广西珍珠湾红树林地上生物量估算研究

刘文良, 法鸿洁, 巴音吉, 杨源祯, 刘京强. 广西珍珠湾红树林地上生物量估算研究[J]. 海洋地质前沿, 2024, 40(11): 35-45. doi: 10.16028/j.1009-2722.2024.160
引用本文: 刘文良, 法鸿洁, 巴音吉, 杨源祯, 刘京强. 广西珍珠湾红树林地上生物量估算研究[J]. 海洋地质前沿, 2024, 40(11): 35-45. doi: 10.16028/j.1009-2722.2024.160
LIU Wenliang, FA Hongjie, BA Yinji, YANG Yuanzhen, LIU Jingqiang. Estimation of the aboveground biomass of mangrove forest in Zhenzhu Bay, Guangxi[J]. Marine Geology Frontiers, 2024, 40(11): 35-45. doi: 10.16028/j.1009-2722.2024.160
Citation: LIU Wenliang, FA Hongjie, BA Yinji, YANG Yuanzhen, LIU Jingqiang. Estimation of the aboveground biomass of mangrove forest in Zhenzhu Bay, Guangxi[J]. Marine Geology Frontiers, 2024, 40(11): 35-45. doi: 10.16028/j.1009-2722.2024.160

广西珍珠湾红树林地上生物量估算研究

  • 基金项目: 中国地质调查局项目“广西北仑河口—茅尾海一带重要红树林湿地资源调查”(DD20220875),“黄河三角洲1:25万地表基质调查”(DD20242043)
详细信息
    作者简介: 刘文良(1990—),男,硕士,工程师,主要从事生态环境遥感等方面的研究工作. E-mail:813357425@qq.com
    通讯作者: 杨源祯(1990—),男,硕士,工程师,主要从事海岸带地质调查、红树林湿地调查方面的研究工作. E-mail:452998432@qq.com
  • 中图分类号: P731;S771.8

Estimation of the aboveground biomass of mangrove forest in Zhenzhu Bay, Guangxi

More Information
  • 红树林湿地是生产力最高的生态系统之一,是重要的蓝色碳汇,快速准确地估算红树林的地上生物量(AGB)具有重要意义。结合野外样地实测AGB数据,提取Sentinel-1/2卫星的后向散射系数、波段反射率、植被指数和纹理特征等数据,利用多元逐步回归和偏最小二乘回归(PLSR)的方法对比不同变量组合建模的效果,并基于最优模型对珍珠湾区域红树林AGB进行估算。结果表明:①利用连续PLSR算法筛选的多类型特征组合模型效果最好,决定系数R2为0.88,均方根误差RMSE为16.07 t/hm2,其中,Sentinel-2所有波段的第2主成分在3×3窗口的相关纹理变量(Corp2_3)对模型的贡献率最大;②珍珠湾片区红树林AGB总量和均值分别约为45 956.41 t和48.06 t/hm2,在AGB预测值空间分布上大体呈现中部、东部高,西部稍低的特点,高值区主要分布在养殖虾塘、蚝排等人类活动较为频繁的场所附近,低值区主要分布于半滩涂区域或幼苗较多的位置;③联合合成孔径雷达(SAR)和光学数据能有效提高AGB的反演精度,仅使用Sentinel-1后向散射系数及衍生因子不适用于反演生物量,单纯采用纹理变量的建模效果优于波段反射率和植被指数。

  • 加载中
  • 图 1  研究区位置及调查样地分布示意图

    Figure 1. 

    图 2  研究区红树林分布

    Figure 2. 

    图 3  不同模型预测值与实测AGB散点图

    Figure 3. 

    图 4  主成分累计方差贡献率与自变量系数柱状图

    Figure 4. 

    图 5  排名前40位的特征变量及其投影重要性柱状图

    Figure 5. 

    图 6  研究区AGB空间分布格局

    Figure 6. 

