Research and application of coal seam interference trimming in seismic reservoir prediction of K Gas Field in Xihu Sag
-
摘要:
煤层引起的强反射对地震信号有极强的干涉作用。东海陆架盆地西湖凹陷K气田煤层发育,且具有“横向上连续性差、分布零散,纵向上期次多、厚度薄”的特点。研究发现,煤层的存在会导致该区砂体预测存在无中生有、地震反射结构被屏蔽等问题,严重制约了地震储层预测的精度,因此,应用地球物理半定量解释定位煤层、地震高幅滤波过滤煤层、多子波分解重构置换煤层等方法,在尽量多保留有效地震反射信息的基础上去除K气田煤层强反射对地震信号的影响。消除煤层强反射后的地震数据与储层相关性更高,提升了储层预测精度和可靠性。
Abstract:The strong reflection caused by coal seam has strong interference effect on seismic signal. The K Gas Field in Xihu Sag of the East China Sea Shelf Basin features poor continuity, scattered distribution, and thin thickness. In this study, we found that the presence of coal seams could lead to problems in sand body prediction, such as creating something out of nothing and shielding of seismic reflection structures, which severely limited the accuracy of seismic reservoir prediction. Therefore, by using semi-quantitative interpretation of geophysical responses to locate coal seams, seismic high-amplitude filtering to filter coal seams, and multi-wavelet decomposition and reconstruction to replace coal seams, the influence of strong reflection from coal seam in K Gas Field on seismic signal was removed while retaining as much effective seismic reflection information as possible. After eliminating strong reflection of coal seams, the correlation between seismic data and reservoir became higher, and the accuracy and reliability of reservoir prediction were improved.
-
-
[1] 张宪旭. 基于模型驱动的煤层强反射能量衰减方法[J]. 煤田地质与勘探,2020,48(3):187-194.
[2] 王大兴,王永刚,赵玉华,等. 一种地震强反射振幅消除方法在鄂尔多斯盆地的试验[C]. SPG/SEG北京2016国际地球物理会议,2016.
[3] 刘爱群,陈殿远,任科英. 分频与波形聚类分析技术在莺歌海盆地中深层气田区的应用[J]. 地球物理学进展,2013,28(1):338-344.
[4] WANG Y H. Seismic time-frequency spectral decomposition by matching pursuit[J]. Geophysics,2007,72(1):13-20.
[5] 潘辉,印兴耀,李坤,等. 地震反演驱动的改进匹配追踪煤层识别方法[J]. 地球物理学报,2022,65(6):2276-2291.
[6] 秦雪霏,李巍. 大牛系气田煤系地层去煤影响储层预测技术[J]. 吉林大学学报(地球科学版),2014,44(3):1048-1054.
[7] 陈召右,王光强. 鄂尔多斯盆地大牛地气田山西组砂体组合类型及成因模式[J]. 石油与天然气地质,2010,31(5):632-639.
[8] 姜传金,陈树民,刘财,等. 基于Wigner双谱对角切片的谱分解技术在油气检测中的应用[J]. 吉林大学学报(地球科学版),2013,43(3):1013-1024.
[9] 李丛,韩立国,李金泉,等. 平滑Wigner-Ville谱分解技术在储层预测中的应用[J]. 世界地质,2012,31(1):913-818.
[10] LI Y D,ZHENG X D. Spectral decomposition using Wigner Ville distribution with application to carbonate reservoir characterization[J]. The Leading Edge,2008,27(8):1050-1057. doi: 10.1190/1.2967559
[11] COHEN L. Time-Frequency Analysis[M]. New Jersey:Prentice Hall inc,1995.
[12] 徐天吉,沈忠民,文雪康. 多子波分解与重构技术应用研究[J]. 成都理工大学学报,2010,37(6):660-665.
[13] 李曙光,徐天吉,唐建明,等. 基于频率域小波的地震信号多子波分解及重构[J]. 石油地球物理勘探,2009,4(6):675-679. doi: 10.3321/j.issn:1000-7210.2009.06.006
[14] 周心怀,高顺莉,高伟中,等. 东海陆架盆地西湖凹陷平北斜坡带海陆过渡型岩性油气藏形成与分布预测[J]. 中国石油勘探,2019,24(2):153-164.
[15] 王果寿,周卓明,肖朝辉,等. 西湖凹陷春晓区带下第三系平湖组、花港组沉积特征[J]. 石油与天然气地质,2022,23(3):257-261.
[16] 张银国. 东海西湖凹陷花港组油气地质条件与油气分布规律[J]. 石油实验地质,2010,32(3):223-226.
[17] 梁若冰,李玉珍,李纯洁,等. 平湖油气田地质特征与勘探方向[J]. 海洋石油,2008,28(2):7-13.
[18] 郭真,刘池洋,田建锋. 东海陆架盆地龙井运动构造影响及其发育背景[J]. 西北大学学报(自然科学版),2015,45(5):801-810.
[19] 蒋一鸣,何新建,张绍亮. 东海陆架盆地“反转改造”构造迁移演化特征:以西湖凹陷边缘构造为例[J]. 长江大学学报(自科版),2016,13(26):1-7.
[20] 陈哲,张昌民,侯国伟,等. 东海陆架盆地西湖凹陷平湖组断层组合样式及其控砂机制[J]. 石油与天然气地质,2020,41(4):824-837.
[21] 秦兰芝,刘金水,李帅,等. 东海西湖凹陷中央反转带花港组锆石特征及物源指示意义[J]. 石油实验地质,2017,39(4):498-504,526.
[22] 陈波,李文俊,丁芳,等. 基于地震波形结构特征的分流河道砂体储层构型[J]. 石油地质与工程,2021,35(6):1-6.
[23] 张建培,余逸凡,张田,等. 东海西湖凹陷深盆气勘探前景探讨[J]. 中国海上油气,2013,25(2):24-29,35.
[24] 王丽顺,陈琳琳. 东海西湖凹陷下第三系层序地层学分析[J]. 海洋地质与第四纪地质,1994,14(3):33-42.
[25] 张国华,刘金水,秦兰芝,等. 西湖凹陷渐新统花港组大型辫状河沉积体系特征[J]. 中国海上油气,2018,30(3):10-18.
[26] 刘金水,邹玮,李宁,等. “储保耦合”控藏机制与西湖凹陷大中型油气田勘探实践[J]. 中国海上油气,2019,31(3):11-19.
-