
    魁北克露头剖面Utica页岩30%45%2%16%
    美国阿巴拉契亚盆地Utica页岩33%25%8%27%
    四川盆地龙马溪组页岩48.4%3.5%6.8%38.3%
    注:①岩心样品取自阿巴拉契亚盆地水力压裂测试井,据文献[42]整理;②岩心样品取自Y1-14井,据文献[43]整理。
    下载: 导出CSV
  • [1]

    王海华, 田黔宁, 张 炜. Appalachian盆地Utica页岩勘探开发地质成藏手册[M]. 北京: 中国地质图书馆, 2016: 178.

    [2]

    邹才能,翟光明,张光亚,等. 全球常规-非常规油气形成分布、资源潜力及趋势预测[J]. 石油勘探与开发,2015,42(1):13-25.

    [3]

    邹才能,杨 智,何东博,等. 常规-非常规天然气理论、技术及前景[J]. 石油勘探与开发,2018,45(4):575-587.

    [4]

    Kargbo D M,Wilhelm R G,Campbell D J. Natural gas plays in the Marcellus shale:Challenges and potential opportunities[J]. Environmental Science & Technology,2010,44(15):5679-5684.

    [5]

    龚建明,王建强,程青松,等. 下扬子烃源岩新层位—中下奥陶统[J]. 海洋地质前沿,2017,33(6):34-39.

    [6]

    邹才能. 非常规油气地质学[M]. 北京: 地质出版社, 2013: 463.

    [7]

    马永生,蔡勋育,赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发,2018,45(4):1-14.

    [8]

    EIA. Utica Shale Play Geology review[R]. U. S. Energy Information Administration, 2017: 21.

    [9]

    Lavoie D,Rivarda C,Lefebvre R,et al. The Utica Shale and gas play in southern Quebec:geological and hydrogeological syntheses and methodological approaches to groundwater risk evaluation[J]. International Journal of Coal Geology,2014,126:77-91. doi: 10.1016/j.coal.2013.10.011

    [10]

    Laughrey C D,Baldassare F J. Geochemistry and Origin of Some Natural Gases in the Plateau Province,Central Appalachian Basin,Pennsylvania and Ohio[J]. AAPG Bulletin,1998,82(2):317-335.

    [11]

    Chen Z,Lavoie D,Malo M,et al. A dual-porosity model for evaluating petroleum resource potential in unconventional tight-shale plays with application to Utica Shale,Quebec (Canada)[J]. Marine and Petroleum Geology,2017,80:333-348. doi: 10.1016/j.marpetgeo.2016.12.011

    [12]

    Ardakani O M,Sanei H,Ghanizadeh A,et al. Do all fractions of organic matter contribute equally in shale porosity? A case study from Upper Ordovician Utica Shale,southern Quebec,Canada[J]. Marine and Petroleum Geology,2018,92:794-808. doi: 10.1016/j.marpetgeo.2017.12.009

    [13]

    Lavoie D,Pinet N,Bordeleau G,et al. The Upper Ordovician black shales of southern Quebec (Canada) and their significance for naturally occurring hydrocarbons in shallow groundwater[J]. International Journal of Coal Geology,2016,158:44-64. doi: 10.1016/j.coal.2016.02.008

    [14]

    徐向华,王 健,李 茗,等. Appalachian盆地页岩油气勘探开发潜力评价[J]. 资源与产业,2014,16(6):62-70.

    [15]

    张金川,边瑞康,荆铁亚,等. 页岩气理论研究的基础意义[J]. 地质通报,2011,30(2/3):318-323.

    [16]

    Loucks R G,Reed R M,Ruppel S C,et al. Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research,2012,79:848-861.

    [17]

    Milliken K L,Rudniki M,Awwiller D N,et al. OM–hosted pore system,Marcellus Formation (Devonian),Pennsylvania[J]. AAPG Bulletin,2013,97:177-200. doi: 10.1306/07231212048

    [18]

    Clarkson C R,Haghshenas B,Ghanizadeh A,et al. Nanopores to megafractures:Current challenges and methods for shale gas reservoir and hydraulic fracture characterization[J]. Journal of Natural Gas Science and Engineering,2016,31:612-657. doi: 10.1016/j.jngse.2016.01.041

    [19]