    表 1  不同红树植物异速生长方程

    Table 1.  The allometric growth equations for different mangrove species

    树种 异速生长方程 单位 R2 引用文献
    白骨壤 Wa=−222.424+76.123D2×H g 0.958 [26]
    桐花树 Wa=3.1253×CD2×H kg 0.99 [27]
    秋茄 Wa=−295.595+56.976D2 g 0.983 [26]
    木榄 Wa=0.186DBH2.31 kg 0.99 [28]
    注:表中Wa为地上生物量,D为基径,DBH为胸径,CD为冠幅,H为株高,R2为异速生长方程的决定系数。
    下载: 导出CSV

    表 2  选用的植被指数和计算公式

    Table 2.  Vegetation index and the equations for the calculation

    植被指数 公式
    比值植被指数(RVI) RVI=ρnir/ρred
    差值植被指数(DVI) DVI=ρnirρred
    权重植被指数(WDVI) WDVI=ρnir–0.5ρred
    红外植被指数(IPVI) IPVI=ρnir/(ρnir+ρred
    垂直植被指数(PVI) PVI=sin(45°)ρnir–cos(45°)ρred
    归一化植被指数(NDVI) NDVI=(ρnirρred)/(ρnir+ρred
    绿波归一化植被指数(GNDVI) GNDVI=(ρnirρgreen)/(ρnir+ρgreen
    土壤调节植被指数(SAVI) SAVI=1.5(ρnirρred)/(ρnir+ρred+0.5)
    转化土壤调节植被指数(TSAVI) TSAVI=0.5(ρnir–0.5ρred–0.5)/(0.5ρnir+ρred–0.15)
    二次修正型土壤调节植被指数(MSAVI2) MSAVI2=0.5[2(ρnir+1)–]
    大气阻抗植被指数(ARVI) ARVI=ρnir–(2ρredρblue)/ρnir+(2ρred+ρblue
    陆地叶绿素指数(MTCI) MTCI=(ρre6ρre5)/(ρre5ρnir
    哨兵2号红边位置指数(S2REP) S2REP=705+35((ρnirρre7)/2–ρre5)(ρre6ρre5
    注:ρnirρredρgreenρblueρre6ρre5ρre7分别为近红外波段、红波段、绿波段、蓝波段、植被红边波段6、植被红边波段5和植被红边波段7的反射率。
    下载: 导出CSV

    表 3  红树林AGB建模方案

    Table 3.  The AGB modeling scheme for mangrove

    模型 建模方案 特征数量 特征类型
    多元逐步回归+波段反射率 12 Sentinel-2A的B1—B12波段
    多元逐步回归+后向散射系数及衍生变量 4 VH、VV、VV+VH、VV/VH
    多元逐步回归+植被指数 13 表2中的各类植被指数
    多元逐步回归+纹理特征 96 Sentinel-1的48个纹理变量,Sentinel-2A的48个纹理变量
    多元逐步回归+所有变量 125 所有变量
    PLSR+所有变量 125 所有变量
    下载: 导出CSV

    表 4  红树林样地AGB分布情况

    Table 4.  AGB distribution in the sample plots

    AGB级别/(t/hm2样地数AGB/(t/hm2占比/%
    ≤401311.45、11.52、11.88、13.63、16.57、19.97、23.85、25.02、26.41、26.54、27.99、36.65、39.9754.17
    40~80942.14、43.45、45.64、48.12、56.42、63.84、65.86、72.10、76.6937.50
    ≥802109.57、157.028.33
    下载: 导出CSV

    表 5  各方案模型构建情况

    Table 5.  Modeling for different approaches

    模型 建模方案 筛选特征 R2 R2adj
    多元逐步回归+波段反射率 B2、B3 0.35 0.29
    多元逐步回归+后向散射系数及衍生变量 无显著特征
    多元逐步回归+植被指数 S2REP 0.28 0.25
    多元逐步回归+纹理特征 MP2_7, Corp2_3, CorVV5 0.58 0.52
    多元逐步回归+所有变量 CorVV3, Corp2_3, S2REP, B2 0.72 0.66
    PLSR+所有变量 Corp2_3, SMVH3, B2, CorVV3, S2REP, SMP1_7 0.88 0.84
    注:B2、B3为Sentinel-2A影像第2、3波段的反射率;S2REP为哨兵2号数据红边位置指数;MP2_7为Sentinel-2A第2主成分PC2在7×7窗口的纹理变量均值;Corp2_3为Sentinel-2A第2主成分PC2在3×3窗口的纹理变量相关性;CorVV5为VV极化方式在5×5窗口的纹理变量相关性;CorVV3为VV极化方式在3×3窗口的纹理变量相关性;SMVH3为VH极化方式在3×3窗口的纹理特征变量二阶矩;SMP1_7为Sentinel-2A第1主成分PC1在7×7窗口的纹理变量二阶矩。
    下载: 导出CSV
  • [1]

