马里亚纳弧NW Eifuku热液区岩石中黄铁矿的地球化学特征

刘锦风, 曾志刚, 王晓媛, 曾志斌, 杨小双, 齐海燕. 马里亚纳弧NW Eifuku热液区岩石中黄铁矿的地球化学特征[J]. 海洋地质前沿, 2025, 41(6): 25-39. doi: 10.16028/j.1009-2722.2024.093
引用本文: 刘锦风, 曾志刚, 王晓媛, 曾志斌, 杨小双, 齐海燕. 马里亚纳弧NW Eifuku热液区岩石中黄铁矿的地球化学特征[J]. 海洋地质前沿, 2025, 41(6): 25-39. doi: 10.16028/j.1009-2722.2024.093
LIU Jinfeng, ZENG Zhigang, WANG Xiaoyuan, ZENG Zhibin, YANG Xiaoshuang, QI Haiyan. Geochemical characteristics of pyrite from rocks in the NW Eifuku hydrothermal area of the Mariana Arc[J]. Marine Geology Frontiers, 2025, 41(6): 25-39. doi: 10.16028/j.1009-2722.2024.093
Citation: LIU Jinfeng, ZENG Zhigang, WANG Xiaoyuan, ZENG Zhibin, YANG Xiaoshuang, QI Haiyan. Geochemical characteristics of pyrite from rocks in the NW Eifuku hydrothermal area of the Mariana Arc[J]. Marine Geology Frontiers, 2025, 41(6): 25-39. doi: 10.16028/j.1009-2722.2024.093

马里亚纳弧NW Eifuku热液区岩石中黄铁矿的地球化学特征

  • 基金项目: 国家自然科学基金“深海界面过程和化能生态系统”(42221005),“西太平洋俯冲体系中岩浆活动及其对热液物质供给的制约”(91958213),“冲绳海槽与马里亚纳海槽的热液烟囱体特征及其对流体演化的指示”(42330409);中国科学院战略性先导科技专项子课题“热液/冷泉区岩浆物质贡献与流体化学过程”(XDB42020402);国家重点基础研究发展计划(973计划)项目“典型弧后盆地热液活动及其成矿机理”(2013CB429700);泰山学者工程(ts201511061)
详细信息
    作者简介: 刘锦风(1999—),女,在读硕士,主要从事热液硫化物方面的研究工作. E-mail:liujf@qdio.ac.cn
    通讯作者: 曾志刚(1968—),男,博士,研究员,主要从事海底热液活动方面的研究工作. E-mail:zgzeng@qdio.ac.cn
  • 中图分类号: P736

Geochemical characteristics of pyrite from rocks in the NW Eifuku hydrothermal area of the Mariana Arc

More Information
  • 本文选择马里亚纳弧北部NW Eifuku热液区的4块火山岩及其中1块微蚀变火山岩的内部黄铁矿作为研究对象,对样品进行了全岩主量元素、橄榄石和黄铁矿原位主、微量元素及黄铁矿S同位素组成的测试分析工作,探讨了岩石中黄铁矿的地球化学特征、物质来源和微生物成矿作用。结果显示,火山岩为玄武安山岩,包含4种类型的黄铁矿,分别为蚀变斑晶中他形和胶状黄铁矿、斑晶裂隙中细长柱状黄铁矿、基质中半自形-他形黄铁矿、气孔中自形黄铁矿。后3种黄铁矿的晶形表明,其是热液活动早期的产物。蚀变斑晶中黄铁矿的晶形为他形和胶状,相较其他3种类型黄铁矿,其S/Fe比值升高,这些均为矿物在低温下形成的特征,即该类黄铁矿的形成受到了热液与海水混合导致温度降低的影响。4种黄铁矿的δ34S值(6.58‰~−19.60‰)以及部分自形黄铁矿的铁氧化层边缘表明,它们在形成过程中可能受到了微生物作用的影响。蚀变橄榄石中黄铁矿的Co、Ni元素的含量明显高于其他类型黄铁矿,与蚀变前后热液流体成分改变、热液与海水混合后温度降低导致元素更易进入黄铁矿晶格等因素有关,其核部与边部元素含量的差异可能受到了微生物作用的影响,而蚀变橄榄石对黄铁矿元素含量的影响相对较小。

  • 加载中
  • 图 1  研究区地质概况及采样点位置

    Figure 1. 

    图 2  马里亚纳弧NW Eifuku热液区手标本样品

    Figure 2. 

    图 3  研究区岩石样品的TAS分类[68]

    Figure 3. 

    图 4  研究区玄武安山岩主量元素含量

    Figure 4. 

    图 5  扫描电镜下岩石样品中的硫化物

    Figure 5. 

    图 6  具不同蚀变程度橄榄石中的主要元素含量

    Figure 6. 

    图 7  样品H5-R1-2-1 中4种类型黄铁矿(Py)的元素分布特征

    Figure 7. 

