Distribution and sources of organic matter in surface sediment near the Hong Kong-Zhuhai-Macao Bridge
-
摘要:
为了研究港珠澳大桥附近沉积有机质(SOM)的分布及来源,于2021年5月在港珠澳大桥附近水域采集了58个表层沉积物样品, 并对它们的粒度、总有机碳(TOC)、总氮(TN)含量和有机碳同位素组成(δ13Corg)数据进行了分析,对沉积有机质的空间分布规律及来源进行了研究。结果显示,研究区TOC含量介于0.17%~1.19%,TOC/TN比值为8~18,δ13Corg值为−31‰~−22‰。综合利用TOC/TN比值与δ13Corg值将沉积有机质划分为3种类型:第1类为伶仃洋现代河口沉积有机质,来源于流域土壤、淡水藻类和海洋藻类,平均占比分别为61%、11%和28%;第2、3类沉积有机质来源于第四纪陆相地层,随着大桥海底隧道基坑开挖被搬运至其北侧附近和大桥中西部局部,呈斑块状分布。相关性分析表明,粒度是沉积有机质富集的主控因素,但对第1类沉积物中不同来源有机质的富集控制存在空间差异。大桥施工等人为活动导致表层沉积物中有机质类型由海相向陆源转变,建议未来更多地关注伶仃洋表层沉积物变化对海域生态环境产生的影响。
Abstract:To study the distribution and sources of sedimentary organic matter (SOM) near the Hong Kong-Zhuhai-Macao Bridge (HZMB), 58 surface sediment samples were collected in the waters of the HZMB in the Lingdingyang Bay (LDB) in May 2021. The grain size, total organic carbon (TOC), total nitrogen (TN) contents, and organic carbon stable isotope (δ13Corg) composition of the samples were analyzed. The spatial distribution and sources of SOM were studied. Results show that the TOC content ranged from 0.17% to 1.19%, TOC/TN ratio was between 8 and 18, and δ13Corg value was −31‰~−22‰. The SOM could be divided into three types based on the TOC/TN ratio and δ13Corg value. Type I SOM belonged to the recent sediment in LDB, derived from soil organic matter, freshwater algae, and marine algae in the proportion of 61%, 11%, and 28%, respectively. Type II and type III SOM were likely derived from the Quaternary terrestrial strata. As the foundation pit of the undersea tunnel for immersed tube of the bridge was excavated, types II and III SOM were transported to the northern side and the central-western parts of the bridge, showing a patchy distribution. Correlation analysis indicates that grain size was the controlling factor on the enrichment of SOM. However, there were spatial differences for SOM of different sources in Type I sediment. The construction of HZMB and other human activities have changed the SOM types from marine to terrestrial sources. It is suggested that the impact of surface sediment changes on the marine ecological environment in the LDB should be evaluated in future studies.
-
Key words:
- surface sediment /
- organic carbon /
- source /
- grain size /
- Hong Kong-Zhuhai-Macao Bridge
-
-
表 1 不同年份伶仃洋表层沉积物有机质TOC/TN比值与δ13Corg值
Table 1. TOC/TN ratios and δ13Corg values of surface sediments collected in different years in the Lingdingyang Bay
-
[1] HU J F,SUN X S,PENG P A,et al. Spatial and temporal variation of organic carbon in the northern South China Sea revealed by sedimentary records[J]. Quaternary International,2009,206:46-51. doi: 10.1016/j.quaint.2009.02.016
[2] 韩永强,夏嘉,谭靖千,等. 环雷州半岛近海表层沉积物有机碳分布及其控制因素分析[J]. 海洋科学,2020,44(3):93-103. doi: 10.11759/hykx20191012002
HAN Y Q,XIA J,TAN J Q,et al. Distribution and controlling factors of organic carbon in surface sediments of the coastal region surrounding Leizhou Peninsula[J]. Marine Sciences,2020,44(3):93-103. doi: 10.11759/hykx20191012002
[3] BOCK M J,MAYER L M. Mesodensity organo-clay associations in a near-shore sediment[J]. Marine Geology,2000,163:65-75. doi: 10.1016/S0025-3227(99)00105-X
[4] 商博文,吴云超,江志坚,等. 珠江口沉积物有机质特征、来源及其对碳存储的意义[J]. 热带海洋学报,2022,41(3):16-28. doi: 10.11978/2021142
SHANG B W,WU Y C,JIANG Z J,et al. Characteristics and sources of organic matter in sediments of the Pearl River Estuary:carbon storage implications[J]. Journal of Tropical Oceanography,2022,41(3):16-28. doi: 10.11978/2021142
[5] YUAN X Q,YANG Q S,LUO X X,et al. Distribution of grain size and organic elemental composition of the surficial sediments in Lingding Bay in the Pearl River Delta,China:a record of recent human activity[J]. Ocean and Coastal Management,2019,178:104849 doi: 10.1016/j.ocecoaman.2019.104849
[6] LI M G,YAN Y,HAN X J,et al. Physical model study for effects of the Hong Kong-Zhuhai-Macao Bridge on harbors and channels in Lingdingyang Bay of the Pearl River Estuary[J]. Ocean and Coastal Management,2019,177:76-86. doi: 10.1016/j.ocecoaman.2019.04.010
[7] 刘大召,李卓,陈仔豪,等. 基于高分1号遥感数据港珠澳大桥对珠江口海域悬浮泥沙分布的影响[J]. 广东海洋大学学报,2020,40(6):89-95.