    Chalmers G R,Bustin R M,Power I M. Characterization of gas shale pore systems by porosimetry,pycnometry,surface area,and field emission scanning electron microscopy/transmission electron microscopy image analyses:examples from the Barnett,Woodford,Haynesville,Marcellus,and Doig units[J]. AAPG Bulletin,2012,96:1099-1119. doi: 10.1306/10171111052

    [20]

    Kuila U,McCarty D K,Derkowski A,et al. Nano-scale texture and porosity of organic matter and clay minerals in organic-rich mudrocks[J]. Fuel,2014,135:359-373. doi: 10.1016/j.fuel.2014.06.036

    [21]

    Klaver J,Desbois G,Littke R,et al. BIB-SEM pore characterization of mature and post mature Posidonia Shale samples from the Hils area[J]. International Journal of Coal Geology,2016,158:78-89. doi: 10.1016/j.coal.2016.03.003

    [22]

    Ko L T,Loucks R G,Zhang T W,et al. Pore and pore network evolution of Upper Cretaceous Boquillas (Eagle Ford-equivalent) mudrocks:Results from gold tube pyrolysis experiments[J]. AAPG Bulletin,2016,100(11):1693-1722.

    [23]

    Yang L,Ge H,Shi X,et al. The effect of microstructure and rock mineralogy on water imbibition characteristics in tight reservoirs[J]. Journal of Natural Gas Science and Engineering,2016,34:751-766. doi: 10.1016/j.jngse.2016.07.003

    [24]

    Chalmers G R,Bustin R M. A multidisciplinary approach in determining the maceral (kerogen type) and mineralogical composition of Upper Cretaceous Eagle Ford Formation:impact on pore development and pore size distribution[J]. International Journal of Coal Geology,2017,171:93-110. doi: 10.1016/j.coal.2017.01.004

    [25]

    Teng J,Mastalerz M,Hampton L. Maceral controls on porosity characteristics of lithotypes of Pennsylvanian high volatile bituminous coal:example from the Illinois Basin[J]. International Journal of Coal Geology,2017,172:80-94. doi: 10.1016/j.coal.2017.02.001

    [26]

    张鹏辉,梁 杰,陈建文,等. 海相页岩气储层特征研究进展与发展动态[J]. 海相油气地质,2017,22(4):69-76.

    [27]

    Lavoie D, Hamblin A P, Thériault R, et al. The upper Ordovician Utica shales and Lorraine Group flysch in southern Québec: tectonostratigraphic setting and significance for unconventional gas[R]. Geological Survey of Canada Open File, 2008: 56.

    [28]

    Pinet N,Duchesne M,Lavoie D,et al. Surface and subsurface signatures of gas seepage in the St. Lawrence estuary:significance to hydrocarbon exploration[J]. Marine and Petroleum Geology,2008,25:271-288. doi: 10.1016/j.marpetgeo.2007.07.011

    [29]

    Sasseville C,Tremblay A,Clauer N,et al. K–Ar age constraints on the evolution of polydeformed fold-thrust belts:the case of the Northern Appalachians (southern Quebec)[J]. Journal of Geodynamics,2008,45:99-119. doi: 10.1016/j.jog.2007.07.004

    [30]

    Tremblay A,Roden-Tice M K,Brandt J A,et al. Mesozoic fault reactivation along the St. Lawrence rift system,eastern Canada:thermochronologic evidence from apatite fission-tract dating[J]. Geological Society of America Bulletin,2013,125(5/6):794-810.

    [31]

    Lavoie D. Diachronic collapse of the Ordovician continental margin,eastern Canada:comparison between the Québec Reentrant and the St. Lawrence Promontory[J]. Canadian Journal of Earth Sciences,1994,31:1309-1319. doi: 10.1139/e94-113

    [32]

    Lowe D G,Arnott R W C. Composition and architecture of braided and sheetflood-dominated ephemeral fluvial strata in the Cambrian-Ordovician Potsdam Group:a case example of the morphodynamics of early Phanerozoic fluvial systems and climate change[J]. Journal of Sedimentary Research,2016,86(6):587-612. doi: 10.2110/jsr.2016.39

    [33]

    Ardakani O H,Hamed S,Lavoie D,et al. Geochemical and petrographic characterization of the Upper Ordovician Utica Shale,southern Quebec,Canada[J]. International Journal of Coal Geology,2015,183:83-94.