    图 8  不同类型黄铁矿的S同位素

    Figure 8. 

    图 9  4类黄铁矿中Co与Ni的相关性变化

    Figure 9. 

    图 10  黄铁矿核边部元素变化趋势

    Figure 10. 

    图 11  不同蚀变程度橄榄石中黄铁矿的元素含量平均值变化趋势

    Figure 11. 

    表 1  马里亚纳弧NW Eifuku热液区样品的采样信息与样品特征

    Table 1.  Specifications of the samples from the NW Eifuku hydrothermal area in the Mariana Arc

    样品编号 采样位置 水深/m 样品类型 样品特征
    经度(E) 纬度(N)
    H5-R1-2-1 144.0385° 21.4852° 1 866 玄武安山岩 表面具薄层黄褐色物质覆盖,切割面呈黑灰色,存在较多大小不一的气孔,分布不均,气孔中可见少量褐黄色物质
    H5-R1-2-2 144.0394° 21.4856° 1 807 玄武安山岩 不规则块状,黑色,结构致密,部分表面呈黄褐色,气孔较小且分布不均匀,无填充物
    H5-R1-2-3 144.0406° 21.4865° 1 708 玄武安山岩 表面呈黄褐色,切割面呈灰黑色,有裂痕,气孔较多且小而密,无填充物
    H5-R1-2-4 144.0413° 21.4870° 1 632 玄武安山岩 表面呈黄褐色,分布有较少的细小的气孔。切割面呈灰黑色,沿边缘有弧形裂纹
    下载: 导出CSV

    表 2  马里亚纳弧NW Eifuku热液区岩石样品的主量元素

    Table 2.  Major elements of rock samples near the NW Eifuku hydrothermal vent in the Mariana Arc wt.%

    样品编号 Al2O3 CaO Fe2O3 K2O MgO MnO Na2O P2O5 TiO2 SiO2 LOI TOTAL
    2-1 14.42 11.29 9.22 0.65 7.66 0.16 1.96 0.15 0.65 52.12 1.03 99.31
    2-2 16.44 10.3 9.94 1.28 5.95 0.17 2.22 0.27 0.8 51.76 0.4 99.53
    2-3 16.38 10.3 9.73 1.84 5.91 0.17 2.2 0.39 0.8 52.59 0.05 100.36
    2-4外壳 15.89 10.51 9.57 1.78 6.09 0.17 2.11 0.37 0.78 52.24 0.72 100.23
    2-4内1上 16.01 10.5 9.24 1.75 6.18 0.16 2.17 0.37 0.76 52.28 0.12 99.53
    2-4内2中 16.24 10.5 9.08 1.71 6.42 0.16 2.22 0.36 0.75 52.76 0.46 100.66
    2-4内3下 16.05 9.94 9.41 1.8 5.73 0.16 2.18 0.37 0.78 51.32 1.41 99.15
    下载: 导出CSV

    表 3  马里亚纳弧NW Eifuku热液区近岩石中黄铁矿的S同位素组成

    Table 3.  The sulfur isotopic composition of pyrite in rock samples near the NW Eifuku hydrothermal vent in the Mariana Arc

    黄铁矿类型 样品点号 δ34SV-CDT/‰
    气孔中 2-1-1T-12A −6.58
    2-1-1T-13 −6.9
    2-1-1T-16 −6.9
    2-1-1T-20 −6.75
    2-1-2T-1 −9.27
    2-1-2T-2 −8.31
    2-1-2T-9 −8.6
    2-1-2T-12 −8.85
    2-1-2T-13 −8.96
    2-1-2T-18 −9.03
    2-1-2J-4 −7.88
    2-1-2J-8 −6.69
    蚀变长石中 2-1-1T-8 −19.6
    蚀变橄榄石中 2-1-1T-9A −16.62
    2-1-1T-14 −12.7
    2-1-2T-3 −9.01
    斑晶裂隙中 2-1-1J-10 −9.37
    下载: 导出CSV
  • [1]

    侯增谦,韩发,夏林圻. 现代与古代海底热水成矿作用[M]. 北京:地质出版社,2003.

    HOU Z Q,HAN F,XIA L Q. Modern and Ancient Submarine Hydrothermal Mineralization[M[. Beijing:Geology Press,2003.

