Differences in the distribution of constant element content in surface sediments inside and outside Rongcheng Swan Lake and their influencing factors
-
摘要:
于2020年9月和2023年9月利用蚌式取样器在天鹅湖和荣成湾44个站位进行表层沉积物采样,通过对样品的粒度和常量元素进行测试,分析了潟湖内外粒度和常量元素的平面分布特征及其差异,结合相关性分析、水动力数值模拟、聚类分析、主成分分析等方法,探讨研究区表层沉积物常量元素分布的主要控制因素。结果表明,天鹅湖表层沉积物组分以砂为主,荣成湾表层沉积物组分以粉砂为主,天鹅湖表层沉积物粒度明显粗于荣成湾;天鹅湖表层沉积物的SiO2和P2O5含量(75.74%和0.055%)高于荣成湾(61.73%和0.053%),Al2O3、TFe2O3、MgO等常量元素含量均低于荣成湾。整体上SiO2的分布与平均粒径的分布趋势相反,其他大部分常量元素分布与平均粒径的分布相似,大部分常量元素含量在荣成湾由岸边向外海逐渐增加,在天鹅湖其含量由湖岸向湖内逐渐增加。粒度是影响荣成湾和天鹅湖大部分常量元素(SiO2、Al2O3、TFe2O3、MgO等)分布的主要因素,且对荣成湾的影响明显高于天鹅湖;天鹅湖表层沉积物的K2O分布受成山头海岸侵蚀物质和粒度的共同影响,荣成湾的K2O分布主要受侵蚀物质的影响;天鹅湖表层沉积物的P2O5分布主要受人类活动和海草床的共同影响,而荣成湾的P2O5分布主要受粒度影响。
Abstract:In September 2020 and September 2023, surface sediment samples fromsediments were sampled at 44 stations inside and outside the using a clam sampler in Swan Lake inand Rongcheng Bay, Shandong Peninsula, East China, and the sample particle size and major elements were tested. Based on the test results, the plane distribution characteristics and differences of grain size and major elements inside and outside the lagoon were analyzed. Combined with correlation analysis, hydrodynamic numerical simulation, cluster analysis, principal component analysis and other methods, the main control factors of the distribution of major elements were explored. Results show that the sediment components of Swan Lake are mainly sand, and the sediment components of Rongcheng Bay are mainly silt. The grain size of Swan Lake sediment is obviously coarser than that of Rongcheng Bay. The average contents of SiO2 and P2O5 in the sediments of Swan Lake (75.74% and 0.055%) were higher than those in Rongcheng Bay (61.73% and 0.053%), and the contents of major elements such as Al2O3, TFe2O3 and MgO were lower than those in Rongcheng Bay.Overall, the distribution of SiO2 is opposite to the distribution trend of average particle size, and the distribution of most other major elements was similar to the distribution of average particle size. The contents of most major elements in Rongcheng Bay increased gradually from the shore to the open sea, and those in Swan Lake increased gradually from the shore to the lake. Particle size was the main factor affecting the distribution of most major elements (SiO2, Al2O3, TFe2O3, MgO, and so on) in the two lakes, and its impact on Rongcheng Bay was significantly higher than that on Swan Lake. The distribution of K2O in the sediments of Swan Lake was affected by the erosion materials and their grain size from Chengshantou coast, and that in Rongcheng Bay was mainly affected by erosion materials. The distribution of P2O5 in the sediments of Swan Lake was mainly affected by human activities and seagrass beds, while that in Rongcheng Bay was mainly affected by grain size.