    [34]

    Lavoie J Y, Marcil J S, Dorrins P K, et al. Natural gas potential in the Saint Lawrence Lowlands of Quebec: A case study[C]. SPE 137593-MS, 2010: 14.

    [35]

    Bertrand R. Correlations among the reflectances of vitrinite,chitinozoans,graptolites and scolecodonts[J]. Organic Geochemistry,1990,15(6):565-574. doi: 10.1016/0146-6380(90)90102-6

    [36]

    汪啸风,Hoffknecht A,萧建新,等. 笔石、几丁虫和虫牙反射率在热成熟度上的应用[J]. 地质学报,1992,66(3):269-279.

    [37]

    胡明霞,曹 寅. 下古生界烃源岩有机显微组分分类与应用[J]. 石油实验地质,2007,29(4):432-440.

    [38]

    Riboulleau A,Spina A,Vecoli M,et al. Organic matter deposition in the Ghadames Basin (Libya) during the Late Devonian:a multidisciplinary approach[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2018,497:37-51.

    [39]

    Aylmore M G,Merigot K,Quadir Z,et al. Applications of advanced analytical and mass spectrometry techniques to the characterisation of micaceous lithium-bearing ores[J]. Minerals Engineering,2018,116:182-195. doi: 10.1016/j.mineng.2017.08.004

    [40]

    Barton I. Monte Carlo simulations of electron-sample interactions at phase boundaries and implications for automated mineralogy[J]. Minerals Engineering,2020,155:1-9.

    [41]

    白宝君,孙永鹏,刘凌波. 加拿大魁北克省奥陶系Utica 页岩岩石物理特性[J]. 石油勘探与开发,2016,43(1):69-76.

    [42]

    Paktinat J, Pinkhouse J A, Fontaine J. Investigation of Methods To Improve Utica Shale Hydraulic Fracturing in the Appalachian Basin[R]. SPE 111063. 2007: 8.

    [43]

    Liang C,Jiang Z X,Zhang C M,et al. The shale characteristics and shale gas exploration prospects of the Lower Silurian Longmaxi shale,Sichuan Basin,South China[J]. Journal of Natural Gas Science and Engineering,2014,21:636-648. doi: 10.1016/j.jngse.2014.09.034

    [44]

    Zheng H R,Gao B,Peng Y M,et al. Sedimentary evolution and shale gas exploration direction of the Lower Silurian in Middle-Upper Yangze area[J]. Journal of Palaeogeography,2013,15(5):645-656.

    [45]

    王玉满,董大忠,李建忠,等. 川南下志留龙马溪组页岩气储层特征[J]. 石油学报,2012,33(4):551-561.

    [46]

    王玉满,董大忠,杨 桦,等. 川南下志留统龙马溪组页岩储集空间定量表征[J]. 中国科学:地球科学,2014,44(6):1348-1356.

    [47]

    龚建明,王 蛟,孙 晶,等. 前陆盆地—页岩气成藏的有利场所[J]. 海洋地质前沿,2012,28(12):25-29.

    [48]

    张鹏辉,Lee Yong II,张金亮,等. 砂岩储集层粒间孔隙保存机制[J]. 天然气工业,2019,39(7):31-40.

    [49]

    Zhang P H,Lee Y I,Zhang J L. A review of high-resolution X-ray computered tomography applied to petroleum geology and a case study[J]. Micron,2019,124,102702:1-10.

    [50]

    Loucks R G,Reed R M,Ruppel S C,et al. Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research,2009,79(12):848-861. doi: 10.2110/jsr.2009.092

    [51]

    Curtis M E,Ambrose R J,Sondergeld C H,et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology,2012,103:26-31. doi: 10.1016/j.coal.2012.08.004

    [52]

    Milliken K L,Curtis M E. Imaging pores in sedimentary rocks:Foundation of porosity prediction[J]. Marine and Petroleum Geology,2016,73:590-608. doi: 10.1016/j.marpetgeo.2016.03.020

    [53]

    Jarvie D M. Shale Resource Systems for Oil and Gas: Part 1—Shale-gas Resource Systems[C]// Breye J A. Shale Reservoirs—Giant Resources for the 21st Century. Humble: AAPG Memoir, 2012, 97: 69-87.

  • 加载中

(7)

(2)

计量
  • 文章访问数:  2194
  • PDF下载数:  135
  • 施引文献:  0
出版历程
收稿日期:  2020-06-16
刊出日期:  2020-10-28

目录