    范航清. 红树林:海岸环保卫士[M]. 南宁:广西科学技术出版社,2000.

    FAN Hangqing. Mangroves:Coastal Environmental Protectors [M]. Nanning:Guangxi Science and Technology Press,2000.

    [2]

    李炎,陈一宁. 基于能量耗散视角的红树林海岸沉积地貌学[J]. 海洋地质与第四纪地质,2023,43(6):25-33.

    LI Yan,CHEN Yining. Sedimentary geomorphology of mangrove coasts in perspective of energy dissipation[J]. Marine Geology & Quaternary Geology,2023,43(6):25-33.

    [3]

    张越,朱虹霓,王一清,等. 海南文昌清澜湾红树林潮沟地下水溶解碳通量的潮汐动态[J]. 海洋地质前沿,2024,40(5):27-39.

    ZHANG Yue,ZHU Hongni,WANG Yiqing,et al. Tidal dynamics of dissolved carbon flux in ground water of a mangrove tidal creek in Qinglan Bay,Wenchang,Hainan[J]. Marine Geology Frontiers,2024,40(5):27-39.

    [4]

    KOMIYAMA A,ONG J E,POUNGPARN S. Allometry,biomass,and productivity of mangrove forests:a review[J]. Aquatic Botany,2008,89(2):128-137. doi: 10.1016/j.aquabot.2007.12.006

    [5]

    赵天舸,于瑞宏,张志磊,等. 湿地植被地上生物量遥感估算方法研究进展[J]. 生态学杂志,2016,35(7):1936-1946.

    ZHAO Tianke,YU Ruihong,ZHANG Zhilei,et al. Estimation of wetland vegetation aboveground biomass based on remote sensing data:a review[J]. Chinese Journal of Ecology,2016,35(7):1936-1946.

    [6]

    曹庆先,徐大平,鞠洪波. 北部湾沿海5种红树林群落生物量的遥感估算[J]. 广西科学,2011,18(3):289-293. doi: 10.3969/j.issn.1005-9164.2011.03.027

    CAO Qingxian,XU Daping,JU Hongbo. Biomass estimation of five kinds of mangrove community in Beibu Gulf based on remote sensing[J]. Guangxi Sciences,2011,18(3):289-293 doi: 10.3969/j.issn.1005-9164.2011.03.027

    [7]

    DUC L N,TRONG C N,S Y H L,et al. Mangrove mapping and above-ground biomass change detection using satellite images in coastal areas of Thai Binh Province,Vietnam[J]. Forest and Society,2019,3(2):248-248. doi: 10.24259/fs.v3i2.7326

    [8]

    BALOLOY A ,BLANCO C A,CANDIDO G C,et al. Estimation of mangrove forest aboveground biomass using multispectral bands,vegetation indices and biophysical variables derived from optical satellite imageries:rapideye,planetscope and Sentinel-2[J]. ISPRS Annals of Photogrammetry,Remote Sensing and Spatial Information Sciences,2018,4(3),29-36.

    [9]

    ZHU Y H,LIU K,LIU L,et al. Retrieval of mangrove aboveground biomass at the individual species level with WorldView-2 images[J]. Remote Sensing,2015,7(9):12192-12214 doi: 10.3390/rs70912192

    [10]

    HIRATA Y,TABUCHI R,PATANAPONPAIBOON P,et al. Estimation of aboveground biomass in mangrove forests using high-resolution satellite data[J]. Journal of Forest Research,2014,19(1):34-41. doi: 10.1007/s10310-013-0402-5

    [11]

    KARIMON M N,ALI Y H,MARIANNE L L V,et al. Modeling and mapping aboveground biomass of the restored mangroves using ALOS-2 PALSAR-2 in East Kalimantan,Indonesia[J]. International Journal of Applied Earth Observations and Geoinformation,2020,91(C):102158.

