Paleo-environmental response and organic matter enrichment of Late Permian shale in Kaijiang-Liangping Trough under frequent transgressive retrogression
-
摘要:
二叠纪晚期为地质历史上重要的转折期,在频繁的海平面变化下,重建这一时期研究区页岩沉积环境,并讨论海平面升降对有机质富集的影响尤为重要。碳同位素、显微组分、主微量元素等分析结果表明:晚二叠世页岩TOC含量为0.12%~14.5%,平均为6.14%,有机质类型主要为Ⅱ1型,处于过成熟演化阶段;研究区频繁海平面升降导致沉积环境变化复杂:处于半湿润-半干旱性气候,具有厌氧-贫氧-厌氧的演化过程,古生产力经历了低-高-低的变化,且存在热液活动;晚二叠世有机质富集主控因素为古生产力,且发生6次有机质大量富集,海平面频繁升降导致古生产力驱动因素复杂多样:海平面上升时,上升流作为媒介运输热液活动带来的营养物质造成生产力的繁盛,而海平面下降时陆源碎屑输入作为主要物质来源促进古生产力。
Abstract:The Late Permian is an important transition period in geological history. The shale sedimentary environment in the study area during this period was reconstructed under frequent sea level changes, and the influence of sea level rise and fall on organic matter enrichment was discussed. The analysis of carbon isotopes, maceral components, major and trace elements shows that TOC in the Upper Permian shale ranges from 0.12% to 14.5%, on average of 6.14%, and the organic matter type is type I to III, which was in the stage of over-mature evolution. The frequent sea level rise and fall in the study area led to complex changes in the sedimentary environment under semi-humid to semi-arid climate in anaerobic-anoxic-anaerobic evolution, and the paleoproductivity underwent low-high-low changes with hydrothermal activities. The dominant factor of organic matter enrichment in the Late Permian was paleoproductivity, and there were 6 times of massive organic matter enrichment in the whole period. Frequent sea level rise and fall led to complex and diverse driving factors of paleoproductivity. When sea level rose, upwelling acted to transport nutrients brought by hydrothermal activities, which enhanced the productivity, while when sea level fell, terrigenous clastic input acted as the main material source to promote paleoproductivity.
-
-
表 1 川东地区D1井晚二叠世实测样品地球化学特征数据
Table 1. Geochemical characteristics of the Late Permian measured samples from Well D1 in the eastern Sichuan
样品编号 Ro/% δ13CV-PDB/‰ 腐泥组% 壳质组% 镜质组% 惰性组% D1-T1 2.09 −28.466 73 0 10 17 D1-T2 2.48 −27.144 28 0 20 52 D1-T3 2.62 −26.492 49 0 14 37 D1-T4 3 −26.454 22 6 27 45 D1-T5 2.7 −23.24 36 14 21 29 D1-T6 2.77 −22.497 28 18 22 32 表 2 四川盆地开江-梁平海槽晚二叠世页岩主量元素分析结果
Table 2. Results of main element analysis of the Late Permian shale in Kaijiang-Liangping Trough, Sichuan Basin
% 样品编号 SiO2 Al2O3 MgO CaO Na2O K2O MnO TiO2 P2O5 D1-1 54.47 5.21 0.96 11.60 0.66 1.16 0.02 0.20 0.05 D1-2 51.04 4.70 0.81 11.50 0.74 1.02 0.02 0.16 0.09 D1-3 42.13 11.66 1.11 16.45 1.68 2.41 0.04 0.21 0.03 D1-4 36.40 9.66 3.98 18.90 1.48 2.06 0.07 0.22 0.03 D1-5 47.19 22.88 1.89 0.63 0.99 4.33 0.05 0.31 0.05 D1-6 37.91 8.07 1.09 16.45 1.64 1.59 0.04 0.19 0.52 D1-7 44.34 13.00 1.07 8.37 1.50 2.64 0.07 0.31 0.21 D1-8 60.65 4.13 0.55 10.15 0.48 0.93 0.12 0.18 0.47 D1-9 60.98 7.34 0.72 3.82 0.63 1.91 