-
Key words:
- Rongcheng Bay /
- Swan Lake /
- surface sediments /
- geochemical characteristics /
- influencing factors
-
-
表 1 潮流潮位验证点概况
Table 1. Overview of tide level verification points
潮流验
证点纬度(N) 经度(E) 潮位验
证点纬度(N) 经度(E) 1# 36°38.220′ 122°25.136′ 鸡鸣岛 37°25′ 122°28′ 2# 36°52.621′ 122°44.149′ 海驴岛 37°27′ 122°40′ 3# 36°49.661′ 122°57.818′ 成山头 37°23′ 122°42′ 4# 37°14.057′ 122°57.600′ 马他角 37°12′ 122°37′ 靖海角 36°54′ 122°26′ 2# 36°52.621′ 122°44.149′ 表 2 研究区表层沉积物常量元素含量
Table 2. The content of major elements in surface sediments of the study area
% 元素 荣成湾 天鹅湖 范围 平均值 范围 平均值 SiO2 47.48~75.02 61.73 61.47~91.36 75.74 Al2O3 7.00~16.43 12.44 4.58~14.13 9.01 TFe2O3 1.40~7.77 4.62 0.36~5.33 2.20 MgO 0.36~3.41 2.10 0.02~2.44 0.79 MnO 0.022~0.091 0.061 0.005~0.070 0.023 TiO2 0.114~0.395 0.281 0.032~0.661 0.238 CaO 1.39~4.86 3.61 0.33~5.29 1.30 Na2O 1.84~4.65 2.66 0.48~2.93 1.83 K2O 2.24~3.17 2.88 1.72~3.26 2.57 P2O5 0.024~0.066 0.053 0.008~0.237 0.055 表 3 常量元素主成分分析结果
Table 3. Results of principal component analysis of constant elements
元素 荣成湾 元素 天鹅湖 F1 F2 F1 F2 F3 P2O5 0.97 0.12 TFe2O3 0.94 0.06 0.08 MgO 0.95 0.28 MgO 0.94 0.12 0.05 CaO 0.94 0.05 Al2O3 0.93 0.12 0.22 Al2O3 0.93 0.37 MnO 0.86 0.13 0.15 MnO 0.92 0.34 SiO2 −0.84 0.29 0.30 TFe2O3 0.91 0.39 Na2O 0.80 −0.32 −0.13 SiO2 −0.89 −0.41 TiO2 0.78 0.36 0.42 TiO2 0.88 −0.11 CaO 0.60 −0.56 −0.22 Na2O 0.66 0.22 K2O 0.54 0.71 −0.09 K2O 0.13 0.96 P2O5 0.45 0.02 0.83 方差贡献率/% 72.95 16.52 方差贡献率/% 35.81 27.02 22.03 累积贡献率/% 72.95 89.47 累积贡献率/% 35.81 62.83 84.86 -
[1] 赵一阳. 中国海大陆架沉积物的调查研究[J]. 海洋科学,1979(S1):49-50.
ZAHO Y Y. Investigation on the sediments of the continental shelf of China Sea[J]. Marine Sciences,1979(S1):49-50.
[2] YANG S Y,JUNG H S,LIM D I,et al. A review on the provenance discrimination of sediments in the Yellow Sea[J]. Earth-Science Reviews, 2003,63(1):93-120.
[3] 崔振昂,甘华阳,刘文涛,等. 北部湾东部海域表层沉积物常量元素地球化学特征及其物源指示意义[J]. 物探化探计算技术, 2015,37(4):522-531.
CUI Z A,GAN H Y,LIU W T,et al. Geochemical characteristics of major elements and provenance indication of surface sediments in the eastern Beibu Gulf[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2015,37(4):522-531.
[4] 安郁辉,刘健,张军强,等. 淮河与长江和黄河沉积物的物源识别指标比较研究[J]. 第四纪研究, 2020,40(3):837-850.
AN Y H,LIU J,ZHANG J Q,et al. Comparative study on provenance identification indexes of sediments in Huaihe River,Yangtze River and Yellow River[J]. Quaternary Sciences,2020,40(3):837-850.
[5] CONSANI S,CUTRONEO L,CARBONE C,et al. Baseline of distribution and origin of rare earth elements in marine sediment of the coastal area of the eastern Gulf of Tigullio (Ligurian Sea,North-West Italy)[J]. Marine Pollution Bulletin,2020,155(15):111145.
[6] DUCK R W,DA SILVA J F. Coastal lagoons and their evolution:a hydromorphological perspective[J]. Estuarine,Coastal and Shelf Science, 2012,110:2-14.
[7] AVRAMIDIS P,ILIOPOULOS G,PANAGIOTARAS D,et al. Tracking Mid to Late Holocene depositional environments by applying sedimentological,palaeontological and geochemical proxies,Amvrakikos coastal lagoon sediments,Western Greece,Mediterranean Sea[J]. Quaternary International, 2014,332:19-36.
[8] BAS-SILVESTRE M,QUINTANA X D,COMPTE J,et al. Ecosystem metabolism dynamics and environmental drivers in Mediterranean confined coastal lagoons[J]. Estuarine,Coastal and Shelf Science, 2020,245:106989.
[9] 魏合龙,庄振业. 山东荣成湾月湖地区的潟湖-潮汐汊道体系[J]. 湖泊科学, 2015, 9(2):135-140.
