Genetic types and material sources of ferromanganese nodules in the Lichun Seamount of the northern South China Sea
-
摘要:
前人对大洋多金属结核进行了比较详尽的研究,然而对边缘海陆坡海山多金属结核的研究仍显薄弱。本文以在南海北部陆坡李春海山采集到的多金属结核为研究对象,综合运用分层XRD矿物学、LA-ICPMS原位主微量元素地球化学和分层同位素地球化学等分析测试方法和研究手段,研究南海北部陆坡李春海山多金属结核的成因及物质来源。李春海山多金属结核存在4个不同单元层(层1、层2、层3、层4),各单元层的矿物组成不同,指示水动力条件和陆源输入速率的差异。李春海山多金属结核主要由水羟锰矿、石英、斜长石组成,但外部的层3和层4锰相矿物除了水羟锰矿,还分别出现水钠锰矿和钡镁锰矿等代表成岩成因类型的结核矿物。主成分分析结果表明,李春海山多金属结核具有多期多物源成矿特征,主要以铁相矿物形成及锰相矿物生长为主。结核内各分层大多数测点Mn/Fe比值均<2.5,层3与层4内少数测点Mn/Fe比值>2.5甚至>5;REY配分模式都出现较强的Ce正异常且大多数与南海海水呈镜像对称,而层3和层4少数测点REY配分模式与沉积物孔隙水REY配分模式相近;Sr-Nd同位素居于南海海水与沉积物之间且接近南海海水,且Pb同位素表现出台湾岛物源的特征。因此,李春海山多金属结核主要为水成成因,后期生长有少量成岩成因组分的混入,主要来源于周围海水,同时也受到台湾岛陆源物质输入的影响。
Abstract:Although previous studies have been conducted in great detail on oceanic ferromanganese nodules, research on those nodules on seamounts in the marginal sea slope remains relatively insufficient. In this study, ferromanganese nodules were sampled from the Lichun Seamount in the northern slope of the South China Sea for research. Comprehensive analytical techniques were applied, including XRD mineralogy, LA-ICPMS in-situ major and trace element geochemistry, and layered isotope geochemistry, and the origination of the ferromanganese nodules was investigated. Results reveal that the ferromanganese nodules have four distinct layers with unique mineral compositions, reflecting different hydrodynamic conditions and terrigenous input rates during their growth. The nodules are mainly composed of vernadite, quartz, and plagioclase. However, in addition to vernadite, the manganese-phase minerals in layers 3 and 4 also contain birnessite and todorokite, suggesting their diagenetic origin. The results of principal component analysis indicate that the ferromanganese nodules are characterized by multi-stage and multi-source mineralization indicated by the formation of iron-phase minerals and the growth of manganese-phase minerals. The Mn/Fe ratio was less than 2.5 mostly, while at a few points in layers 3 and 4, it was above 2.5 or even exceeded 5. The REY partition pattern of the nodules displayed a strong positive Ce anomaly, and most of them were mirror-symmetric with the South China Sea seawater. The REY partition pattern at a few detection points in layers 3 and 4 were similar to that of the sediment pore water. The Sr-Nd isotope values were between the South China Sea seawater and sediment but closer to the seawater, and the Pb isotope exhibited the characteristics of Taiwan Island source. Therefore, the ferromanganese nodules were mainly of hydrogenetic origin, with a small number of diagenetic components added in the later growth stage. The materials were originated from the surrounding seawater and affected by terrigenous material input from Taiwan Island.
-
-
表 1 南海代表性多金属结核矿物组成
Table 1. Mineral composition of the ferromanganese nodules in South China Sea.