    [2]

    ZENG Z G,CHEN D G,YIN X B,et al. Elemental and isotopic compositions of the hydrothermal sulfide on the East Pacific Rise near 13°N[J]. Science China Earth Sciences,2010,53(2):253-266. doi: 10.1007/s11430-010-0013-3

    [3]

    ZENG Z G,CHEN S,SWLBY D,et al. Rhenium-osmium abundance and isotopic compositions of massive sulfides from modern deep-sea hydrothermal systems:implications for vent associated ore forming processes[J]. Earth and Planetary Science Letters,2014,396:223-234. doi: 10.1016/j.jpgl.2014.04.017

    [4]

    ZENG Z G,NIEDERMANN S,CHEN S,et al. Noble gases in sulfide deposits of modern deep-sea hydrothermal systems:implications for heat fluxes and hydrothermal fluid processes[J]. Chemical Geology,2015,409:1-11. doi: 10.1016/j.chemgeo.2015.05.007

    [5]

    ZENG Z G,LI X H,CHEN S,et al. Iron,copper,and zinc isotopic fractionation in seafloor basalts and hydrothermal sulfides[J]. Marine Geology,2021,436:106491. doi: 10.1016/j.margeo.2021.106491

    [6]

    ZENG Z G,MA Y,CHEN S,et al. Sulfur and lead isotopic compositions of massive sulfides from deep-sea hydrothermal systems:implications for ore genesis and fluid circulation[J]. Ore Geology Reviews,2017,87:155-171. doi: 10.1016/j.oregeorev.2016.10.014

    [7]

    ZENG Z G,CHEN Z X,QI H Y. Two processes of anglesite formation and a model of secondary supergene enrichment of Bi and Ag in seafloor hydrothermal sulfide deposits[J]. Journal of Marine Science and Engineering,2022,10(1):35.

    [8]

    ZENG Z G,WANG X Y,CHEN C T A,et al. Boron isotope compositions of fluids and plumes from the Kueishantao hydrothermal field off northeastern Taiwan:implications for fluid origin and hydrothermal processes[J]. Marine Chemistry,2013,157:59-66. doi: 10.1016/j.marchem.2013.09.001

    [9]

    ZENG Z G,WANG X Y,QI H Y,et al. Arsenic and antimony in hydrothermal plumes from the Eastern Manus Basin,Papua New Guinea[J]. Geofluids,2018,1:1-13.

    [10]

    ZENG Z G,WANG X Y,MURTON B J,et al. Dispersion and intersection of hydrothermal plumes in the Manus Back-Arc Basin,western Pacific[J]. Geofluids,2020,1:4260806.

    [11]

    RONG K B,ZENG Z G,YIN X B,et al. Smectite formation in metalliferous sediments near the East Pacific Rise at 13°N[J]. Acta Oceanologica Sinica,2018,37(9):67-81. doi: 10.1007/s13131-018-1265-6

    [12]

    ZENG Z G,WANG X Y,ZHANG G L,et al. Formation of Fe-oxyhydroxides from the East Pacific Rise near latitude 13°N:evidence from mineralogical and geochemical data[J]. Science in China:Series D,2008,51(2):206-215. doi: 10.1007/s11430-007-0131-8

    [13]

    HUANG X,ZENG Z G,CHEN S,et al. Component characteristics of organic matter in hydrothermal barnacle shells from southwest Indian Ridge[J]. Acta Oceanologica Sinica,2013,32(12):60-67. doi: 10.1007/s13131-013-0388-z

    [14]

    CHEN J B,ZENG Z G. Metasomatism of the peridotites from southern Mariana fore-arc:trace element characteristics of clinopyroxene and amphibole[J]. Science in China Series D:Earth Sciences,2007,50(7):1005-1012. doi: 10.1007/s11430-007-0023-y

    [15]

    ZENG Z G,CHEN Z X,ZHANG Y X,et al. Geological,physical,and chemical characteristics of seafloor hydrothermal vent fields[J]. Journal of Oceanology and Limnology,2020,38(4):985-1007. doi: 10.1007/s00343-020-0123-5

    [16]

    NAKAO S. Submarine hydrothermal activity in the Izu-Ogasawara Arc,western Pacific[J]. Journal of the Sedimentological Society of Japan,1989,31:3-14.

    [17]

    ISHIBASHI J I,URABE T. Hydrothermal activity related to arc-backarc magmatism in the western Pacific [J]. Tectonics and Magmatism,1995:451-495.

    [18]

    GLASBY G P,IIZASA K,YUASA M,et al. Submarine hydrothermal mineralization on the Izu-Bonin Arc,south of Japan:an overview[J]. Marine Georesources & Geotechnology,2000,18(2):141-176.

    [19]

    STüBEN D,BLOOMER S H,TAïBI N E,et al. First results of study of sulphur-rich hydrothermal activity from an island-arc environment:Esmeralda Bank in the Mariana Arc[J]. Marine Geology,1992,103(1/3):521-528.

    [20]

    PATRICIA F,JAMES G,MICHAEL J. Volcanologic and tectonic evolution of the Kasuga seamounts,northern Mariana Trough:alvin submersible investigations[J]. Journal of Volcanology & Geothermal Research,1997,79:277-311.

    [21]

    LUPTON J,BUTTERFIELD D,LILLEY M,et al. Submarine venting of liquid carbon dioxide on a Mariana Arc volcano[J]. Geochemistry,Geophysics,Geosystems,2006,7(8):1-20.