    [12]

    NAVARRO A J,ALGEET N,FERNÁNDEZ-LANDA A,et al. Integration of UAV,Sentinel-1,and Sentinel-2 data for mangrove plantation aboveground biomass monitoring in Senegal[J]. Remote Sensing,2019,11(1):77-100. doi: 10.3390/rs11010077

    [13]

    WANG D Z,WAN B,LIU J,et al. Estimating aboveground biomass of the mangrove forests on northeast Hainan Island in China using an upscaling method from field plots,UAV-LiDAR data and Sentinel-2 imagery[J]. International Journal of Applied Earth Observation and Geoinformation,2020,85(C):101986-101986.

    [14]

    吴培强,任广波,张程飞,等. 无人机多光谱和LiDAR的红树林精细识别与生物量估算[J]. 遥感学报,2022,26(6):1169-1181.

    WU Peiqiang,REN Guangbo,ZHANG Chengfei,et al. Fine identification and biomass estimation of mangroves based on UAV multispectral and LiDAR[J]. National Remote Sensing Bulletin,2022,26(6):1169-1181.

    [15]

    罗谨璇,田义超,张强,等. 利用无人机激光雷达估算红树林地上生物量[J]. 海洋学报,2023,45(8):108-119.

    LUO Jinxuan,TIAN Yichao,ZHANG Qiang,et al. Estimation of aboveground biomass of mangrove forest using UAV-LiDAR[J]. Haiyang Xuebao,2023,45(8):108-119,

    [16]

    TIAN Y C,HUANG H,ZHOU G Q,et al. Aboveground mangrove biomass estimation in Beibu Gulf using machine learning and UAV remote sensing[J]. Science of the Total Environment,2021,781:146816. doi: 10.1016/j.scitotenv.2021.146816

    [17]

    SIMARD M,FATOYINBO L,SMETANKA C,et al. Mangrove canopy height globally related to precipitation,temperature and cyclone frequency[J]. Nature Geoscience,2019,12(1):40-45. doi: 10.1038/s41561-018-0279-1

    [18]

    闻馨,刘凯,曹晶晶,等. 基于森林冠层高度和异速生长方程的中国红树林地上生物量估算[J]. 热带地理,2023,43(1):1-11.

    WEN Xin,LIU Kai,CAO Jingjing,et al. Estimation of mangrove aboveground biomass in China using forest canopy height through an allometric equation[J]. Tropical Geography,2023,43(1):1-11.

    [19]

    周蔚,吕延杰,林起楠. 联合光学和合成孔径雷达数据的太平湖森林地上生物量反演研究[J]. 西北林学院学报,2023,38(2):193-200. doi: 10.3969/j.issn.1001-7461.2023.02.27

    ZHOU Wei,LYU Yanjie,LIN Qinan. Retrieval of aboveground biomass in Taiping Lake Forests using optical and SAR dataset[J]. Journal of Northwest Forestry University,2023,38(2):193-200. doi: 10.3969/j.issn.1001-7461.2023.02.27

    [20]

    潘磊,孙玉军,王轶夫,等. 基于Sentinel-1和Sentinel-2数据的杉木林地上生物量估算[J]. 南京林业大学学报(自然科学版),2020,44(3):149-156.

    PAN Lei,SUN Yujun,WANG Yifu,et al. Estimation of aboveground biomass in a Chinese fir (Cunninghamia lanceolata) forest combining data of Sentinel-1 and Sentinel-2[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2020,44(3):149-156.

    [21]

    张少伟,惠刚盈,韩宗涛,等. 基于光学多光谱与SAR遥感特征快速优化的大区域森林地上生物量估测[J]. 遥感技术与应用,2019,34(5):925-938.

