潟湖岩芯沉积对海平面变化和物源的响应

龙根元, 陈万利, 陈波, 吴时国, 张从伟, 姜海滨, 魏浩天, 李秋环. 潟湖岩芯沉积对海平面变化和物源的响应——以中沙环礁潟湖为例[J]. 海洋地质前沿, 2024, 40(6): 26-38. doi: 10.16028/j.1009-2722.2023.198
引用本文: 龙根元, 陈万利, 陈波, 吴时国, 张从伟, 姜海滨, 魏浩天, 李秋环. 潟湖岩芯沉积对海平面变化和物源的响应——以中沙环礁潟湖为例[J]. 海洋地质前沿, 2024, 40(6): 26-38. doi: 10.16028/j.1009-2722.2023.198
LONG Genyuan, CHEN Wanli, CHEN Bo, WU Shiguo, ZHANG Congwei, JIANG Haibin, WEI Haotian, LI Qiuhuan. Sedimentary characteristics of a drilling core from the Zhongsha atoll lagoon: responses to sea level and provenance changes[J]. Marine Geology Frontiers, 2024, 40(6): 26-38. doi: 10.16028/j.1009-2722.2023.198
Citation: LONG Genyuan, CHEN Wanli, CHEN Bo, WU Shiguo, ZHANG Congwei, JIANG Haibin, WEI Haotian, LI Qiuhuan. Sedimentary characteristics of a drilling core from the Zhongsha atoll lagoon: responses to sea level and provenance changes[J]. Marine Geology Frontiers, 2024, 40(6): 26-38. doi: 10.16028/j.1009-2722.2023.198

潟湖岩芯沉积对海平面变化和物源的响应

  • 基金项目: 海南省海洋地质资源与环境重点实验室开放课题项目(HNHYDZZYHJKF003, HNHYDZZYHJKF017);南海地质构造研究项目(T100731);海南省科技计划三亚崖州湾科技城联合项目(2021JJLH0047);中国博士后科学基金(2021M703667);广东省区域联合基金-青年基金 (2021A1515110844)
详细信息
    作者简介: 龙根元(1984—),男,硕士,正高级工程师,主要从事海洋地质方面的研究工作. E-mail:genyuanl203@163.com
    通讯作者: 陈万利(1990—),男,博士,助理研究员,主要从事碳酸盐岩沉积学方面的研究工作. E-mail:chenwl@idsse.ac.cn
  • 中图分类号: P736

Sedimentary characteristics of a drilling core from the Zhongsha atoll lagoon: responses to sea level and provenance changes

More Information
  • 基于中沙环礁潟湖的50.5 m钻孔岩芯,采用薄片观察、测年、主微量元素和碳氧同位素分析等方法,探讨了钻孔岩芯的层序地层、沉积微相和地球化学特征。结果显示该处沉积过程对晚第四纪海平面变化和物源有明显响应。结合测年结果,将岩芯的生物礁灰岩划分为10个更新世层序,且可与MIS5—MIS23阶段间冰期海水高位时期相对应。元素Sr和U的含量变化随深度加大而呈现阶梯式下降,这是由于冰期海水低位时期碳酸盐岩台地反复暴露使得老地层接受更长时间淡水成岩作用从而导致元素累积流失更多,且数值下降处可以指示层序界面。该钻孔钻遇的珊瑚礁多发育在高位体系域的进积阶段,推测是由于晚第四纪时期海平面变化速度快,且呈现迅速上升而缓慢下降的特征引起的。物源贡献因子分析结果显示,陆源物质来源、文石和高镁方解石来源、低镁方解石来源和鸟类粪便来源等4类物源影响礁灰岩的主量元素组成。本研究还揭示出现今潟湖钻遇的珊瑚礁地层有对晚第四纪10万a短偏心率周期的海平面变化响应较好,体现潟湖和台地边缘珊瑚礁的差异生长是造成现今环礁潟湖水深较大的原因之一,对解释现代环礁由来有一定的启示意义。

  • 加载中
  • 图 1  中沙钻孔ZS-01地理位置

    Figure 1. 

    图 2  ZS-01钻孔部分岩芯照片

    Figure 2. 

    图 3  ZS-01钻孔年龄-深度分布曲线

    Figure 3. 

    图 4  ZS-01偏光显微镜下的钻孔岩芯沉积微相

    Figure 4. 

    图 5  ZS-01钻孔晚第四纪沉积微相、地化特征综合柱状图

    Figure 5. 

    图 6  ZS-01钻孔岩芯主量元素含量纵向分布

    Figure 6. 