    [22]

    ROBERT E,EDWARD B,DAVID B,et al. Exploring the submarine ring of fire:Mariana Arc-western Pacific[J]. Oceanography,2007,20(4):68-79. doi: 10.5670/oceanog.2007.07

    [23]

    李江海,牛向龙,冯军. 现代海底热液微生物群落及其地质意义[J]. 地球科学进展,2005,20(7):1-8.

    LI J H,NIU X L,FENG J. Modern seafloor hydrothermal microbial communities and their geological significance[J]. Advances in Earth Science,2005,20(7):1-8.

    [24]

    曾志刚. 海底热液地质学[M]. 北京:科学出版社,2011:436-473.

    ZENG Z G. Submarine Hydrothermal Geology[M]. Beijing:Science Press,2011:436-473.

    [25]

    LLANOS J,CAPASSO C,PARISI E,et al. Susceptibility to heavy metals and cadmium accumulation in aerobic and anaerobic thermophilic microorganisms isolated from deep-sea hydrothermal vents[J]. Current Microbiology,2000,41(3):201-205. doi: 10.1007/s00284431056

    [26]

    CARY S C,SHANK T,STEIN J. Worms bask in extreme temperatures[J]. Nature,1998,391:545-546. doi: 10.1038/35286

    [27]

    黄菊芳,曾乐平,周洪波. 深海热液喷口微生物对矿物元素行为的影响[J]. 生态环境学报,2006,15(1):175-178. doi: 10.3969/j.issn.1674-5906.2006.01.037

    HUANG J F,ZENG L P,ZHOU H B. Influence of microorganisms in deep-sea hydrothermal vents on the behavior of mineral elements[J]. Ecology and Environment,2006,15(1):175-178. doi: 10.3969/j.issn.1674-5906.2006.01.037

    [28]

    李冬玉,黄建华. 微生物成矿的研究现状[J]. 科技信息,2009,7:407-408. doi: 10.3969/j.issn.1001-9960.2009.17.321

    LI D Y,HUANG J H. The current achievements of microbial biomineralization[J]. Science & Technology Information,2009,7:407-408. doi: 10.3969/j.issn.1001-9960.2009.17.321

    [29]

    FORIEL J,PHILIPPOT P,SUSINI J,et al. High-resolution imaging of sulfur oxidation states,trace elements,and organic molecules distribution in individual microfossils and contempo rary microbial filaments[J]. Geochimica et Cosmochimica Acta,2004,68(7):1561-1569. doi: 10.1016/j.gca.2003.10.006

    [30]

    FOUQUET Y,MARCOUX E. Lead isotope systematics in Pacific hydrothermal sulfide deposits[J]. Journal of Geophysical Research:Solid Earth,1995,100(B4):6025-6040. doi: 10.1029/94JB02646

    [31]

    BJERKGåED T,COUSENS B L,FRANKLIN J M. The middle valley sulfide deposits,northern Juan de Fuca Ridge:radiogenic isotope systematics[J]. Economic Geology,2000,95(7):1473-1488.

    [32]

    KIM J,LEE I,HALBACH P,et al. Formation of hydrothermal vents in the north Fiji Basin:sulfur and lead isotope constraints[J]. Chemical Geology,2006,233(3):257-275.

    [33]

    SEAL R R. Sulfur isotope geochemistry of sulfide minerals[J]. Reviews in Mineralogy and Geochemistry,2006,61(1):633-677. doi: 10.2138/rmg.2006.61.12

    [34]

    YAO H Q,ZHOU H Y,PENG X T,et al. Metal sources of black smoker chimneys,Endeavour Segment,Juan de Fuca Ridge:Pb isotope constraints[J]. Applied Geochemistry,2009,24(10):1971-1977. doi: 10.1016/j.apgeochem.2009.07.010

    [35]

    AOYAMA S,NISHIZAWA M,TAKAI K,et al. Microbial sulfate reduction within the Iheya north subseafloor hydrothermal system constrained by quadruple sulfur isotopes[J]. Earth and Planetary Science Letters,2014,398:113-126. doi: 10.1016/j.jpgl.2014.04.039

    [36]

    MCDERMOTT J M,ONO S,TIVEY M K,et al. Identification of sulfur sources and isotopic equilibria in submarine hot-springs using multiple sulfur isotopes[J]. Geochimica et Cosmochimica Acta,2015,160:169-187. doi: 10.1016/j.gca.2015.02.016

    [37]

    HALBACH P,NAKAMURA K I,WAHSNER M,et al. Probable modern analogue of Kuroko-type massive sulphide deposits in the Okinawa Trough back-arc basin[J]. Nature,1989,338(6215):496-499. doi: 10.1038/338496a0

    [38]

    HALBACH P E,HANSMANN W,KöPPEL V,et al. Whole-rock and sulfide lead-isotope data from the hydrothermal Jade Field in the Okinawa back-arc trough[J]. Mineralium Deposita,1997,32:70-78. doi: 10.1007/s001260050073

    [39]

    VERATI C,LANCELOT J,HéKINIANR. Pb isotope study of black-smokers and basalts from Pito Seamount site (easter microplate)[J]. Chemical Geology,1999,155(1):45-63.