WEI H L,ZHUANG Z Y. Study on the evolution of Yuehu lake-tidal inlet system,Rongcheng Bay,Shandong Province[J]. Journal of Lake Sciences, 2015, 9(2):135-140.
[10] KUHLMANN J,ASIOLI A,TRINCARDI F,et al. Sedimentary response to Milankovitch-type climatic oscillations and formation of sediment undulations:evidence from a shallow-shelf setting at Gela Basin on the Sicilian continental margin[J]. Quaternary Science Reviews, 2015,108:76-94.
[11] BIRD E C F. Coastal Geomorphology:An Introduction[M]. Hoboken:John Wiley & Sons, 2008.
[12] TAKYI R,El MAHRAD B,NUNOO F K E,et al. Adaptive management of environmental challenges in West African coastal lagoons[J]. Science of The Total Environment, 2022,838:156234.
[13] 庄振业. 泻湖沉积环境: 山东半岛为例[J]. 青岛海洋大学学报, 1993, 23(1):52-60.
ZHUANG Z Y. Sedimentary environment of coastal loagoons:take the Shandong Peninsula as an example[J]. Journal of Ocean University of Qingdao. 1993, 23(1):52-60.
[14] 吴瑞. 海南岛潟湖环境现状及治理对策[J]. 热带农业工程, 2020,44(3):99-101.
WU R. Current status and controlling srtartegies of lagoon environment in Hainan Island[J]. Tropical Agricultural Engineering, 2020,44(3):99-101.
[15] ULUTURHAN E,KONTAS A,CAN E. Sediment concentrations of heavy metals in the Homa Lagoon (Eastern Aegean Sea):assessment of contamination and ecological risks[J]. Marine Pollution Bulletin, 2011,62(9):1989-1997.
[16] MAANAN M,SADDIK M,MAANAN M,et al. Environmental and ecological risk assessment of heavy metals in sediments of Nador Lagoon,Morocco[J]. Ecological Indicators, 2015,48:616-626.
[17] HUANG L L,PU X M,PAN J F,et al. Heavy metal pollution status in surface sediments of Swan Lake lagoon and Rongcheng Bay in the northern Yellow Sea[J]. Chemosphere, 2013,93(9):1957-1964.
[18] 薛允传. 山东半岛月湖潮汐汊道沉积物输运与堆积[D] . 青岛:中国科学院海洋研究所,2000.
XUE Y C. Sediment transport and accumulation in the tidal inlet of the Moon Lake in Shandong Peninsula[D]. Qingdao:Institute of Oceanology,Chinese Academy of Sciences,2000.
[19] 贾建军. 小型潮汐汊道系统的沉积动力过程与演化[D]. 青岛:中国科学院海洋研究所,2001.
JIA J J. Sedimentary dynamic process and evolution of small tidal inlet system[D]. Qingdao:Institute of Oceanology,Chinese Academy of Sciences,2001.
[20] 孙阳. 近50年来天鹅湖沙坝海岸地貌演变[J]. 鲁东大学学报(自然科学版), 2021,37(4):366-373.
SUN Y. Coastal geomorphic evolution of Swan Lake barrier during the past 50 years[J]. Ludong University Journal (Natural Science Edition), 2021,37(4):366-373.
[21] 宋鹏鹏,侯金枝,高丽,等. 荣成天鹅湖沉积物磷的赋存形态和时空分布特征[J]. 水土保持学报, 2011,25(3):98-102.
SONG P P,HOU J Z,GAO L,et al. Phosphorus fractions and temporal-spatial distribution characteristics in sediments from Rongcheng Swan Lake[J]. Journal of Soil and Water Conservation, 2011,25(3):98-102.
[22] 张彦浩,王喜涛,路加,等. 荣成天鹅湖鳗草海草床及邻近裸沙区关键环境因子的时空变化特征[J]. 海洋环境科学, 2022,41(2):253-259.
ZHANG Y H,WANG X T,LU J,et al. The temporal and spatial variation characteristics of key environmental factors in Zostera marine bed and bare sand areas in Swan Lake,Rongcheng[J]. Marine Environmental Science, 2022,41(2):253-259.
[23] 吴锦秀,刘仲衡,陈洪亮,等. 山东半岛荣成湾海岸泻湖沉积环境的初步分析[J]. 海洋湖沼通报, 1986, 2:19-24.
