-
摘要:
北美圣劳伦斯地台发育的奥陶系Utica海相页岩是加拿大魁北克省的页岩油气潜在有利区。以这套页岩为研究对象,基于野外露头和钻井岩心样品,综合运用了场发射扫描电镜、TIMA集成矿物分析系统和有机地球化学分析等多种分析测试手段,系统研究了Utica页岩的矿物组成和有机质特征,分析了孔隙特征及其影响因素。研究结果表明:Utica页岩经历了从成熟—高成熟阶段至过成熟阶段的热演化过程,有机质含量较高;Utica页岩矿物成分以方解石、石英、长石和黏土矿物为主,含少量白云石及黄铁矿等,且页岩样品随热演化程度的增加而表现为方解石含量逐渐减小,长石和石英含量逐渐增加,黏土矿物含量变化不大;其孔隙类型主要为基质孔隙(粒间孔隙和粒内孔隙)、有机质孔隙和裂隙,且平均孔隙度随埋藏深度的增加呈现降低的趋势;埋藏热演化和成岩作用对孔隙影响较为明显,成熟—高成熟阶段主要的孔隙类型为有机质孔隙,碳酸盐胶结会显著降低孔隙度,黏土矿物粒内孔隙较为发育并对总孔隙度有一定贡献,而过成熟阶段的压实作用构成了该阶段孔隙演化的主要因素,进一步降低了页岩孔隙空间,孔隙类型则多以基质孔隙为主。
Abstract:The Ordovician Utica marine shale developed on the St. Lawrence Platform of Quebec, Canada is a set of deposits with great potential of shale oil and shale gas. Based on outcrop and drilling core samples, field emission scanning electron microscope, TIMA integrated mineral analysis system and organic geochemical analysis are used to systematically study the mineral composition and organic matters of the shale, so as to reveal pore characteristics and their influencing factors. The results show that the organic matters in the Utica shale are relatively rich and have undergone a thermal evolution process from mature or high-mature stage to over-mature stage as the depth increases. The shale mainly consists of calcite, quartz, feldspar and clay minerals, with a small amount of dolomite and pyrite. With the increase in thermal evolution degree, calcite decreases, feldspar and quartz increase gradually, while the content of clay minerals remains little changed. Pores can be classified into types of matrix pores (intergranular pore and intragranular pore), organic matter (OM) pores and fractures. Average porosity shows a decreasing trend with the increase in burial depth. Further analysis shows that the impact of buried thermal evolution and diagenesis are obvious on porosity evolution. In mature or high-mature stage, organic matter pores dominate. Carbonate cementation may significantly reduce porosity, but clay minerals have well developed internal pores and contribute to certain extent to the total. In contrast, shale pore spaces are greatly diminished by compaction, and thus the over-mature stage is mostly predominated by matrix pores.
-
Key words:
- Utica shale /
- Ordovician /
- mineral composition /
- shale gas /
- pore characteristics /
- Quebec
-
-
表 1 Utica页岩矿物组分分析及不同技术方法结果对比
Table 1. Mineral composition statistics and comparison based on XRD or TIMA analysis of Utica shale
矿物 Utica页岩岩心样品
(XRD分析结果)①Utica页岩岩心样品
(XRD分析结果)②Utica页岩岩心样品(XRD分析结果)③ Utica页岩Cap Santé剖面样品
(本次TIMA集成矿物分析结果)400~700 m 2 000 m Utica上段 Utica下段
(1 487 m)Utica下段
(1 584 m)方解石 (55.5±14.6)% (47.2±7.3)% 30%~80% 20%~25% 65%~70% 55%~60% 45% 石英和长石 (15.1±4.2)% (22.8±5.1)% ≥30% 25%~30% 10%~15% 10%~15% 30% 白云石 2.65% 3.9% — — — — 2% 黏土矿物 ≈23% ≈22% 20%~30% 25%~30% 5~10% 5%~15% 16% 注:①岩心样品取自Junex Saint Augustin De Desmaures 1井、Junex Becancour 8井和Talisman Energy Saint-Edouard 1井;②岩心样品取自本区水力压裂测试井;③岩心样品取自圣劳伦斯Lowlands 地区钻井;Utica页岩岩心样品XRD分析结果据文献[12, 34, 41]整理总结。 -
[1] 王海华, 田黔宁, 张 炜. Appalachian盆地Utica页岩勘探开发地质成藏手册[M]. 北京: 中国地质图书馆, 2016: 178.