LIU D Z,LI Z,CHEN Z H,et al. Influence of Hong Kong-Zhuhai-Macao Bridge on the distribution of suspended sediment in the Pearl River Estuary[J]. Journal of Guangdong Ocean University,2020,40(6):89-95.
[8] GUO J,MA C L,AI B,et al. Assessing the effects of the Hong Kong-Zhuhai-Macau Bridge on the total suspended solids in the Pearl River Estuary based on Landsat time series[J]. Journal of Geophysical Research-Oceans,2020,125(8):e2020JC016202. doi: 10.1029/2020JC016202
[9] 黄镇国,张伟强. 珠江三角洲河道近期冲淤特征初步分析[J]. 台湾海峡,2005,24(4):417-425.
HUANG Z G,ZHANG W Q. Preliminary study on the characteristics of scouring and sedimentation of river channels in recent decades in the Zhujiang Delta[J]. Journal of Oceanography in Taiwan Strait,2005,24(4):417-425.
[10] CHEN K L,DONG H Y,JIA L W,et al. Depocentre transfer in the Lingdingyang Estuary:interferences from natural and anthropogenic forcings[J]. Ocean and Coastal Management,2020,185:105064. doi: 10.1016/j.ocecoaman.2019.105064
[11] 时翠,甘华阳,马胜中,等. 晚更新世以来内伶仃洋河口湾的地层层序和沉积演化[J]. 海洋地质前沿,2015,31(10):8-18.
SHI C,GAN H Y,MA S Z,et al. Late quaternary evolution and sequence stratigraphy of the Lingdingyang Estuary in South China[J]. Marine Geology Frontiers,2015,31(10):8-18.
[12] 陶慧,王建华,陈慧娴,等. 伶仃洋ZK19孔全新统有机物δ13C和C/N值特征及东亚季风演变记录[J]. 中山大学学报(自然科学版),2019,58(3):1-12.
TAO H,WANG J H,CHEN H X,et al. Characteristics of δ13C and C/N in the Holocene organic material of borehole ZK19 in Lingdingyang Bay and the records of east Asian Monsoon variation[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2019,58(3):1-12.
[13] FOLK R L,ANDREWS P B,LEWIS D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand[ J]. New Zealand Journal of Geology and Geophysics,1970,13:937-968.
[14] XIA J,HAN Y Q,TAN J Q,et al. The characteristics of organic carbon in the offshore sediments surrounding the Leizhou Peninsula,China[J]. Frontiers in Earth Science,2022,10:648337. doi: 10.3389/feart.2022.648337
[15] 连忠廉,江志坚,黄小平,等. 珠江口表层沉积物有机碳不同浸提组分的空间分布特征[J]. 海洋环境科学,2019,38(3):391-398. doi: 10.12111/j.mes20190311
LIAN Z L,JINAG Z J,HUANG X P,et al. Distribution of labile organic carbon using different extract method in the surface sediments of Pearl River Estuary[J]. Marine Environmental Science,2019,38(3):391-398. doi: 10.12111/j.mes20190311
[16] MEYERS P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology,1994,144:289-302.