0.13 0.29 0.87 D1-10 60.16 9.79 1.06 1.43 0.65 2.71 0.21 0.40 0.06 D1-11 42.72 16.56 1.48 5.24 0.60 0.60 0.01 0.56 3.24 D1-12 43.11 7.07 0.51 16.15 0.50 0.50 0.33 0.27 7.96 D1-13 42.41 7.84 1.79 16.40 0.54 0.54 1.08 0.30 0.19 D1-14 44.19 5.74 0.49 17.50 0.49 1.96 0.04 0.40 0.05 D1-15 16.76 1.95 11.90 28.4 0.15 0.15 1.02 0.09 0.12 D1-16 31.35 14.51 1.67 1.94 0.74 0.74 0.31 1.28 0.10 D1-17 37.87 19.66 1.80 3.46 0.98 0.98 0.22 2.23 0.13 D1-18 27.59 20.35 0.40 0.43 2.00 1.46 0.01 2.03 0.05 D1-19 8.20 5.89 0.29 0.09 0.34 0.34 0.03 0.54 <0.01 D1-20 35.04 24.43 0.57 0.39 1.94 1.94 0.07 3.34 0.06 D1-21 46.00 31.55 0.57 0.23 2.42 2.42 <0.01 5.03 0.07 表 3 四川盆地开江-梁平海槽晚二叠世页岩微量元素分析结果
Table 3. Analysis results of trace elements in the Late Permian shale in Kaijiang-Liangping Trough, Sichuan Basin
μg/g 样品编号 V Cr Sr Rb Ba Pb Th Cu Ni Co Cd Mo U Zr D1-1 1135 300 4560 47.80 120 10.50 3.31 115.50 226.00 11.60 15.80 118 12.95 72 D1-2 1735 230 1115 39.60 166.50 12.50 4.15 75.50 263.00 12.80 19.20 370 23.80 61 D1-3 666 130 1230 84.50 184 20.40 12.05 52.30 94.40 8.20 9.07 25.5 6.35 83 D1-4 524 120 1230 75.50 186 13.70 9.22 50.10 90.90 8.90 6.08 21.80 8.96 70 D1-5 1870 90 136.5 113.50 210 72.10 31.50 51.50 49.10 5.30 16.60 40.60 6.82 214 D1-6 1070 360 6660 53.80 342 16.80 12.65 127 143.00 10.60 11.40 70.30 29.20 95 D1-7 789 210 797 77.90 198.5 32.40 22.20 77 167.50 11.80 9.13 58.80 15.45 103 D1-8 444 280 870 38 110.5 7.70 3.02 84.3 161.00 9.60 2.57 32.60 16.65 65 D1-9 418 320 294 73.30 183.5 9.80 5.50 146 313.00 18.60 14.05 18.85 17.30 118 D1-10 460 300 128 101.50 216 25.00 7.39 132.50 285.00 19.40 8.01 27.40 8.08 180 D1-11 726 390 1765 115.0 234 62.6 36.8 86.3 193.0 10.2 7.97 56.0 94.7 91 D1-12 307 290 378 80.9 441 12.1 5.43 178.5 277 17.3 3.46 12.50 51.6 523 D1-13 238 140 1230 78.9 182 26.8 6.41 100.5 326 20.9 1.49 10.70 8.23 102 D1-14 825 220 788 63.80 126 13.10 3.92 104.50 135.50 15.20 7.25 44.20 18.30 150 D1-15 21 20 76.9 17.9 229 6.0 1.71 8.1 39.6 2.7 0.11 0.40 2.15 122 D1-16 145 110 488 48.6 154.5 12.0 9.32 54.8 62.0 35.0 0.10 2.29 1.66 965 D1-17 210 140 410 60.9 202 15.1 17.30 92.7 70.0 40.5 0.12 4.74 3.34 773 D1-18 781 120 266 22.70 10000 11.80 16.10 171.50 29.10 9.30 0.67 8.54 28.00 455 D1-19 96 40 425 7.8 66.8 59.7 3.00 93.4 214 102.5 0.35 55.1 1.94 1470 D1-20 346 180 1095 31.5 239 10.8 16.25 194.5 45.2 25.2 0.01 5.15 9.77 30 D1-21 606 180 379 46.6 355 11.4 25.2 229 34.4 11.1 0.01 5.02 12.60 614 -
[1] HUEY R B,WARD P D. Hypoxia,global warming,and terrestrial Late Permian extinctions[J]. Science,2005,308(5720):398-401. doi: 10.1126/science.1108019
[2] LIU S J,GAO G,GANG W Z,et al. Comparison of formation conditions of source rocks of Fengcheng and Lucaogou Formations in the Junggar Basin,NW China:implications for organic matter enrichment and hydrocarbon potential[J]. Journal of Earth Science,2023,34(4):1026-1040.