[2] 邹才能,翟光明,张光亚,等. 全球常规-非常规油气形成分布、资源潜力及趋势预测[J]. 石油勘探与开发,2015,42(1):13-25.
[3] 邹才能,杨 智,何东博,等. 常规-非常规天然气理论、技术及前景[J]. 石油勘探与开发,2018,45(4):575-587.
[4] Kargbo D M,Wilhelm R G,Campbell D J. Natural gas plays in the Marcellus shale:Challenges and potential opportunities[J]. Environmental Science & Technology,2010,44(15):5679-5684.
[5] 龚建明,王建强,程青松,等. 下扬子烃源岩新层位—中下奥陶统[J]. 海洋地质前沿,2017,33(6):34-39.
[6] 邹才能. 非常规油气地质学[M]. 北京: 地质出版社, 2013: 463.
[7] 马永生,蔡勋育,赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发,2018,45(4):1-14.
[8] EIA. Utica Shale Play Geology review[R]. U. S. Energy Information Administration, 2017: 21.
[9] Lavoie D,Rivarda C,Lefebvre R,et al. The Utica Shale and gas play in southern Quebec:geological and hydrogeological syntheses and methodological approaches to groundwater risk evaluation[J]. International Journal of Coal Geology,2014,126:77-91. doi: 10.1016/j.coal.2013.10.011
[10] Laughrey C D,Baldassare F J. Geochemistry and Origin of Some Natural Gases in the Plateau Province,Central Appalachian Basin,Pennsylvania and Ohio[J]. AAPG Bulletin,1998,82(2):317-335.
[11] Chen Z,Lavoie D,Malo M,et al. A dual-porosity model for evaluating petroleum resource potential in unconventional tight-shale plays with application to Utica Shale,Quebec (Canada)[J]. Marine and Petroleum Geology,2017,80:333-348. doi: 10.1016/j.marpetgeo.2016.12.011
[12] Ardakani O M,Sanei H,Ghanizadeh A,et al. Do all fractions of organic matter contribute equally in shale porosity? A case study from Upper Ordovician Utica Shale,southern Quebec,Canada[J]. Marine and Petroleum Geology,2018,92:794-808. doi: 10.1016/j.marpetgeo.2017.12.009
[13] Lavoie D,Pinet N,Bordeleau G,et al. The Upper Ordovician black shales of southern Quebec (Canada) and their significance for naturally occurring hydrocarbons in shallow groundwater[J]. International Journal of Coal Geology,2016,158:44-64. doi: 10.1016/j.coal.2016.02.008
[14] 徐向华,王 健,李 茗,等. Appalachian盆地页岩油气勘探开发潜力评价[J]. 资源与产业,2014,16(6):62-70.
[15] 张金川,边瑞康,荆铁亚,等. 页岩气理论研究的基础意义[J]. 地质通报,2011,30(2/3):318-323.
[16] Loucks R G,Reed R M,Ruppel S C,et al. Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research,2012,79:848-861.