WU J X,LIU Z H,CHEN H L,et al. Peliminary analysis of coastal lagoonal sediment environment of Rongcheng Bay of Shandong Peninsula[J]. Transactions of Oceanology and Limnology, 1986, 2:19-24.
[24] 李从先,陈刚,高曼娜,等. 山东荣成成山角至石岛海岸地貌和沉积特征[J]. 海洋与湖沼, 1987, 18(2):162-172.
LI C X,CHEN G,GAO M N,et al. Geomorphology and sedimentation in coastal zones from Chengshanjiao to Shidao,Rongcheng,Shandong Procince[J]. Oceanologia et Limnologia Sinica, 1987, 18(2):162-172.
[25] 王永红,庄振业,李学伦. 山东荣成湾沿岸输沙率及沙嘴的演化动态[J]. 海洋地质与第四纪地质, 2000, 20(4):31-35.
WANG Y H,ZHUANG Z Y,LI X L. The calculation of alongshore silt discharge rates and evolution development of sandspit in the Rongcheng Bay,Shandong Peninsult[J]. Marine Geology & Quaternary Geology, 2000, 20(4):31-35.
[26] 谢琳萍,蒲新明,孙霞,等. 荣成湾营养盐的时空分布特征及其影响因素分析[J]. 海洋通报, 2013,32(1):19-27.
XIE L P,PU X M,SUN X,et al. Analysis on the temporal and spatial distribution of nutrients and the influence factor in Rongcheng Bay[J]. Marine Science Bulletin, 2013,32(1):19-27.
[27] 高丽,宋鹏鹏,史衍玺,等. 荣成天鹅湖沉积物中重金属的分布特征研究[J]. 农业环境科学学报, 2010,29(11):2192-2197.
GAO L,SONG P P,SHI Y X,et al. Distribution characteristics of heavy metals insurfer sediment of Rongcheng Swan Lake,China [J]. Journal of Agro-Environment Science, 2010,29(11):2192-2197.
[28] 余建奎,任宗海,战超,等. 山东荣成天鹅湖沙坝水下岸坡地貌冲淤演变分析[J]. 热带海洋学报,2022,41(4):61-70.
YU J K,REN Z H,ZHAN C,et al. Erosion-depositionanalys is of underwear slope on lagoon and sand barriers in the Swan Lake,Rongcheng,Shandong Province[J]. Journal of TropicalOceanography,2022,41(4):61-70.
[29] 任宗海,余建奎,战超,等. 荣成湾典型沙坝-潟湖海岸地貌演变研究[J]. 海洋通报. 2023,42(3):290-302.
REN Z H,YU J K,ZHAN C,et al. Research on the coastal geomorphic evolution of the typical barrier-lagoon system in the Rongcheng Bay[J]. Marine Science Bulletin. 2023,42(3):290-302.
[30] 严立文. 浅海区海带养殖的沉积环境效应及动力机制[D]. 青岛:中国科学院海洋研究所,2008.
YAN L W. Sedimentary environment effect and dynamic mechanism of kelp aquaculture in shallow sea area[D]. Qingdao:Institute of Oceanology,Chinese Academy of Sciences,2008.
[31] 蓝先洪,张志珣,李日辉,等. 南黄海沉积物不同粒度分析结果的对比研究[J]. 海洋地质动态, 2006,22(10):5-7.
LAN X H,ZHANG Z X,LI R H,et al. Comparative study on the results of different grain size analysis of sediments in the South Yellow Sea[J]. Marine Geology Letters, 2006,22(10):5-7.
[32] FOLK R L,ANDREWS P B,LEWIS D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J]. New Zealand Journal of Geology & Geophysics, 1970,13(4):937-968.
[33] 窦衍光. 长江口邻近海域沉积物粒度和元素地球化学特征及其对沉积环境的指示[D]. 青岛:国家海洋局第一海洋研究所,2007.
DOU Y G. Grain size and element geochemical characteristics of sediments in the adjacent waters of the Yangtze Estuary and their implications for sedimentary environment[D]. Qingdao:The First Institute of Oceanography,State Oceanic Administration,2007.
[34] 胡荣梅. 升金湖沉积物微量元素分布特征及其环境指示意义[D]. 合肥:安徽大学,2021.
HU R M. Distribution characteristics of trace elements in sediments of Shengjin Lake and its environmental significance[D]. Hefei:Anhui University,2021.
[35] 庄海海,徐绍辉,高茂生,等. 胶州湾表层沉积物粒度特征及其沉积环境[J]. 海洋地质前沿,2018,34(9):24-31.