[3] MA Y Q,LU Y C. Depositional environment and organic matter enrichment of the Lower Cambrian Niutitang shale in western Hubei Province,South China[J]. Marine and Petroleum Geology,2019,109:381-393. doi: 10.1016/j.marpetgeo.2019.06.039
[4] LASH G G,BLOOD D R. Organic matter accumulation,redox,and diagenetic history of the Marcellus Formation,southwestern Pennsylvania,Appalachian Basin[J]. Marine and Petroleum Geology,2014,57:244-263. doi: 10.1016/j.marpetgeo.2014.06.001
[5] DEMAISON G J,MOORE G T. Anoxic environments and oil source bed genesis[J]. Organic Geochemistry,1980,2(1):9-31. doi: 10.1016/0146-6380(80)90017-0
[6] 刘康林,吴熙纯,刘树根,等. 川西北地区上二叠统长兴组、大隆组沉积特征研究[J]. 岩性油气藏,2011,23(2):30-34. doi: 10.3969/j.issn.1673-8926.2011.02.006
LIU K L,WU X C,LIU S G,et al. Sedimentary characteristics of Upper Permian Changxing and Dalong Formation in northwestern Sichuan Basin[J]. Lithologic Reservoirs,2011,23(2):30-34. doi: 10.3969/j.issn.1673-8926.2011.02.006
[7] 李牛,胡超涌,马仲武,等. 四川广元上寺剖面上二叠统大隆组优质烃源岩发育主控因素初探[J]. 古地理学报,2011,13(3):347-354. doi: 10.7605/gdlxb.2011.03.011
LI N,HU C Y,MA Z W,et al. Main control factors of high quality hydrocarbon source rocks of the Upper Permian Dalong Formation at Shangsi section of Guangyuan,Sichuan Province[J]. Journal of Palaeogeography (Chinese Edition),2011,13(3):347-354. doi: 10.7605/gdlxb.2011.03.011
[8] 张毅,郑书粲,高波,等. 四川广元上寺剖面上二叠统大隆组有机质分布特征与富集因素[J]. 地球科学,2017,42(6):1008-1025.
ZHANG Y,ZHENG S C,GAO B,et al. Distribution characteristics and enrichment factors of organic matter in Upper Permian Dalong Formation of Shangsi section,Guangyuan,Sichuan Basin[J]. Earth Science,2017,42(6):1008-1025.
[9] 韦恒叶,胡谍,邱振,等. 川北-鄂西上二叠统富有机岩沉积与地球化学特征[J]. 沉积学报,2024,42(3):774-798.
WEI H Y,HU D,QIU Z,et al. Sedimentological and geochemical characteristics of Late Permian organic-rich rocks in North Sichuan and West Hubei Provinces[J]. Acta Sedimentologica Sinica,2024,42(3):774-798.