    [40]

    SEAL R R,ALPERS C N,RYE R O. Stable isotope systematics of sulfate minerals[J]. Reviews in Mineralogy and Geochemistry,2000,40(1):541-602. doi: 10.2138/rmg.2000.40.12

    [41]

    曾志刚,秦蕴珊,赵一阳,等. 大西洋中脊TAG热液活动区海底热液沉积物的硫同位素组成及其地质意义[J]. 海洋与湖沼,2000,31(5):518-529.

    ZENG Z G,QIN Y S,ZHAO Y Y,et al. Sulfur isotopic composition of seafloor surface hydrothermal sediments in the TAG hydrothermal field of Mid-Atlantic Ridge and its geological implications[J]. Oceanologia et Limnologia Sinica,2000,31(5):518-529.

    [42]

    曾志刚,蒋富清,翟世奎,等. 冲绳海槽Jade热液活动区块状硫化物的铅同位素组成及其地质意义[J]. 地球化学,2000,29(3):239-245.

    ZENG Z G,JIANG F Q,ZHAI S K,et al. Lead isotopic compositions of massive sulfides from the Jade Hydrothermal Field in the Okinawa Trough and its geological implications[J]. Geochimica,2000,29(3):239-245.

    [43]

    SHANKS W C. Stable isotopes in seafloor hydrothermal systems:vent fluids,hydrothermal deposits,hydrothermal alteration,and microbial processes[J]. Reviews in Mineralogy and Geochemistry,2001,43(1):469-525. doi: 10.2138/gsrmg.43.1.469

    [44]

    COUSENS B L,BLENKINSOP J,FRANKLIN J M. Lead isotope systematics of sulfide minerals in the middle valley hydrothermal system,northern Juan de Fuca Ridge[J]. Geochemistry Geophysics Geosystems,2002,3(5):1-16.

    [45]

    KIM J,LEE I,LEE K Y. S,Sr,and Pb isotopic systematics of hydrothermal chimney precipitates from the eastern Manus Basin,western Pacific:evaluation of magmatic contribution to hydrothermal system[J]. Journal of Geophysical Research:Solid Earth,2004,109(B12):1-13.

    [46]

    HERZIG P M,HANNINGTON M D,ARRIBAS A. Sulfur isotopic composition of hydrothermal precipitates from the Lau back-arc:implications for magmatic contributions to seafloor hydrothermal systems[J]. Mineralium Deposita,1998,33:226-237. doi: 10.1007/s001260050143

    [47]

    SHANKS W C,BISCHOFF J L,ROSENBAUER R J. Seawater sulfate reduction and sulfur isotope fractionation in basaltic systems:interaction of seawater with fayalite and magnetite at 200-350℃[J]. Geochimica et Cosmochimica Acta,1981,45(11):1977-1995. doi: 10.1016/0016-7037(81)90054-5

    [48]

    SOLOMON M,EASTOE C J,WALSHE J L,et al. Mineral deposits and sulfur isotope abundances in the Mount Read Volcanics between Que River and Mount Darwin,Tasmania[J]. Economic Geology,1988,83(7):1307-1328. doi: 10.2113/gsecongeo.83.7.1307

    [49]

    PETER J M,SHANKS W C. Sulfur,carbon,and oxygen isotope variations in submarine hydrothermal deposits of Guaymas Basin,Gulf of California,USA[J]. Geochimica et Cosmochimica Acta,1992,56(5):2025-2040. doi: 10.1016/0016-7037(92)90327-F

    [50]

    ARNOLD M,SHEPPARD S M F. East Pacific Rise at latitude 21°N:isotopic composition and origin of the hydrothermal sulphur[J]. Earth and Planetary Science Letters,1981,56:148-156. doi: 10.1016/0012-821X(81)90122-9

    [51]

    GOLDHABER M B,KAPLAN I R. Mechanisms of sulfur incorporation and isotope fractionation during early diagenesis in sediments of the Gulf of California[J]. Marine Chemistry,1980,9(2):95-143. doi: 10.1016/0304-4203(80)90063-8

    [52]

    BRUNNER B,BERNASCONI S M. A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria[J]. Geochimica et Cosmochimica Acta,2005,69(20):4759-4771. doi: 10.1016/j.gca.2005.04.015

    [53]

    吴世迎,陈穗田,张德玉,等. 马里亚纳海槽海底热液活动和热液硫化物研究[J]. 中国科学:B辑,1991(2):198-204.