样品号 位置 水深/m 矿物组成 成因类型 文献来源 N3 北部陆坡李春海山 1680 水羟锰矿、石英、斜长石、钡镁锰矿 — 本文 ZJ86 西北陆坡中建岛海域 1945 水羟锰矿、石英、斜长石、钡镁锰矿 水成成因 文献[13] STD275 东北陆坡海域 1548 水羟锰矿、石英、斜长石、钡镁锰矿 水成成因 文献[13] HYD104 南海海盆黄岩岛海域 815 水羟锰矿、石英、斜长石、钡镁锰矿 水成成因 文献[13] HYD180 南海东部次海盆海山链 3449 水羟锰矿、石英、斜长石、水钠锰矿 水成成因 文献[24] 05E107–6 北部陆坡东沙岛海域 2225 水羟锰矿、石英、斜长石、钡镁锰矿、水钠锰矿、白云母、钴土矿 水成成因 文献[23] -
[1] HEIN J R,MIZELL K,KOSCHINSKY A,et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications:comparison with land-based resources[J]. Ore Geology Reviews,2013,51:1-14. doi: 10.1016/j.oregeorev.2012.12.001
[2] 殷征欣,王海峰,韩金生,等. 南海边缘海多金属结核与大洋多金属结核对比[J]. 吉林大学学报(地球科学版),2019,49(1):261-277.
YIN Z X,WANG H F,HAN J S,et al. Comparison between the marginal-sea polymetallic nodules in South China Sea and ocean polymetallic nodules[J]. Journal of Jilin University (Earth Science Edition),2019,49(1):261-277.
[3] ZHONG Y,LIU Q S,CHEN Z,et al. Tectonic and paleoceanographic conditions during the formation of ferromanganese nodules from the northern South China Sea based on the high-resolution geochemistry,mineralogy and isotopes[J]. Marine Geology,2019,410:146-163. doi: 10.1016/j.margeo.2018.12.006
[4] MARCUS M A,EDWARDS K J,GUEGUEN B,et al. Iron mineral structure,reactivity,and isotopic composition in a south Pacific gyre ferromanganese nodule over 4 Ma[J]. Geochimica et Cosmochimica Acta,2015,171:61-79. doi: 10.1016/j.gca.2015.08.021
[5] BONATI E,KRAEMER T,RYDELL H. Classification and Genesis of Submarine Iron-Manganese Deposits[M]. Washington D C:National Science Foundation,1972.
[6] HEIN J R,KOSCHINSKY A,HALBACH P,et al. Iron and Manganese Oxide Mineralization in the Pacific[J].Geological Society,London,Special Publications,1997,199(1):123-138.
[7] BAU M,SCHMIDT K,KOSCHINSKY A,et al. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium[J]. Chemical Geology,2014,381:1-9. doi: 10.1016/j.chemgeo.2014.05.004
[8] JOSSO P,PELLETER E,POURRET O,et al. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements[J]. Ore Geology Reviews,2017,87:3-15. doi: 10.1016/j.oregeorev.2016.09.003
[9] VERESHCHAGIN O S,PEROVA E N,BRUSNITSYN A I,et al. Ferro-manganese nodules from the Kara Sea:mineralogy,geochemistry and genesis[J]. Ore Geology Reviews,2019,106:192-204. doi: 10.1016/j.oregeorev.2019.01.023
[10] HEIN J R,KOSCHINSKY A. Deep-ocean Ferromanganese Crusts and Nodules[M]. Amsterdam: Elsevier, 2013.
[11] BURNS V M,BURNS R G. Authigenic todorokite and phillipsite inside deep sea manganese nodules[J]. American Mineralogist,1978,63(9/10):827-831.
[12] STACKELBERG V U. Growth history of manganese nodules and crusts of the Peru Basin[J]. Geological Society,London,Special Publications,1997,119(1):153-176. doi: 10.1144/GSL.SP.1997.119.01.11
[13] GUAN Y,SUN X M,REN Y Z,et al. Mineralogy,geochemistry and genesis of the ferromanganese crusts and nodules from the South China Sea[J]. Ore Geology Reviews,2017,89:206-227. doi: 10.1016/j.oregeorev.2017.06.020
[14] GUAN Y,REN Y Z,SUN X M,et al. Helium and argon isotopes in the ferromanganese crusts and nodules from the South China Sea:constraints on their genetic sources and origins[J]. Minerals,2018,8(10):471. doi: 10.3390/min8100471
[15] 梁宏锋,姚德,刘新波,等. 南海尖峰海山多金属结壳地球化学[J]. 海洋地质与第四纪地质,1991,11(4):49-58.
LIANG H F,YAO D,LIU X B,et al. Geochemistry of polymetallic crusts on Jianfeng Seamount in the South China Sea[J]. Marine Geology & Quaternary Geology,1991,11(4):49-58.