    图 7  ZS-01钻孔沉积微相、地化指标变化与全球海平面变化曲线对比

    Figure 7. 

    图 8  主量元素的物源贡献因子比例

    Figure 8. 

    表 1  AMS14C测年结果

    Table 1.  AMS14C dating results

    深度/mbsf 编号 样品 14C 年龄/a BP 13C/12C)/‰ 校正年龄(范围)/cal a BP 校正年龄(中值)/cal a BP
    0.01 Beta-530262 有孔虫 440±30 −0.3 130~0 65
    0.41 Beta-530263 有孔虫 540±30 +0.1 266~66 166
    1.26 Beta-530265 有孔虫 570±30 +0.9 285~111 198
    1.68 Beta-530266 有孔虫 820±30 +0.4 513~396 454.5
    下载: 导出CSV

    表 2  ZS-01钻孔所取珊瑚的230Th/234U 比值与测年结果

    Table 2.  230Th/234U dating results for corals from Core ZS-01

    深度/m 样品 U/(μg/g) Th /(μg/g) 234U/238U/10-6 234U 230Th/238U 230Th/232Th/10−6 年龄/a BP 误差(2σ)
    4.67 珊瑚 3 472.5±5.2 4 671±94 59.104±0.097 75.2±1.8 0.983 8±0.0017 12 060±243 248 447 2 461
    10.60 灰岩 1 784.1±2.3 557±12 58.718±0.104 68.2±1.9 1.028 8±0.0018 54 311±1199 313 774 4 927
    22.10 珊瑚 1 149.0±1.5 276±8 56.403±0.105 26.1±1.9 1.039 3±0.0020 71 336±2 086 >600 000 \
    26.64 灰岩 2 182.8±2.9 19 175±384 56.508±0.098 28±1.8 1.0448±0.0019 1 961±39 >600 000 \
    40.95 珊瑚 1 244.1±1.8 49 541±993 57.131±0.13 39.3±2.4 1.1045±0.0021 457±9 >600 000 \
    下载: 导出CSV

    表 3  ZS-01钻孔87Sr/86Sr比值和定年结果

    Table 3.  87Sr/86Sr ratios and dating results for Core ZS-01

    深度/m编号样品87Sr/86Sr最小年龄/a BP平均年龄/a BP最大年龄/a BP
    30.63IS-0599灰岩0.709 1510.000 005617 000687 000773 000
    47.5IS-0600灰岩0.709 1420.000 019826 000924 0001 019 000
    下载: 导出CSV

    表 4  ZS-01钻孔常量、微量元素相关性系数表(n=186, P<0.01)

    Table 4.  The correlations of main and minor elements in ZK-01 carbonate profile


    Na2O MgO Al2O3 SiO2 P2O5 K2O CaO TiO2 MnO Fe2O3 Sr U
    Na2O 1.00
    MgO 0.79 1.00
    Al2O3 0.23 0.18 1.00
    SiO2 0.29 0.14 0.50 1.00
    P2O5 0.40 0.67 0.13 0.16 1.00
    K2O 0.37 0.18 0.57 0.84 0.21 1.00
    CaO −0.87 −0.91 −0.30 −0.25 −0.52 −0.32 1.00
    TiO2 0.24 0.08 0.85 0.49 0.07 0.72 −0.23 1.00
    MnO 0.31 0.47 0.21 0.45 0.70 0.53 −0.43 0.25 1.00
    Fe2O3 −0.08 −0.06 0.59 0.66 0.16 0.82 −0.02 0.70 0.49 1.00
    Sr 0.74 0.78 0.12 0.01 0.35 0.03 −0.79 0.00 0.07 −0.19 1.00
    U 0.43 0.53 0.12 0.05 0.45 0.08 −0.46 0.02 0.12 −0.01 0.76 1.00
    下载: 导出CSV

    表 5  不同因子数量的PMF分析结果对比

    Table 5.  A comparison of the performance of the PMF models with varying numbers of factors

    物源贡献因子个数
    3456
    因子 1SiO2,K2O,TiO2,Fe2O3,Al2O3,P2O5 ,MnOSiO2,K2O,TiO2,Fe2O3, Al2O3SiO2SiO2
    因子 2Na2O,MgONa2O,MgONa2O,MgONa2O,MgO
    因子 3CaO,LOICaO,LOICaO,LOICaO,LOI
    因子 4P2O5,MnOP2O5,MnO,Al2O3P2O5,MnO,Al2O3
    因子 5K2O,TiO2,Fe2O3K2O,TiO2,Fe2O3
    因子6Na2O
    下载: 导出CSV
  • [1]

    SUN Y,YIN Q,CRUCIFIX M,et al. Diverse manifestations of the mid-Pleistocene climate transition[J]. Nature Communications,2019,10:352. doi: 10.1038/s41467-018-08257-9

    [2]

    PISIAS N G,MOORE T C. The evolution of Pleistocene climate:a time series approach[J]. Earth and Planetary Science Letters 1981,52:450-458.