    WU S Y,CHEN S T,ZHANG D Y,et al. Study of seafloor hydrothermal activity and hydrothermal sulfides in the Mariana Trough[J]. Science in China: Series B,1991(2):198-204.

    [54]

    张德玉,陈穗田,王冠荣,等. 马里亚纳海槽热液硅质烟囱矿物学及地球化学研究[J]. 海洋学报,1992,14(4):61-68.

    ZHANG D Y,CHEN S T,WANG G R,et al. Mineralogical and geochemical study of hydrothermal siliceous chimney in the Mariana Trough[J]. Haiyang Xuebao,1992,14(4):61-68.

    [55]

    吴世迎,白黎明,吴军瑞. 马里亚纳海槽海底热液硫化物的同位素地球化学特征[C]//中国质谱学会. 中国质谱学会第七届会员代表大会暨学术报告会论文集. 青岛:国家海洋局第一海洋研究所,2004:2.

    WU S Y,BAI L M,WU J R. Stable isotope geochemistry of hydrothermal sulfides in Mariana Trough[C]//Chinese Mass Spectrometry Society. Journal of Chinese Mass Spectrometry Society. Qingdao:First Institute of Oceanography,MNR,2004:2.

    [56]

    KAKEGAWA T,UTSUMI M,MARUMO K. Geochemistry of sulfide chimneys and basement pillow lavas at the southern Mariana Trough (12.55°N—12.58°N)[J]. Resource Geology,2008,58(3):249-266. doi: 10.1111/j.1751-3928.2008.00060.x

    [57]

    HEIN J R,RONDE C E J d,KOSKI R A,et al. Layered hydrothermal barite-sulfide mound field,east Diamante Caldera,Mariana Volcanic Arc[J]. Economic Geology,2014,109:2179-2206. doi: 10.2113/econgeo.109.8.2179

    [58]

    KNAACK D R,SULLIVAN K,BROWN D J,et al. Geochemical and mineralogical composition of ferromanganese precipitates from the southern Mariana Arc:evaluation,formation,and implications[J]. Chemical Geology,2021,568:120132. doi: 10.1016/j.chemgeo.2021.120132

    [59]

    BLOOMER S H,STERN R J,SMOOT N C. Physical volcanology of the submarine Mariana and volcano arcs[J]. Bulletin of Volcanology,1989,51(3):210-224. doi: 10.1007/BF01067957

    [60]

    陈俊兵,曾志刚. 马里亚纳南部前弧橄榄岩的岩石及矿物学:对弧下地幔楔交代作用的指示[J]. 海洋地质与第四纪地质,2007,27(1):53-59.

    CHEN J B,ZENG Z G. Petrology and maneralogy of peridotites from the southern Mariana forearc:implications for the metasomatism of the mantle wedge under Mariana Arc[J]. Marine Geology & Quaternary Geology,2007,27(1):53-59.

    [61]

    STERN R J,FOUCH M J,KLEMPERER S L. An Overview of the Izu-Bonin-Mariana Subduction Factory [M]. Washington,D C :the American Geophysical Union,2004:175-222.

    [62]

    HAWKINS J W,LONSDALE P F,MACDOUGALL J D,et al. Petrology of the axial ridge of the Mariana Trough backarc spreading center[J]. Earth and Planetary Science Letters,1990,100(1):226-250.

    [63]

    PEARCE J A,STERN R J,BLOOMER S H,et al. Geochemical mapping of the Mariana arc-basin system:implications for the nature and distribution of subduction components[J]. Geochemistry Geophysics Geosystems,2005,6(7):1-27.

    [64]

    BAKER E T,EMBLEY R W,WALKER S L,et al. Hydrothermal activity and volcano distribution along the Mariana Arc[J]. Journal of Geophysical Research:Solid Earth,2008,113(B8):1-16.

    [65]

    EMBLEY R W,BAKER E T,CHADWICK W W,et al. Explorations of Mariana Arc volcanoes reveal new hydrothermal systems[J]. Eos, Transactions American Geophysical Union,2004,85(4):37-44.

    [66]

    LUPTON J E,LILLEY M D,BUTTERFIELD D A,et al. Liquid carbon dioxide venting at the Champagne Hydrothermal Site,NW Eifuku Volcano,Mariana Arc [C]//American Geophysical Union. Fall Meeting. Washington,D. C. ,2004:V43F-08.

    [67]

    SAKAI H,GAMO T,KIM E S,et al. Venting of carbon dioxide-rich fluid and hydrate formation in mid-Okinawa Trough Backarc Basin[J]. Science,1990,248(4959):1093-1096. doi: 10.1126/science.248.4959.1093

    [68]

    LEBAS M,LEMAITRE R,STRECKEISEN A,et al. A chemical classification of volcanic-rocks based on the total alkali silica diagram[J]. Journal of Petrology,1986,27(3):745-750. doi: 10.1093/petrology/27.3.745

    [69]

    CHEN Z X,ZENG Z G,TAMEHE L S,et al. Magmatic sulfide saturation and dissolution in the basaltic andesitic magma from the Yaeyama Central Graben,southern Okinawa Trough[J]. Lithos,2021,106082(388/389):1-14.