[16] 刘兴健,唐得昊,阎贫,等. 南海东部管事海山铁锰结壳的矿物组成和地球化学特征[J]. 海洋地质与第四纪地质,2019,39(3):94-103.
LIU X J,TANG D H,YAN P,et al. Mineralogy and geochemistry of ferromanganese crusts from Guanshi Seamount in the eastern South China Sea[J]. Marine Geology & Quaternary Geology,2019,39(3):94-103.
[17] 林振宏,季福武,张富元,等. 南海东北陆坡区铁锰结核的特征和成因[J]. 海洋地质与第四纪地质,2003,23(1):7-12.
LIN Z H,JI F W,ZHANG F Y,et al. Characteristics and origin of ferromanganese nodules from the northeastern continental slope area of the South China Sea[J]. Marine Geology & Quaternary Geology,2003,23(1):7-12.
[18] 张振国. 南海北部陆缘多金属结核地球化学特征及成矿意义[D]. 北京:中国地质大学(北京),2007.
ZHANG Z G. Geochemical characteristics and metallogenic significance of polymetallic nodules on the northern margin of the South China Sea[D]. Beijing:China University of Geosciences (Beijing),2007.
[19] 张振国,方念乔,杜远生,等. 南海西北陆缘多金属结核地球化学特征及成因[J]. 地球科学:中国地质大学学报,2009,34(6):955-962. doi: 10.3799/dqkx.2009.109
ZHANG Z G,FANG N Q,DU Y S,et al. Geochemical characteristics and their causative mechanism of polymetallic nodules on the northwest continental margin of the South China Sea[J]. Earth Science:Journal of China University of Geosciences,2009,34(6):955-962. doi: 10.3799/dqkx.2009.109
[20] 张振国,高莲凤,沈鹏飞,等. 南海西北陆缘新型多金属结核的发现及意义[J]. 海洋地质动态,2010,26(4):32-35.
ZHANG Z G,GAO L F,SHEN P F,et al. Discovery and implication of new-type polymetallic nodules at the northwest margin of the South China Sea[J]. Marine Geology Letters,2010,26(4):32-35.
[21] 张振国,高莲凤,李昌存,等. 多金属结核/结壳中稀土元素的富集特征及其资源效应[J]. 中国稀土学报,2011,29(5):630-636.
ZHANG Z G,GAO L F,LI C C,et al. Enrichment characteristics of rare earth elements in polymetallic nodules/coatings and their resource effects[J]. Journal of the Chinese Rare Earth Society,2011,29(5):630-636.
[22] 王瑜,张振国. 南海北部陆缘多金属结核的内部显微构造特征及其地质意义[J]. 河北理工大学学报(自然科学版),2011,33(4):5-8.
WANG Y,ZHANG Z G. Internal microstructure characteristics and geological significance of polymetallic nodules from the northern continental margin of the South China Sea[J]. Journal of Hebei Polytechnic University (Natural Science Edition),2011,33(4):5-8.
[23] ZHONG Y,CHEN Z,HEIN J R,et al. Evolution of a deep-water ferromanganese nodule in the South China Sea in response to Pacific deep-water circulation and continental weathering during the Plio-Pleistocene[J]. Quaternary Science Reviews,2020,229:106106. doi: 10.1016/j.quascirev.2019.106106
[24] 周娇,蔡鹏捷,杨楚鹏,等. 南海东部次海盆海山链多金属结核(壳)地球化学特征及成因[J]. 地球科学,2022,47(7):2586-2601. doi: 10.3321/j.issn.1000-2383.2022.7.dqkx202207022
ZHOU J,CAI P J,YANG C P,et al. Geochemical characteristics and genesis of polymetallic crusts in the seamount chain of the eastern subocean basin,the South China Sea[J]. Earth Science,2022,47(7):2586-2601. doi: 10.3321/j.issn.1000-2383.2022.7.dqkx202207022
[25] HALL R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific:computer-based reconstructions,model and animations[J]. Journal of Asian Earth Sciences,2002,20(4):353-431. doi: 10.1016/S1367-9120(01)00069-4
[26] LI C F,XU X,LIN J,et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349[J]. Geochemistry,Geophysics,Geosystems,2015,15(12):4958-4983.