    ZHANG Shaowei,HUI Gangying,Han Zongtao,et al. Estimation of large-scale forest aboveground biomass based on fast optimizing remotely sensed features from optical multi-spectral and SAR data[J]. Remote Sensing Technology and Application,2019,34(5):925-938.

    [22]

    PHAM D T,YOKOYA N,XIA J,et al. Comparison of machine learning methods for estimating mangrove above-ground biomass using multiple source remote sensing data in the Red River Delta Biosphere Reserve,Vietnam[J]. Remote Sensing,2020,12(8):1334-1334. doi: 10.3390/rs12081334

    [23]

    HUANG Z M,TIAN Y C,ZHANG Q,et al. Estimating mangrove above-ground biomass at Maowei Sea,Beibu Gulf of China using machine learning algorithm with Sentinel-1 and Sentinel-2 data[J]. Geocarto International,2022,37:15778-15805. doi: 10.1080/10106049.2022.2102226

    [24]

    谭雨欣,田义超,黄卓梅,等. 北部湾茅尾海无瓣海桑红树林地上生物量反演:基于XGBoost机器学习算法[J]. 生态学报,2023,43(11):4674-4688.

    TAN Yuxin,TIAN Yichao,HUANG Zhuomei,et al. Aboveground biomass of Sonneratia apetala mangroves in Mawei Sea of Beibu Gulf based on XGBoost machine learning algorithm[J]. Acta Ecologica Sinica,2023,43(11):4674-4688.

    [25]

    胡刚,黎洁,覃盈盈,等. 广西北仑河口红树植物种群结构与动态特征[J]. 生态学报,2018,38(9):3022-3034.

    HU Gang,LI Jie,QIN Yingying,et al. Population structure and dynamics of mangrove species in Beilun Estuary,Guangxi,southern China[J]. Acta Ecologica Sinica,2018,38(9):3022-3034.

    [26]

    何琴飞,郑威,黄小荣,等. 广西钦州湾红树林碳储量与分配特征[J]. 中南林业科技大学学报,2017,37(11):121-126.

    HE Qinfei,ZHENG Wei,HUANG Xiaorong,et al. Carbon storage and distribution of mangroves at Qinzhou Bay[J]. Journal of Central South University of Forestry & Technology,2017,37(11):121-126.

    [27]

    FU W G,WU Y Y. Estimation of aboveground biomass of different mangrove trees based on canopy diameter and tree height[J]. Procedia Environmental Sciences,2011,10(C):2189-2194.

    [28]

    CLOUGH B F,SCOTT K. Allometric relationships for estimating aboveground biomass in six mangrove species[J]. Forest Ecology and Management,1989,27(2):117-127. doi: 10.1016/0378-1127(89)90034-0

    [29]

    叶子林,周普良,林辉,等. 纹理特征对森林蓄积量反演模型的影响[J]. 中南林业科技大学学报,2020,40(9):49-56.

    YE Zilin,ZHOU Puliang,LIN Hui,et al. Texture features influences on inversion model of forest stock volume[J]. Journal of Central South University of Forestry & Technology,2020,40(9):49-56.

    [30]

    ALONGI D M. Carbon cycling and storage in mangrove forests[J]. Annual Review of Marine Science,2014,6:195-219 doi: 10.1146/annurev-marine-010213-135020

    [31]

    ZHAO P O,LU D S,WANG G X,et al. Examining spectral reflectance saturation in Landsat imagery and corresponding solutions to improve forest aboveground biomass estimation[J]. Remote Sensing,2016,8(6):469. doi: 10.3390/rs8060469

    [32]

    LU D S. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon[J]. International Journal of Remote Sensing,2005,26(12):2509-2525. doi: 10.1080/01431160500142145

    [33]

    KUPLICH M T,CURRAN J P,ATKINSON M P. Relating SAR image texture to the biomass of regenerating tropical forests[J]. International Journal of Remote Sensing,2011,26(21):4829-4854.

  • 加载中

(6)

(5)

计量
  • 文章访问数:  185
  • PDF下载数:  15
  • 施引文献:  0
出版历程
收稿日期:  2024-07-12
刊出日期:  2024-11-28

目录