    [70]

    NASH W M,SMYTHE D J,WOOD B J. Compositional and temperature effects on sulfur speciation and solubility in silicate melts[J]. Earth and Planetary Science Letters,2019,507:187-198. doi: 10.1016/j.jpgl.2018.12.006

    [71]

    MATJUSCHKIN V,BLUNDY J D,BROOKER R A. The effect of pressure on sulphur speciation in mid-to deep-crustal arc magmas and implications for the formation of porphyry copper deposits[J]. Contributions to Mineralogy and Petrology,2016,171:66-90. doi: 10.1007/s00410-016-1274-4

    [72]

    JUGO P J,WILKE M,BOTCHARNIKOV R E. Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses,implications for S speciation and S content as function of oxygen fugacity[J]. Geochimica et Cosmochimica Acta,2010,74:5926-5938. doi: 10.1016/j.gca.2010.07.022

    [73]

    FORTIN M A,RIDDLE J,DESJARDINS L Y,et al. The effect of water on the sulfur concentration at sulfide saturation (SCSS) in natural melts[J]. Geochimica et Cosmochimica Acta,2015,160:100-116. doi: 10.1016/j.gca.2015.03.022

    [74]

    CHEN Z X,CHEN J B,TAMEHE L S,et al. Heavy copper isotopes in arc-related lavas from cold subduction zones uncover a sub-arc mantle metasomatized by serpentinite-derived sulfate-rich fluids[J]. Journal of Geophysical Research:Solid Earth,2022,127(10):1-19.

    [75]

    寇大明, 黄菲, 杨大勇, 等. 热硫化条件下温度对黄铁矿结晶生长的影响[J]. 吉林大学学报(地球科学版), 2010, 40(1): 104-108.

    KOU D M, HUANG F, YANG D Y, et al. Temperature influence on pyrite crystallization growth under conditions of thermal-sulfurization.[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(1): 104-108.

    [76]

    KEITH M,HäCKEL F,HAASE K M,et al. Trace element systematics of pyrite from submarine hydrothermal vents[J]. Ore Geology Reviews,2016,72:728-745. doi: 10.1016/j.oregeorev.2015.07.012

    [77]

    REICH M,DEDITIUS A,CHRYSSOULIS S,et al. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system:a SIMS/EMPA trace element study[J]. Geochimica et Cosmochimica Acta,2013,104:42-62. doi: 10.1016/j.gca.2012.11.006

    [78]

    陈丽蓉,石学法,初凤友. 大西洋中脊热液黄铁矿的标型演化特征研究[J]. 科学通报,1995(12):1119-1121.

    CHEN L R,SHI X F,CHU F Y. Characterization of the typomorphic evolution of hydrothermal pyrite from the Mid-Atlantic Ridge[J]. Chinese Science Bulletin,1995(12):1119-1121.

    [79]

    曹红. 西南和中印度洋洋脊热液硫化物的成矿作用研究[D]. 青岛:中国海洋大学,2015.

    CAO H. Mineralization of hydrothermal sulfide on the southwest and central Indian Ridge [D]. Qingdao:Ocean University of China,2015.

    [80]

    MASLENNIKOV V V,MASLENNIKOVA S P,LARGE R R,et al. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (southern Urals,Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS)[J]. Economic Geology,2009,104(8):1111-1141. doi: 10.2113/gsecongeo.104.8.1111

    [81]

    MARQUES A F A,BARRIGA F J A S,FOUQUET Y. Co/Ni ratio variation throughout the Rainbow hydrothermal system[C]//Society for Geology Applied to Mineral Deposits. Mineral exploration and sustainable development. Rotterdam,2003:143-146.

    [82]

    FOUQUET Y,CAMBON P,ETOUBLEAU J,et al. Geodiversity of Hydrothermal Processes along the Mid-Atlantic Ridge and Ultramafic-Hosted Mineralization:A New Type of Oceanic Cu-Zn-Co-Au Volcanogenic Massive Sulfide Deposit [M]. Washington,D C:the American Geophysical Union,2010:321-367.

    [83]

    HANNAH L J,MARK D,SVEN P,et al. Constraints on the behavior of trace elements in the actively-forming TAG deposit,Mid-Atlantic Ridge,based on LA-ICP-MS analyses of pyrite[J]. Chemical Geology,2018,498:45-71.