[27] WANG P X,LI Q Y. History of the South China Sea-A Synthesis[M]. Dordrecht:Springer Netherlands,2009.
[28] CHEN W H,HUANG C Y,LIN Y J,et al. Depleted deep South China Sea δ13C paleoceanographic events in response to tectonic evolution in Taiwan-Luzon Strait since Middle Miocene[J]. Deep Sea Research Part II: Topical Studies in Oceanography,2015,122:195-225.
[29] 李安春,黄杰,蒋恒毅,等. 渐新世以来南海北部陆坡区沉积演化及其对构造的响应[J]. 地球物理学报,2011,54(12):3233-3245. doi: 10.3969/j.issn.0001-5733.2011.12.022
LI A C,HUANG J,JIANG H Y,et al. Sedimentary evolution in the northern slope of South China Sea since Oligocene and its response to tectonics[J]. Chinese Journal of Geophysics,2011,54(12):3233-3245. doi: 10.3969/j.issn.0001-5733.2011.12.022
[30] 苏丕波,梁金强,付少英,等. 南海北部天然气水合物成藏地质条件及成因模式探讨[J]. 中国地质,2017,44(3):415-427. doi: 10.12029/gc20170301
SU P B,LIANG J Q,FU S Y,et al. Geological background and accumulation models of gas hydrate reservoir in northern South China Sea[J]. Geology in China,2017,44(3):415-427. doi: 10.12029/gc20170301
[31] DADSON S J,HOVIUS N,CHEN H,et al. Links between erosion,run off variability and seismicity in the Taiwan orogen[J]. Nature,2003,426(6967):648-651. doi: 10.1038/nature02150
[32] ZHANG W,WEI X Y,ZHENG J H,et al. Estimating suspended sediment loads in the Pearl River Delta region using sediment rating curves[J]. Continental Shelf Research,2012,38:35-46. doi: 10.1016/j.csr.2012.02.017
[33] MILLIMAN J D,SYVITSKI J P M. Geomorphic/tectonic control of sediment discharge to the ocean:the importance of small mountainous rivers[J]. The Journal of Geology,1992,100(5):525-544. doi: 10.1086/629606
[34] LIU Z F,ZHAO Y L,COLIN C,et al. Chemical weathering in Luzon,Philippines from clay mineralogy and major-element geochemistry of river sediments[J]. Applied Geochemistry,2009,24(11):2195-2205. doi: 10.1016/j.apgeochem.2009.09.025
[35] 聂宇华. 南海环流和热结构特征的数值模拟与分析[D]. 广州:中山大学,2009.
NIE Y H. Numerical simulation and analysis of the characteristics of the South China Sea circulation and thermal structure[D]. Guangzhou:Sun Yat-sen University,2009.
[36] LIU Z F,ZHAO Y L,COLIN C,et al. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews,2015,153:238-273.
[37] 黄企洲,王文质,李毓湘,等. 南海海流和涡旋概况[J]. 地球科学进展,1992,7(5):1-9.
HUANG Q Z,WANG W Z,LI Y X,et al. General situation of the current and eddy in the South China Sea[J]. Advances in Earth Science,1992,7(5):1-9.
[38] YUAN D L,HAN W Q,HU D X. Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data[J]. Journal of Geophysical Research,2006,111:C11007.
[39] ZHAO W,ZHOU C,TIAN J W,et al. Deep water circulation in the Luzon Strait[J]. Journal of Geophysical Research:Oceans,2014,119(2):790-804.
[40] QU T D,GIRTON J B,WHITEHEAD J A,et al. Deepwater overflow through Luzon Strait[J]. Geophysical Research Letters,2006,111:C01002.
[41] WANG G H,XIE S P,QU T D,et al. Deep South China Sea circulation[J]. Geophysical Research Letters,2011,38:L05601.
[42] 武光海,周怀阳,杨树锋,等. 富钴结壳生长过程中铁锰氧化物矿物组合的变化[J]. 矿物学报,2001(2):137-143. doi: 10.3321/j.issn:1000-4734.2001.02.004
WU G H,ZHOU H Y,YANG S F,et al. Variations in Fe-Mn oxide mineral assemblage in Co-rich crust during its growth[J]. Acta Mineralogica Sinica,2001(2):137-143. doi: 10.3321/j.issn:1000-4734.2001.02.004
[43] 黄和浪. 麦哲伦海山区富钴结壳显微构造及地球化学研究[D]. 北京:中国地质大学(北京),2020.