    [3]

    RAYMO M E,OPPO D W,CURRY W. The Mid-Pleistocene climate transition:a deep sea carbon isotopic perspective[J]. Paleoceanography,1997,12:546-559. doi: 10.1029/97PA01019

    [4]

    HERBERT T D,PETERSON L C,LAWRENCE K T,et al. Tropical ocean temperatures over the past 3.5 million years[J]. Science,2010,328:1530-1534. doi: 10.1126/science.1185435

    [5]

    LISIECKI L E,RAYMO M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography,2005,20:PA1003.

    [6]

    DROXLER A W,JORRY S J. The origin of modern atolls:challenging Darwin's deeply ingrained theory[J]. Annual Review of Marine Science,2021,13:537-573. doi: 10.1146/annurev-marine-122414-034137

    [7]

    CAMOIN G F,EBREN P,EISENHAUER A,et al. A 300 000-yr coral reef record of sea level changes,Mururoa atoll (Tuamotu archipelago,French Polynesia)[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2001,175:325-341.

    [8]

    MONTAGGIONI L F,BORGOMANO J,FOURNIER F,et al. Response of the Great Barrier Reef to sea-level and environmental changes over the past 30,000 years [J]. Nature Geoscience,2018,11:426-432.

    [9]

    MELIM L A. Limitations on lowstand meteoric diagenesis in the Pliocene-Pleistocene of Florida and Great Bahama Bank:implications for eustatic sea-level models[J]. Geology,1996,24:893-896.

    [10]

    RITTER A C,MAVROMATIS V,DIETZEL M,et al. Exploring the impact of diagenesis on (isotope) geochemical and microstructural alteration features in biogenic aragonite[J]. Sedimentology,2017,64:1354-1380. doi: 10.1111/sed.12356

    [11]

    WU F,XIE X N,COLETTI G,et al. Coralline algal and foraminiferal records of the Pliocene paleoclimatic conditions and water-depth changes in the northern South China Sea [J]. Marine and Petroleum Geology,2023,153:106276.

    [12]

    LI Y Q,YU K F,BIAN L Z,et al. Paleo-water depth variations since the Pliocene as recorded by coralline algae in the South China Sea [J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2021,562:110107.

    [13]

    MENG M,YU K F,HALLOCK P,et al. Foraminifera indicate Neogene evolution of Yongle Atoll from Xisha Islands in the South China Sea [J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2022,602:111163.

    [14]

    WEBSTER J M,WALLACE L,SILVER E,et al. Coralgal composition of drowned carbonate platforms in the Huon Gulf,Papua New Guinea; implications for lowstand reef development and drowning[J]. Marine Geology,2004,204:59-89. doi: 10.1016/S0025-3227(03)00356-6

    [15]

    CHEN W L,HUANG X X,WU S G,et al. Facies character and geochemical signature in the late Quaternary meteoric diagenetic carbonate succession at the Xisha Islands,South China Sea[J]. Acta Oceanologica Sinica,2021,40:94-111.

    [16]

    LI R,QIAO P J,CUI Y C,et al. Composition and diagenesis of Pleistocene aeolianites at Shidao,Xisha Islands:implications for palaeoceanography and palaeoclimate during the last glacial period[J]. Palaeogeography Palaeoclimatology Palaeoecology,2018,490:604-616.

    [17]

    陈万利,吴时国,黄晓霞,等. 西沙群岛晚第四纪碳酸盐岩淡水成岩作用:来自永兴岛SSZK1钻孔的地球化学响应证据[J]. 沉积学报,2020,38(6):1296-1312.

    [18]

    LIU X F,LIU X M,WANG X K,et al. Dolostone as a reliable tracer of seawater lithium isotope composition[J]. Communications Earth & Environment,2023,4(1):58.

    [19]

    LI R,QIAO P J,CUI Y C,et al. Composition and diagenesis of Pleistocene aeolianites at Shidao,Xisha Islands:implications for palaeoceanography and palaeoclimate during the last glacial period [J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2018,490:604-616.

    [20]

    WU F,ZHU Y H. Quaternary subsidence history of Xisha Islands (northern South China Sea):evidences from the reef-bank system [J]. Marine and Petroleum Geology,2022,144:105843.