    [84]

    METZ S,TREFRY J H. Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids[J]. Geochimica et Cosmochimica Acta,2000,64:2267-2279. doi: 10.1016/S0016-7037(00)00354-9

    [85]

    UEDA A,SAKAI H. Sulfur isotope study of Quaternary volcanic rocks from the Japanese Islands Arc[J]. Geochimica et Cosmochimica Acta,1984,48(9):1837-1848. doi: 10.1016/0016-7037(84)90037-1

    [86]

    REES C E,JENKINS W J,MONTER J. The sulphur isotopic composition of ocean water sulphate[J]. Geochimica et Cosmochimica Acta,1978,42(4):377-381. doi: 10.1016/0016-7037(78)90268-5

    [87]

    OHOMOTO H,RYE R O. Isotopes of sulfur and carbon [J]. Geochemistry of Hydrothermal Ore Deposits,1979:509-567.

    [88]

    OHMOTO H,LASAGA A C. Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems[J]. Geochimica et Cosmochimica Acta,1982,46(10):1727-1745. doi: 10.1016/0016-7037(82)90113-2

    [89]

    CANFIELD D E,TESKE A. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies[J]. Nature,1996,382(6587):127-132. doi: 10.1038/382127a0

    [90]

    OHMOTO H. Sulfur and carbon isotopes [J]. Geochemistry of Hydrothermal Ore Deposits,1997:517-612.

    [91]

    ALT J C,SHANKS W C. Sulfur in serpentinized oceanic peridotites:serpentinization processes and microbial sulfate reduction[J]. Journal of Geophysical Research:Solid Earth,1998,103(B5):9917-9929. doi: 10.1029/98JB00576

    [92]

    CANFEILD D E. Biogeochemistry of sulfur isotopes[J]. Reviews in Mineralogy and Geochemistry,2001,43(1):607-636. doi: 10.2138/gsrmg.43.1.607

    [93]

    ALT J C,SHANKS W C. Microbial sulfate reduction and the sulfur budget for a complete section of altered oceanic basalts,IODP hole 1256D (eastern Pacific)[J]. Earth and Planetary Science Letters,2011,310(1):73-83.

    [94]

    DING T,TAO C H,DIAS Á A,et al. Sulfur isotopic compositions of sulfides along the southwest Indian Ridge:implications for mineralization in ultramafic rocks[J]. Mineralium Deposita,2021,56(5):991-1006. doi: 10.1007/s00126-020-01025-0

    [95]

    汪卫国. 现代大洋不同热液区地球化学特征及微生物成矿[J]. 矿物学报,2011,31(S1):702-703.

    WANG W G. Geochemical characteristics and microbial mineralization of different hydrothermal regions in modern oceans[J]. Acta Mineralogica Sinica,2011,31(S1):702-703.

    [96]

    冯军,李江海,牛向龙. 现代海底热液微生物群落及其地质意义[J]. 地球科学进展,2005,20(7):732-739.

    FENG J,LI X H,NIU X L. Research advances in hydrothermal vent microbial communities and its significance for geology. [J]. Advances in Earth Science,2005,20(7):732-739.

    [97]

    刘洵,赖潘民旺,张敏,等. 微生物-矿物相互作用:机制与重金属固定效应[J]. 环境化学,2023,43(2):1-16.

    LIU X,LAI P M W,ZHANG M,et al. Microbe-mineral interactions:mechanisms and immobilization effect toward heavy metals[J]. Environmental Chemistry,2023,43(2):1-16.

    [98]

    VERATI C,DONATO P,PRIEYR D,et al. Evidence of bacterial activity from micrometer-scale layer analyses of black-smoker sulfide structures (Pito Seamount Site,Easter microplate)[J]. Chemical Geology,1999,158(3):257-269.

    [99]

    FORTIN D,SOUTHAM G,BEVERIDGE T J. Nickel sulfide,iron-nickel sulfide and iron sulfide precipitation by a newly isolated desulfotomaculum species and its relation to nickel resistance[J]. FEMS Microbiology Ecology,1994,14(2):121-132. doi: 10.1111/j.1574-6941.1994.tb00099.x

    [100]

    GORBY Y A,LOVLEY D R. Enzymatic uranium precipitation[J]. Environmental Science & Technology,1992,26(1):205-207.

    [101]

    DOE B R. Zinc,copper,and lead in mid-ocean ridge basalts and the source rock control on Zn/Pb in ocean-ridge hydrothermal deposits[J]. Geochimica et Cosmochimica Acta,1994,58(10):2215-2223. doi: 10.1016/0016-7037(94)90006-X

    [102]

    HANNINGTON M D. Volcanogenic massive sulfide deposits[J]. Treatise on Geochemistry,2014,47(5):463-488.

    [103]

    WANG Y,HAN X,PETERSEN S,et al. Mineralogy and geochemistry of hydrothermal precipitates from Kairei Hydrothermal Field,Central Indian Ridge[J]. Marine Geology,2014,354:69-80. doi: 10.1016/j.margeo.2014.05.003

  • 加载中

(11)

(3)

计量
  • 文章访问数:  16
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2024-04-23
刊出日期:  2025-06-28

目录