Zhuang H H,XU S H,GAO M S,Grain size distribution of surface sediments in Jiaozhou Bay and its environmental significance[J]. Marine Geological Frontiers, 2018,34(9):24-31.
[36] 贾建军,高抒,薛允传,等. 山东荣成月湖潮汐汊道系统的沉积物平衡问题:兼论人类活动的影响[J]. 地理科学, 2004, 24(1):83-88.
JIA J J,GAO S,XUE Y C,et al. Sediment budget of Yuehu Lagoon andimplications for human activities,Shandong Peninsula,China[J]. Scientia Geographical Sinica, 2004, 24(1):83-88.
[37] 王海根,王庆同,杨鹏,等. 庙岛群岛西部海域表层沉积物常量和稀土元素的分布特征及其物源指示意义[J]. 海洋通报, 2023,42(6):695-706.
WANG H G,WANG Q T,YANG P,et al. Distribution features of major elements and rare earth elements of the surface sediment in the western Miaodao archipelago and their provenance implications[J]. Marine Science Bulletin, 2023,42(6):695-706.
[38] 赵一阳,喻德科. 黄海沉积物地球化学分析[J]. 海洋与湖沼. 1983, 14(5):432-446.
ZHAO Y Y,YU D K. Geochemical analysis of the sediments of the Huanghai Sea[J]. Oceanologia et Limnologia Sinica, 1983, 14(5):432-446.
[39] 刘广虎,李军,陈道华,等. 台西南海域表层沉积物元素地球化学特征及其物源指示意义[J]. 海洋地质与第四纪地质, 2006, 26(5):61-68.
LIU G H,LI J,CHEN D H,et al. Geochemical of surface sediments in the Taixinan (southwestern Taiwan) Sea area in the northeastern South China Sea[J]. Marine Geology & Quaternary Geology, 2006, 26(5):61-68.
[40] KUMAR A,SINGHAL R K,ROUT S,et al. Spatial geochemical variation of major and trace elements in the marine sediments of Mumbai Harbor Bay[J]. Environmental Earth Sciences, 2013,70(7):3057-3066.
[41] GAO S,COLLINS M. Net sediment transport patterns inferred from grain-size trends,based upon definition of "transport vectors"[J]. Sedimentary Geology, 1994,90(1/2):47-60.
[42] 马英军,刘丛强. 化学风化作用中的微量元素地球化学: 以江西龙南黑云母花岗岩风化壳为例[J]. 科学通报, 1999, 44(22):2433-2437.
MA Y J,LIU C Q. Geochemistry of trace elements in chemical weathering: taking the weathering crust of biotite granite in Longnan,Jiangxi Province as an example[J]. Chinese Science Bulletin, 1999, 44(22):2433-2437.
[43] FAUST J C,SCHEIBER T,FABIAN K,et al. Geochemical characterisation of northern Norwegian fjord surface sediments:a baseline for further paleo-environmental investigations[J]. Continental Shelf Research, 2017,148:104-115.
[44] ASHAYERI N Y,KESHAVARZI B. Geochemical characteristics,partitioning,quantitative source apportionment,and ecological and health risk of heavy metals in sediments and water:a case study in Shadegan Wetland,Iran[J]. Marine Pollution Bulletin, 2019,149:110495.
[45] MA L,YANG Z G,LI L,et al. Source identification and risk assessment of heavy metal contaminations in urban soils of Changsha,a mine-impacted city in Southern China[J]. Environmental Science and Pollution Research, 2016,23(17):17058-17066.
[46] LEUNG H M,CHEUNG K C,AU C K,et al. An assessment of heavy metal contamination in the marine soil/sediment of Coles Bay area,Svalbard,and Greater Bay area,China:a baseline survey from a rapidly developing bay[J]. Environmental Science and Pollution Research, 2021, 28: 22170-22178.
[47] MISHRA S,KUMAR A,YADAV S,et al. Assessment of heavy metal contamination in water of Kali River using principle component and cluster analysis,India[J]. Sustainable Water Resources Management, 2018, 4: 573-581.
[48] 刘伟妍,韩秋影,唐玉琴,等. 营养盐富集和全球温度升高对海草的影响[J]. 生态学杂志, 2017,36(4):1087-1096.
LIU W Y,HAN Q Y,TANG Y Q,et al. Review of nutrient enrichment and global warming effect on seagrasses[J]. Chinese Journal of Ecology, 2017,36(4):1087-1096.
-