[10] 何登发,李德生,张国伟,等. 四川多旋回叠合盆地的形成与演化[J]. 地质科学,2011,46(3):589-606. doi: 10.3969/j.issn.0563-5020.2011.03.001
HE D F,LI D S,ZHANG G W,et al. The formation and evolution of the multi-cycle superimposed basin in Sichuan[J]. Chinese Journal of Geology (Scientia Geologica Sinica),2011,46(3):589-606. doi: 10.3969/j.issn.0563-5020.2011.03.001
[11] 何斌,徐义刚,肖龙,等. 峨眉山地幔柱上升的沉积响应及其地质意义[J]. 地质论评,2006(1):30-37. doi: 10.3321/j.issn:0371-5736.2006.01.005
HE B,XU Y G,XIAO L,et al. Sedimentary responses to uplift of Emeishan mantle plume and its implications[J]. Geological Review,2006(1):30-37. doi: 10.3321/j.issn:0371-5736.2006.01.005
[12] 马新华,杨雨,张健,等. 四川盆地二叠系火山碎屑岩气藏勘探重大发现及其启示[J]. 天然气工业,2019,39(2):1-8. doi: 10.3787/j.issn.1000-0976.2019.02.001
MA X H,YANG Y,ZHANG J,et al. A major discovery in Permian volcanic rock gas reservoir exploration in the Sichuan Basin and its implications[J]. Natural Gas Industry,2019,39(2):1-8. doi: 10.3787/j.issn.1000-0976.2019.02.001
[13] LIU Z C,ZHOU Q,LIU K,et al. Sedimentary features and paleogeographic evolution of the Middle Permian Trough Basin in Zunyi,Guizhou,South China[J]. Journal of Earth Science,2023,34(6):1803-1815. doi: 10.1007/s12583-021-1406-2
[14] 成海燕,李安龙,龚建明. 陆相烃源岩评价参数浅析[J]. 海洋地质动态,2008,24(2):6-10. doi: 10.3969/j.issn.1009-2722.2008.02.002
CHENG H Y,LI A L,GONG J M. A brief analysis of evaluation parameters for continental source rocks[J]. Marine Geology Frontiers,2008,24(2):6-10. doi: 10.3969/j.issn.1009-2722.2008.02.002
[15] 李伦,张鹏远,梁慨慷,等. 盐湖相有机质富集主控因素与模式:以柴西盆地新近系上新统下油砂山组灰色泥岩为例[J]. 天然气地球科学,2023,34(8):1357-1373.
LI L,ZHANG P Y,LIANG K K,et al. Main controlling factors and models of organic matter enrichment in salt lake facies:a case study of gray mudstone of Lower Youshashan Formation in western Qaidam Basin[J]. Natural Gas Geoscience,2023,34(8):1357-1373.
[16] 陈敬安,万国江,陈振楼,等. 洱海近代气候变化的化学记录[J]. 地理科学,2000,20(1):83-87. doi: 10.3969/j.issn.1000-0690.2000.01.015
CHEN J A,WANG G J,CHEN Z L,et al. Recent climatic change and its chemical records in Lake Erhai[J]. Geographical Science,2000,20(1):83-87. doi: 10.3969/j.issn.1000-0690.2000.01.015
[17] BOCK B,MCLENNAN S M ,HANSON G N. Geochemistry and provenance of the Middle Ordovician Austin Glen Member (Normanskill Formation) and the Taconian Orogeny in New England[J]. Sedimentology,1998,45:635-655.
[18] 张天福,孙立新,张云,等. 鄂尔多斯盆地北缘侏罗纪延安组、直罗组泥岩微量、稀土元素地球化学特征及其古沉积环境意义[J]. 地质学报,2016,90(12):3454-3472. doi: 10.3969/j.issn.0001-5717.2016.12.013
ZAHNG T F,SUN L X,ZHANG Y,et al. Geochemical characteristics of the Jurassic Yan'an and Zhiluo Formations in the northern margin of Ordos Basin and their paleoenvironmental implications[J]. Acta Geologica Sinica,2016,90(12):3454-3472. doi: 10.3969/j.issn.0001-5717.2016.12.013
[19] 连梦利,刘达东,林瑞钦,等. 黔北地区五峰组-龙马溪组页岩沉积环境及有机质富集机理[J]. 中南大学学报(自然科学版),2022,53(9):3756-3772.