    [21]

    ZHU X W,JIA G D,TIAN Y H,et al. Ancient hydrocarbon slicks recorded by a coral atoll in the South China Sea [J]. Chemical Geology,2023,619:121316.

    [22]

    LI G,XU W H,LUO Y,et al. Strontium isotope stratigraphy and LA-ICP-MS U-Pb carbonate age constraints on the Cenozoic tectonic evolution of the southern South China Sea [J]. GSA Bulletin. 2022,135 (1/2):271–285.

    [23]

    SHAO L,CUI Y C,QIAO P J,et al. Sea-level changes and carbonate platform evolution of the Xisha Islands (South China Sea) since the Early Miocene[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2017,485:504-516.

    [24]

    WANG P X,LI Q. The South China sea:paleoceanography and sedimentology[M]. Berlin:Springer Publishing,2009:0-506.

    [25]

    SIBUET J C,YEH Y C,LEE C S. Geodynamics of the South China Sea[J]. Tectonophysics,2016,692:98-119. doi: 10.1016/j.tecto.2016.02.022

    [26]

    STEUER S,FRANKE D,MERESSE F,et al. Time constraints on the evolution of southern Palawan Island,Philippines from onshore and offshore correlation of Miocene limestones[J]. Journal of Asian Earth Sciences,2013,76:412-427. doi: 10.1016/j.jseaes.2013.01.007

    [27]

    DING W W,LI J B,DONG C Z,et al. Oligocene–Miocene carbonates in the Reed Bank area,South China Sea,and their tectono-sedimentary evolution [J]. Marine Geophysical Research,2014,36:149-165.

    [28]

    DING W W,LI J B. Conjugate margin pattern of the Southwest Sub-basin,South China Sea:insights from deformation structures in the continent‐ocean transition zone[J]. Geological Journal,2015,51:524-534.

    [29]

    HUANG X X,BETZLER C,WU S G,et al. First documentation of seismic stratigraphy and depositional signatures of Zhongsha atoll (Macclesfield Bank),South China Sea [J]. Marine and Petroleum Geology,2020,117:104349.

    [30]

    WU S G,YANG Z,WANG D W,et al. Architecture,development and geological control of the Xisha carbonate platforms,northwestern South China Sea[J]. Marine Geology,2014,350:71-83. doi: 10.1016/j.margeo.2013.12.016

    [31]

    YI L,JIAN Z M,LIU X Y,et al. Astronomical tuning and magnetostratigraphy of Neogene biogenic reefs in Xisha Islands,South China Sea[J]. Science Bulletin,2018,63:564-573. doi: 10.1016/j.scib.2018.04.001

    [32]

    SUN Z,ZHONG Z H,KEEP M,et al. 3D analogue modeling of the South China Sea:a discussion on breakup pattern[J]. Journal of Asian Earth Sciences,2009,34:544-556. doi: 10.1016/j.jseaes.2008.09.002

    [33]

    LI C F,LI J,DING W,et al. Seismic stratigraphy of the central South China Sea basin and implications for neotectonics[J]. Journal of Geophysical Research:Solid Earth,2015,120:1377-1399. doi: 10.1002/2014JB011686

    [34]

    陈俊锦,张经纬,刘时桥,等. 南海中沙群岛海域表层沉积物粒度特征及其输运趋势[J]. 海洋地质与第四纪地质,2022,42(2):15-27.

    [35]

    CHENG H,LAWRENCE EDWARDS R,SHEN C C,et al. Improvements in 230Th dating,230Th and 234U half-life values,and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry[J]. Earth and Planetary Science Letters,2013,371/372:82-91. doi: 10.1016/j.jpgl.2013.04.006

    [36]

    MCARTHUR J M,HOWARTH R J,BAILEY T R. Strontium isotope stratigraphy:LOWESS Version 3:best fit to the marine Sr-isotope curve for 0-509 Ma and accompanying look-up table for deriving numerical age[J]. The Journal of Geology,2001,109:155-170.

    [37]

    WU F,XIE X,BETZLER C,et al. The impact of eustatic sea-level fluctuations,temperature variations and nutrient-level changes since the Pliocene on tropical carbonate platform (Xisha Islands,South China Sea)[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2019,514:373-385.

    [38]

    PAATERO P,HOPKE P K. Rotational tools for factor analytic models[J]. Journal of Chemometrics,2009,23:91-100. doi: 10.1002/cem.1197

    [39]

    HAJIKAZEMI E,AL-AASM I S,CONIGLIO M. Subaerial exposure and meteoric diagenesis of the Cenomanian-Turonian Upper Sarvak Formation,southwestern Iran[J]. Geological Society,2010,330(1):253-272.