[17] Milliken K L,Rudniki M,Awwiller D N,et al. OM–hosted pore system,Marcellus Formation (Devonian),Pennsylvania[J]. AAPG Bulletin,2013,97:177-200. doi: 10.1306/07231212048
[18] Clarkson C R,Haghshenas B,Ghanizadeh A,et al. Nanopores to megafractures:Current challenges and methods for shale gas reservoir and hydraulic fracture characterization[J]. Journal of Natural Gas Science and Engineering,2016,31:612-657. doi: 10.1016/j.jngse.2016.01.041
[19] Chalmers G R,Bustin R M,Power I M. Characterization of gas shale pore systems by porosimetry,pycnometry,surface area,and field emission scanning electron microscopy/transmission electron microscopy image analyses:examples from the Barnett,Woodford,Haynesville,Marcellus,and Doig units[J]. AAPG Bulletin,2012,96:1099-1119. doi: 10.1306/10171111052
[20] Kuila U,McCarty D K,Derkowski A,et al. Nano-scale texture and porosity of organic matter and clay minerals in organic-rich mudrocks[J]. Fuel,2014,135:359-373. doi: 10.1016/j.fuel.2014.06.036
[21] Klaver J,Desbois G,Littke R,et al. BIB-SEM pore characterization of mature and post mature Posidonia Shale samples from the Hils area[J]. International Journal of Coal Geology,2016,158:78-89. doi: 10.1016/j.coal.2016.03.003
[22] Ko L T,Loucks R G,Zhang T W,et al. Pore and pore network evolution of Upper Cretaceous Boquillas (Eagle Ford-equivalent) mudrocks:Results from gold tube pyrolysis experiments[J]. AAPG Bulletin,2016,100(11):1693-1722.
[23] Yang L,Ge H,Shi X,et al. The effect of microstructure and rock mineralogy on water imbibition characteristics in tight reservoirs[J]. Journal of Natural Gas Science and Engineering,2016,34:751-766. doi: 10.1016/j.jngse.2016.07.003
[24] Chalmers G R,Bustin R M. A multidisciplinary approach in determining the maceral (kerogen type) and mineralogical composition of Upper Cretaceous Eagle Ford Formation:impact on pore development and pore size distribution[J]. International Journal of Coal Geology,2017,171:93-110. doi: 10.1016/j.coal.2017.01.004
[25] Teng J,Mastalerz M,Hampton L. Maceral controls on porosity characteristics of lithotypes of Pennsylvanian high volatile bituminous coal:example from the Illinois Basin[J]. International Journal of Coal Geology,2017,172:80-94. doi: 10.1016/j.coal.2017.02.001
[26] 张鹏辉,梁 杰,陈建文,等. 海相页岩气储层特征研究进展与发展动态[J]. 海相油气地质,2017,22(4):69-76.
[27] Lavoie D, Hamblin A P, Thériault R, et al. The upper Ordovician Utica shales and Lorraine Group flysch in southern Québec: tectonostratigraphic setting and significance for unconventional gas[R]. Geological Survey of Canada Open File, 2008: 56.
[28] Pinet N,Duchesne M,Lavoie D,et al. Surface and subsurface signatures of gas seepage in the St. Lawrence estuary:significance to hydrocarbon exploration[J]. Marine and Petroleum Geology,2008,25:271-288. doi: 10.1016/j.marpetgeo.2007.07.011
[29] Sasseville C,Tremblay A,Clauer N,et al. K–Ar age constraints on the evolution of polydeformed fold-thrust belts:the case of the Northern Appalachians (southern Quebec)[J]. Journal of Geodynamics,2008,45:99-119. doi: 10.1016/j.jog.2007.07.004
[30] Tremblay A,Roden-Tice M K,Brandt J A,et al. Mesozoic fault reactivation along the St. Lawrence rift system,eastern Canada:thermochronologic evidence from apatite fission-tract dating[J]. Geological Society of America Bulletin,2013,125(5/6):794-810.
[31] Lavoie D. Diachronic collapse of the Ordovician continental margin,eastern Canada:comparison between the Québec Reentrant and the St. Lawrence Promontory[J]. Canadian Journal of Earth Sciences,1994,31:1309-1319. doi: 10.1139/e94-113
[32] Lowe D G,Arnott R W C. Composition and architecture of braided and sheetflood-dominated ephemeral fluvial strata in the Cambrian-Ordovician Potsdam Group:a case example of the morphodynamics of early Phanerozoic fluvial systems and climate change[J]. Journal of Sedimentary Research,2016,86(6):587-612. doi: 10.2110/jsr.2016.39
[33] Ardakani O H,Hamed S,Lavoie D,et al. Geochemical and petrographic characterization of the Upper Ordovician Utica Shale,southern Quebec,Canada[J]. International Journal of Coal Geology,2015,183:83-94.