LIAN M L,LIU D D,LIN R Q,et al. Sedimentary environment and organic matter enrichment mechanism of Wufeng-Longmaxi shale in the northern Guizhou area[J]. Journal of Central South University (Science and Technology),2022,53(9):3756-3772.
[20] 郭奕浩,曾德铭,张芮,等. 川中-川东地区侏罗系大安寨段古环境及油气地质意义[J]. 沉积学报,2024,42(3):1016-1031.
GUO Y H,ZENG D M,ZHANG R,et al. Paleoenvironment and its petroleum geological significance of the Jurassic Da'anzhai Member in the central-eastern Sichuan Basin[J]. Acta Sedimentologica Sinica,2024,42(3):1016-1031.
[21] CAO Q,QI M H,LI X W. Study on organic matter enrichment and reservoir characteristics of Permian Longtan Formation shale in Southeast Sichuan[J]. Frontiers in Earth Science,2022,10:895941. doi: 10.3389/feart.2022.895941
[22] 许淑梅,张晓东,翟世奎,等. 海洋环境中氧化还原敏感性微量元素的地球化学行为及环境指示意义[J]. 海洋地质动态,2007,23(3):11-18. doi: 10.3969/j.issn.1009-2722.2007.03.002
XU S M,ZHANG X D,ZHAI S K,et al. Geochemical behaviors and environmental indicative significance of redox sensitive trace elements in marine environments[J]. Marine Geology Frontiers,2007,23(3):11-18. doi: 10.3969/j.issn.1009-2722.2007.03.002
[23] 丁江辉,张金川,石刚,等. 宣城地区龙潭组页岩沉积环境与有机质富集[J]. 沉积学报,2021,39(2):324-340.
DING J H,ZHANG J C,SHI G,et al. Sedimentary environment and organic matter accumulation for the Longtan Formation shale in Xuancheng area[J]. Acta Sedimentologica Sinica,2021,39(2):324-340.
[24] WEI H Y,WEI X M,QIU Z,et al. Redox conditions across the G-L boundary in South China:evidence from pyrite morphology and sulfur isotopic compositions[J]. Chemical Geology,2016,440:1-14. doi: 10.1016/j.chemgeo.2016.07.009
[25] WILKIN R T,BARNES H L,BRANTLEY S L. The size distribution of framboidal pyrite in modern sediments:an indicator of redox conditions[J]. Geochimica et Cosmochimica Acta,1996,60(20):3897-3912. doi: 10.1016/0016-7037(96)00209-8
[26] 郭颖,杜晓峰,杨波,等. 下扬子地区上震旦统—下古生界白云岩地球化学特征及成因:以南京地区为例[J]. 地球科学,2023,48(12):4558-4574.
GUO Y,DU X F,YANG B,et al. Geochemical characteristics and genesis of Upper Sinian-Lower Paleozoic dolomite in Lower Yangtze region:a case study from Nanjing area[J]. Earth Science,2023,48(12):4558-4574.
[27] 刘新宇,邵磊,史德锋,等. 西沙西科1井元素地球化学特征与海平面升降的关系[J]. 海洋地质前沿,2021,37(6):8-17.
LIU X Y,SHAO L,SHI D F,et al. Element geochemistry of Well XiKe 1 on the Xisha Islands and its bearing on sea level fluctuation[J]. Marine Geology Frontiers,2021,37(6):8-17.
[28] 王一帆. 长7段黑色页岩有机质富集机制及其生排烃特征研究[D]. 北京:中国石油大学,2022.
WANG Y F. Organic matter enrichment mechanism and hydrocarbon generation and expulsion characteristics of the black shales in Chang 7 Member,Ordos Basin[D] Beijing:China University of Petroleum,2022.