    [40]

    尤丽,于亚苹,廖静,等. 西沙群岛西科1井第四纪生物礁中典型暴露面的岩石学与孔隙特征[J]. 地球科学:中国地质大学学报,2015,40(4):671-676.

    [41]

    罗云,黎刚,徐维海,等. 南科1井第四系暴露面特征及其与海平面变化的关系[J]. 热带海洋学报,2022,41(1):143-157. doi: 10.11978/2021013

    [42]

    WU S G,CHEN W L,HUANG X X,et al. Facies model on the modern isolated carbonate platform in the Xisha Archipelago,South China Sea[J]. Marine Geology,2020,425:106203.

    [43]

    MONTAGGIONI L F,BORGOMANO J,FOURNIER F,et al. Quaternary atoll development:new insights from the two‐dimensional stratigraphic forward modelling of Mururoa Island (Central Pacific Ocean)[J]. Sedimentology,2015,62:466-500. doi: 10.1111/sed.12175

    [44]

    刘健,韩春瑞,吴建政,等. 西沙更新世礁灰岩大气淡水成岩的地球化学证据[J]. 沉积学报,1998,16(4):71-77.

    [45]

    DECHNIK B,WEBSTER J M,WEBB G E,et al. The evolution of the Great Barrier Reef during the Last Interglacial Period[J]. Global and Planetary Change,2017,149:53-71. doi: 10.1016/j.gloplacha.2016.11.018

    [46]

    ZHAO K,DU X,JIA J,et al. Effects of sea-level variation and sedimentary noise variation on the development of biogenic reefs since the Pliocene among the Xisha Islands,South China Sea[J]. GSA Bulletin,2021,134:1781-1792.

    [47]

    朱伟林,王振峰,米立军,等. 南海西沙西科1井层序地层格架与礁生长单元特征[J]. 地球科学:中国地质大学学报,2015,40(4):677-687.

    [48]

    LIU J,WEBSTER J M,SALLES T,et al. The Formation of Atolls:new insights from numerical simulations.[J]. Journal of Geophysical Research:Earth Surface,2022,127:e2022JF006812.

    [49]

    LI T,LI X J,LUO W D,et al. Combined classification and source apportionment analysis for trace elements in western Philippine Sea sediments[J]. Science of The Total Environment,2019,675:408-419.

    [50]

    LI T,SUN G,YANG C,et al. Source apportionment and source-to-sink transport of major and trace elements in coastal sediments:combining positive matrix factorization and sediment trend analysis[J]. Science of The Total Environment,2019,651:344-356.

    [51]

    LI T,LI X J,ZHANG J Y,et al. Source identification and co-occurrence patterns of major elements in South China Sea sediments [J]. Marine Geology ,2020,428:106285.

    [52]

    DU S H,XIANG R,LIU J G,et al. The present-day atmospheric dust deposition process in the South China Sea[J]. Atmospheric Environment,2020,223:117261.

    [53]

    SWART P K. The geochemistry of carbonate diagenesis:the past,present and future[J]. Sedimentology,2015,62:1233-1304. doi: 10.1111/sed.12205

    [54]

    CANFIELD D E. The geochemistry of river particulates from the continental USA:major elements[J]. Geochimica et Cosmochimica Acta,1997,61:3349-3365. doi: 10.1016/S0016-7037(97)00172-5

    [55]

    CHEN W L,LIU G,WU S G,et al. Late Holocene lagoon succession and its response to environmental variations at Yongle atoll,Xisha Islands,South China Sea[J]. Geological Journal,2021,56:3155-3169.

    [56]

    XU L Q,LIU X D,SUN L G,et al. Distribution of radionuclides in the guano sediments of Xisha Islands,South China Sea and its implication[J]. Journal of Environmental Radioactivity,2010,101:362-368. doi: 10.1016/j.jenvrad.2010.02.004

    [57]

    XU L Q,LIU X D,SUN L G,et al. Geochemical evidence for the development of coral island ecosystem in the Xisha Archipelago of South China Sea from four ornithogenic sediment profiles[J]. Chemical Geology,2011,286:135-145. doi: 10.1016/j.chemgeo.2011.04.015

  • 加载中

(8)

(5)

计量
  • 文章访问数:  659
  • PDF下载数:  199
  • 施引文献:  0
出版历程
收稿日期:  2023-08-10
刊出日期:  2024-06-28

目录