[34] Lavoie J Y, Marcil J S, Dorrins P K, et al. Natural gas potential in the Saint Lawrence Lowlands of Quebec: A case study[C]. SPE 137593-MS, 2010: 14.
[35] Bertrand R. Correlations among the reflectances of vitrinite,chitinozoans,graptolites and scolecodonts[J]. Organic Geochemistry,1990,15(6):565-574. doi: 10.1016/0146-6380(90)90102-6
[36] 汪啸风,Hoffknecht A,萧建新,等. 笔石、几丁虫和虫牙反射率在热成熟度上的应用[J]. 地质学报,1992,66(3):269-279.
[37] 胡明霞,曹 寅. 下古生界烃源岩有机显微组分分类与应用[J]. 石油实验地质,2007,29(4):432-440.
[38] Riboulleau A,Spina A,Vecoli M,et al. Organic matter deposition in the Ghadames Basin (Libya) during the Late Devonian:a multidisciplinary approach[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2018,497:37-51.
[39] Aylmore M G,Merigot K,Quadir Z,et al. Applications of advanced analytical and mass spectrometry techniques to the characterisation of micaceous lithium-bearing ores[J]. Minerals Engineering,2018,116:182-195. doi: 10.1016/j.mineng.2017.08.004
[40] Barton I. Monte Carlo simulations of electron-sample interactions at phase boundaries and implications for automated mineralogy[J]. Minerals Engineering,2020,155:1-9.
[41] 白宝君,孙永鹏,刘凌波. 加拿大魁北克省奥陶系Utica 页岩岩石物理特性[J]. 石油勘探与开发,2016,43(1):69-76.
[42] Paktinat J, Pinkhouse J A, Fontaine J. Investigation of Methods To Improve Utica Shale Hydraulic Fracturing in the Appalachian Basin[R]. SPE 111063. 2007: 8.
[43] Liang C,Jiang Z X,Zhang C M,et al. The shale characteristics and shale gas exploration prospects of the Lower Silurian Longmaxi shale,Sichuan Basin,South China[J]. Journal of Natural Gas Science and Engineering,2014,21:636-648. doi: 10.1016/j.jngse.2014.09.034
[44] Zheng H R,Gao B,Peng Y M,et al. Sedimentary evolution and shale gas exploration direction of the Lower Silurian in Middle-Upper Yangze area[J]. Journal of Palaeogeography,2013,15(5):645-656.
[45] 王玉满,董大忠,李建忠,等. 川南下志留龙马溪组页岩气储层特征[J]. 石油学报,2012,33(4):551-561.
[46] 王玉满,董大忠,杨 桦,等. 川南下志留统龙马溪组页岩储集空间定量表征[J]. 中国科学:地球科学,2014,44(6):1348-1356.
[47] 龚建明,王 蛟,孙 晶,等. 前陆盆地—页岩气成藏的有利场所[J]. 海洋地质前沿,2012,28(12):25-29.
[48] 张鹏辉,Lee Yong II,张金亮,等. 砂岩储集层粒间孔隙保存机制[J]. 天然气工业,2019,39(7):31-40.
[49] Zhang P H,Lee Y I,Zhang J L. A review of high-resolution X-ray computered tomography applied to petroleum geology and a case study[J]. Micron,2019,124,102702:1-10.
[50] Loucks R G,Reed R M,Ruppel S C,et al. Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research,2009,79(12):848-861. doi: 10.2110/jsr.2009.092
[51] Curtis M E,Ambrose R J,Sondergeld C H,et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology,2012,103:26-31. doi: 10.1016/j.coal.2012.08.004
[52] Milliken K L,Curtis M E. Imaging pores in sedimentary rocks:Foundation of porosity prediction[J]. Marine and Petroleum Geology,2016,73:590-608. doi: 10.1016/j.marpetgeo.2016.03.020
[53] Jarvie D M. Shale Resource Systems for Oil and Gas: Part 1—Shale-gas Resource Systems[C]// Breye J A. Shale Reservoirs—Giant Resources for the 21st Century. Humble: AAPG Memoir, 2012, 97: 69-87.
-