[29] 刘凯. 寒武纪早期扬子板块古海洋与生物群协同演化及其对有机质富集的影响[D]. 武汉:中国地质大学(武汉),2019.
LIU K. The co-evolution of ocean redox chemistry and biota during the Early Cambrian, South China and its influence on organic matter accumulation[D]. Wuhan:China University of Geosciences (Wuhan),2019.
[30] 刘恒,童召军,乔洪国,等. 下扬子地区望江拗陷上二叠统大隆组-吴家坪组富有机质页岩元素特征及古环境意义[J]. 天然气勘探与开发,2023,46(2):74-83. doi: 10.12055/gaskk.issn.1673-3177.2023.02.010
LIU H,TONG S J,QIAO H G,et al. Element characteristics and paleoenvironmental significance of organic-rich shales in Upper Permian Dalong Formation Wujiaping Formation of Wangjiang Depression,Lower Yangtze area[J]. Natural Gas Exploration and Development,2023,46(2):74-83. doi: 10.12055/gaskk.issn.1673-3177.2023.02.010
[31] YANG H. Uranium enrichment in lacustrine oil source rocks of the Chang 7 member of the Yanchang Formation,Erdos Basin,China[J]. Journal of Asian Earth Sciences,2010,39(4):285-293. doi: 10.1016/j.jseaes.2010.03.013
[32] YANG J ,DU Y S,HUANG H,et al. Devonian-Carboniferous pillow OIB-Type basalts in the Youjiang Basin,SW China:implications for the eastern extension of the Paleo-Tethys Branch Ocean[J]. Journal of Earth Science,2023,34(3):690-705.
[33] ALGEO T J,SCHWARK L,HOWER J C. High-resolution geochemistry and sequence stratigraphy of the Hushpuckney Shale (Swope Formation,eastern Kansas):implications for climato-environmental dynamics of the late Pennsylvanian Midcontinent Seaway[J]. Chemical Geology,2004,206(3/4):259-288.
[34] ZUO J X,ZHU X J,CHEN Y L,et al. Carbon isotope from shallow marine system in North China:implications for stratigraphical correlation and sea-level changes in Cambrian[J]. Journal of Earth Science,2023,34(6):1777-1792. doi: 10.1007/s12583-021-1463-6
[35] WEI R,JIN Z J,ZHANG R,et al. Orbitally-paced coastal sedimentary records and global sea-level changes in the Early Permian[J]. Earth and Planetary Science Letters,2023,620(15):118356.
[36] ZHANG T,LI Y F,FAN T L,et al. Orbitally-paced climate change in the Early Cambrian and its implications for the history of the Solar System[J]. Earth and Planetary Science Letters,2022,583:117420. doi: 10.1016/j.jpgl.2022.117420
[37] MUNNECKE A,CALNER M,HARPER D A T,et al. Ordovician and Silurian sea-water chemistry,sea level,and climate:a synopsis palaeogeography[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2010,296(3/4):389-413.
[38] WALLMANN K. Feedbacks between oceanic redox states and marine productivity:a model perspective focused on benthic phosphorus cycling[J]. Global Biogeochemical Cycles,2003,17(3):1084.
[39] CANFIELD D E,BIERRUMC C J,ZHANG S C,et al. The modern phosphorus cycle informs interpretations of Mesoproterozoic Era phosphorus dynamics[J]. Earth-Science Reviews,2020,208:1-24.
[40] JIANG G Q,SHI X Y,ZHANG S H,et al. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) in South China[J]. Gondwana Research,2011,19(4):831-849. doi: 10.1016/j.gr.2011.01.006
[41] SANDERS C J,CALDEIRA P P,SMOAK J M,et al. Recent organic carbon accumulation (~100 years) along the Cabo Frio,Brazil upwelling region[J]. Continental Shelf Research,2014,75:68-75. doi: 10.1016/j.csr.2013.10.009
-