[17] MEYERS P A. Organic geochemical proxies of paleoceanographic,paleolimnologic,and paleoclimatic processes[J]. Organic Geochemistry,1997,27:213-250. doi: 10.1016/S0146-6380(97)00049-1
[18] LANB A L,WILSON G P,LENG M J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material[J]. Earth-Science Reviews,2006,75:29-57. doi: 10.1016/j.earscirev.2005.10.003
[19] YU F L,ZONG Y Q,LLOYD J M,et al. Bulk organic 13C and C/N as indicators for sediment sources in the Pearl River Delta and Estuary,southern China[J]. Estuarine,Coastal and Shelf Science,2010,87:618-630 doi: 10.1016/j.ecss.2010.02.018
[20] 郭威. 珠江口水体和沉积物有机碳的来源及其生物地球化学特征[D]. 广州:中国科学院广州地球化学研究所,2016.
GUO W. Source and biogeochemical properties of organic carbon in water column and sediments of Pearl River Estuary[D]. Guangzhou:Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,2016.
[21] 苑秀全. 珠江口伶仃洋现代沉积特征及其对人类活动的指示[D]. 上海:华东师范大学,2022.
YUAN X Q. Modern sedimentary characteristics of Lingding Bay,Pearl River Estuary and its implications for human activities[D]. Shanghai:East China Normal University,2022.
[22] WEI X,CAI S Q,ZHAN W K,et al. Changes in the distribution of surface sediment in Pearl River Estuary,1975-2017,largely due to human activity[J]. Continental Shelf Research,2021,228:104538. doi: 10.1016/j.csr.2021.104538
[23] 时硕,吉俊熹,王张华. 珠江三角洲全新世沉积物C/N和δ13C变化及对甘蔗种植业的指示[J]. 第四纪研究,2022,42(2):397-411.
SHI S,JI J X,WANG Z H. Holocene variability of bulk organic C/N and δ13C and implications for the sugarcane cultivation[J] Quaternary Sciences,2022,42(2):397-411.
[24] ZHANG G,CHENG W C,CHEN L H,et al. Transport of riverine sediment from different outlets in the Pearl River Estuary during the wet season[J]. Marine Geology,2019,415:105957. doi: 10.1016/j.margeo.2019.06.002
[25] ZENG W Z,ZHENG Z Y,ZHANG C P,et al. Sedimentary records of the dramatic environmental changes in the Lingdingyang Bay of the Pearl River Estuary in southern China[J]. Ocean Science Journal,2023,58:12. doi: 10.1007/s12601-022-00099-3
[26] 马玉,张伟杰,李锐祥,等. El Niño影响下珠江口及其邻近海域营养盐时空变化及其生态效应[J]. 环境科学学报,2023,43(5):36-46.
MA Y,ZHANG W J,LI R X,et al. The spatiotemporal variations of nutrients and its ecological response in the Pearl River Estuary and its adjacent sea areas under the influence of El Niño[J]. Acta Scientiae Circumstantiae,2023,43(5):36-46.
[27] YUE X B,XIE Y L,ZHANG H G,et al. Study on geotechnical characteristics of marine soil at Hong Kong-Zhuhai-Macao Tunnel[J]. Marine Georesources & Geotechnology,2019,38(6):647-658.
[28] 施玉珍,陈树鸿 ,赵辉,等. 珠江口海域沉积物-水界面营养盐释放特征研究[J]. 矿物岩石地球化学通报,2020,39(3):517-524.
SHI Y Z,CHEN S H,ZHAO H,et al. Release characteristics of nutrients at the sediment-water interface of the Pearl River Estuary[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2020,39(3):517-524.
[29] 赵春宇,谭烨辉,柯志新,等. 珠江口赤潮爆发过程中水体及表层沉积物间隙水中营养盐与叶绿素的变化特征[J]. 海洋通报,2016,35(4):457-466. doi: 10.11840/j.issn.1001-6392.2016.04.014
ZHAO C Y,TAN Y H,KE Z X,et al. Distribution characteristics of Chlorophyll and the nutrient release flux in the sediments during the algal blooms[J]. Marine Science Bulletin,2016,35(4):457-466. doi: 10.11840/j.issn.1001-6392.2016.04.014
-