HUANG H L. Microstructure and geochemistry of Co-rich crust in the Magellan mountains[D]. Beijing:China University of Geosciences (Beijing),2020.
[44] 曹德凯. 东太平洋CC区与东马里亚纳海盆多金属结核特征对比及控矿要素研究[D]. 青岛:国家海洋局第一海洋研究所,2017.
CAO D K. Research on contrast and controls of polymetallic nodules from eastern Pacific CC Zone and east Mariana Basin[D]. Qingdao:First Institute of Oceanography,State Oceanic Administration,2017.
[45] 黄威,胡邦琦,徐磊,等. 帕里西维拉海盆西缘中段铁锰结核的地球化学特征和成因类型[J]. 海洋地质与第四纪地质,2021,41(1):199-209.
HUANG W,HU B Q,XU L,et al. Geochemical characteristics and genetic of ferromanganese nodules in the middle western margin of the Paracel Vela Basin[J]. Marine Geology & Quaternary Geology,2021,41(1):199-209.
[46] MCLENNAN S M. Rare earth elements in sedimentary rocks:influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry,1989,21(1):169-200.
[47] MCARTHUR J M,HOWARTH R J,BAILEY T R. Strontium isotope stratigraphy:LOWESS version 3:best fit to the marine Sr-isotope curve for 0-509 Ma and accompanying look-up table for deriving numerical age[J]. The Journal of Geology,2001,109(2):155-170. doi: 10.1086/319243
[48] WU Q,COLIN C,LIU Z F,et al. New insights into hydrological exchange between the South China Sea and the western Pacific Ocean based on the Nd isotopic composition of seawater[J]. Deep-Sea Research II,2015,122:25-40. doi: 10.1016/j.dsr2.2015.11.005
[49] DYMOND J,LYLE M,FINNEY B,et al. Ferromanganese nodules from MANOP Sites H,S,and R-Control of mineralogical and chemical composition by multiple accretionary processes[J]. Geochimica et Cosmochimica Acta,1984,48(5):931-949. doi: 10.1016/0016-7037(84)90186-8
[50] 龙晓军. 西太平洋富钴结壳矿物学地球化学特征及古环境记录[D]. 青岛:中国海洋大学,2015.
LONG X J. Study on mineralogy,geochemical and paleoenvironmental records of Co-rich crusts from western Pacific[D]. Qingdao:Ocean University of China,2015.
[51] HEIN J R, SCHWAB W C, DAVIS A. Cobalt-and platinum-rich ferromanganese crusts and associated substrate rocks from the Marshall Islands[J]. Marine Geology,1988,78(3/4):255-283.
[52] 何高文,薛婷,孙晓明,等. 西太平洋富钴结壳元素组合特征及其地质意义[J]. 矿物岩石地球化学通报,2005,24(2):125-129.
HE G W, XUE T, SUN X M, et al. The element association charaterisitics and the geological significance of Cobalt-rich crusts from the west Pacific Ocean[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2005,24(2):125-129.
[53] GONZÁLEZ F J,SOMOZA L,SOMOZA L,et al. Phosphorites,Co-rich Mn nodules,and Fe-Mn crusts from Galicia Bank,NE Atlantic:reflections of Cenozoic tectonics and paleoceanography[J]. Geochemistry,Geophysics,Geosystems,2016,17(2):346-374.
[54] ALIBO D S,NOZAKI Y. Dissolved rare earth elements in the South China Sea:geochemical characterization of the water masses[J]. Journal of Geophysical Research Oceans,2000,105(C12):28771-28783. doi: 10.1029/1999JC000283
[55] DENG Y N,REN J B,GUO Q J,et al. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in Western Pacific[J]. Scientific Reports,2017,7(1):16539. doi: 10.1038/s41598-017-16379-1
[56] BAU M,DULSKI P. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge:implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater[J]. Chemical Geology,1999,155(1/2):77-90.
[57] SHAO L,LI X J,WEI G J,et al. Deep water bottom current deposition in the northern South China Sea[J]. Science in China,Series D:Earth Sciences,2007,50(7):1060-1066. doi: 10.1007/s11430-007-0015-y
[58] MUKASA S B,FLOWER M F J,MIKILIUS A. The Nd,Sr and Pb-isotopic character of lavas from Taal,Laguna de Bay and Arayat volcanoes,southwestern Luzon,Philippines:implications for arc magma petrogenesis[J]. Tectonophysics,1994,235(1/2):205-221.
[59] DEFANT M J,MAURY R,JORON J L,et al. The geochemistry and tectonic setting of the northern section of the Luzon arc (the Philippines and Taiwan)[J]. Tectonophysics,1990,183(1/4):187-205.
[60] MCDERMOTT F,DEFANT M J,HAWKESWORTH C J,et al. Isotope and trace element evidence for three component mixing in the genesis of the north Luzon arc lavas (Philippines)[J]. Contributions to Mineralogy and Petrology,1993,113:9-23. doi: 10.1007/BF00320828
[61] LIU Z F,COLIN C,HUANG W,et al. Climatic and tectonic controls on weathering in south China and Indochina Peninsula:clay mineralogical and geochemical investigations from the Pearl,Red,and Mekong drainage basins[J]. Geochemistry Geophysics Geosystems,2007,8(5):Q05005.
[62] CHEN C H,JAHN B M,LEE T,et al. Sm-Nd isotopic geochemistry sediments from Taiwan and implications for the tectonic evolution of southeast China[J]. Chemical Geology,1990,88(3/4):317-332.
[63] LAN C Y,LEE,C S,SHEN J,et al. Nd-Sr isotopic composition and geochemistry of sediments from Taiwan and their implications[J]. Western Pacific Earth Sciences,2002,2(2):205-222.
[64] WAN S M,TOUCANNE S,CLIFT P D,et al. Human impact overwhelms longterm climate control of weathering and erosion in southwest China[J]. Geology,2015,43(5):439-442. doi: 10.1130/G36570.1
[65] LI X H,WEI G J,SHAO L,et al. Geochemical and Nd isotopic variations in sediments of the South China Sea:a response to Cenozoic tectonism in SE Asia[J]. Earth and Planetary Science Letters,2003,221(3/4):207-220.
[66] WEI G J,LIU Y,MA J L,et al. Nd,Sr isotopes and elemental geochemistry of surface sediments from the South China Sea:implications for provenance tracing[J]. Marine Geology,2012,319:21-34.
[67] TU K,FLOWER M F,CARLSON R W,et al. Magmatism in the South China Basin:1. isotopic and trace-element evidence for an endogenous Dupal mantle component[J]. Chemical Geology,1992,97(1/2):47-63.
[68] YAN Q S,SHI X F,WANG K S,et al. Major element,trace element,and Sr,Nd and Pb isotope studies of Cenozoic basalts from the South China Sea[J]. Science in China Series D:Earth Sciences,2008,51(4):550-566. doi: 10.1007/s11430-008-0026-3
[69] JONES C E,HALLIDAY A N,REA D K,et al. Eolian inputs of lead to the North Pacific[J]. Geochimica et Cosmochimica Acta,2000,64(8):1405-1416. doi: 10.1016/S0016-7037(99)00439-1
[70] LING H F,JIANG S Y,FRANK M,et al. Differing controls over the Cenozoic Pb and Nd isotope evolution of deep-water in the central North Pacific Ocean[J]. Earth and Planetary Science Letters,2005,232(3/4):345-361.
[71] PETTKE T,HALLIDAY A N,HALL C M,et al. Dust production and deposition in Asia and the north Pacific Ocean over the past 12 Myr[J]. Earth and Planetary Science Letters,2000,178(3/4):397-413.
[72] STANCIN A M,GLEASON J D,REA D K,et al. Radiogenic isotopic mapping of Late Cenozoic eolian and hemipelagic sediment distribution in the east-central Pacific[J]. Earth and Planetary Science Letters,2006,248(3/4):840-850.
[73] SUN Y Y. Lead isotopic study of young volcanic rocks from mid-ocean ridges,ocean islands and island arcs[J]. Philosophical Transactions of the Royal Society a Mathematical Physical & Engineering Sciences,1980,297(1431):409-445.
-