-
摘要:
红树林湿地是生产力最高的生态系统之一,是重要的蓝色碳汇,快速准确地估算红树林的地上生物量(AGB)具有重要意义。结合野外样地实测AGB数据,提取Sentinel-1/2卫星的后向散射系数、波段反射率、植被指数和纹理特征等数据,利用多元逐步回归和偏最小二乘回归(PLSR)的方法对比不同变量组合建模的效果,并基于最优模型对珍珠湾区域红树林AGB进行估算。结果表明:①利用连续PLSR算法筛选的多类型特征组合模型效果最好,决定系数R2为0.88,均方根误差RMSE为16.07 t/hm2,其中,Sentinel-2所有波段的第2主成分在3×3窗口的相关纹理变量(Corp2_3)对模型的贡献率最大;②珍珠湾片区红树林AGB总量和均值分别约为45 956.41 t和48.06 t/hm2,在AGB预测值空间分布上大体呈现中部、东部高,西部稍低的特点,高值区主要分布在养殖虾塘、蚝排等人类活动较为频繁的场所附近,低值区主要分布于半滩涂区域或幼苗较多的位置;③联合合成孔径雷达(SAR)和光学数据能有效提高AGB的反演精度,仅使用Sentinel-1后向散射系数及衍生因子不适用于反演生物量,单纯采用纹理变量的建模效果优于波段反射率和植被指数。
Abstract:Mangrove wetlands are one of the most productive ecosystems and important blue carbon sinks. Accurate estimation of aboveground biomass (AGB) of mangroves holds great significance. By integrating field-measured AGB data with Sentinel-1/2 satellite backscatter coefficient, reflectance, vegetation index, and texture feature data, we employed a stepwise multiple regression and partial least squares regression (PLSR) approach to compare the modeling results of different variable combinations and estimated the AGB of mangroves in the Zhenzhu Bay area, Guangxi, SW China, based on the optimal model. Results indicate that: ① The multi-type feature combination model selected by the continuous PLSR algorithm showed the best performance (the coefficient of determination R2=0.88; the root mean square error RMSE=16.07 t/hm2). Among them, the Corp2_3 (the texture variable correlation of the second principal component PC2 of Sentinel-2A in a 3×3 window) contributed the greatest to the modeling; ② The total and average AGB of mangroves in the Zhenzhu Bay area were approximately 45 956.41 t and 48.06 t/hm2, respectively. In the spatial distribution of the predicted AGB value, it shows an overall higher level in the central and eastern parts of the area and a slightly lower level in the western part. The high-value areas covered mainly those near human activities such as shrimp farming ponds and oyster rafts, while low-value areas mainly in semi-tidal wetlands or areas with more seedlings; ③ The combination of synthetic aperture radar (SAR) and optical data could effectively enhance the accuracy of AGB inversion. Using just Sentinel-1 backscatter coefficient and derived factors is not feasible to invert biomass, and modeling with texture variables could produce better results than those with reflectance and vegetation index.
-
-
表 1 不同红树植物异速生长方程
Table 1. The allometric growth equations for different mangrove species
表 2 选用的植被指数和计算公式
Table 2. Vegetation index and the equations for the calculation
植被指数 公式 比值植被指数(RVI) RVI=ρnir/ρred 差值植被指数(DVI) DVI=ρnir–ρred 权重植被指数(WDVI) WDVI=ρnir–0.5ρred 红外植被指数(IPVI) IPVI=ρnir/(ρnir+ρred) 垂直植被指数(PVI) PVI=sin(45°)ρnir–cos(45°)ρred 归一化植被指数(NDVI) NDVI=(ρnir–ρred)/(ρnir+ρred) 绿波归一化植被指数(GNDVI) GNDVI=(ρnir–ρgreen)/(ρnir+ρgreen) 土壤调节植被指数(SAVI) SAVI=1.5(ρnir–ρred)/(ρnir+ρred+0.5) 转化土壤调节植被指数(TSAVI) TSAVI=0.5(ρnir–0.5ρred–0.5)/(0.5ρnir+ρred–0.15) 二次修正型土壤调节植被指数(MSAVI2) MSAVI2=0.5[2(ρnir+1)– ]
大气阻抗植被指数(ARVI) ARVI=ρnir–(2ρred–ρblue)/ρnir+(2ρred+ρblue) 陆地叶绿素指数(MTCI) MTCI=(ρre6–ρre5)/(ρre5–ρnir) 哨兵2号红边位置指数(S2REP) S2REP=705+35((ρnir–ρre7)/2–ρre5)(ρre6–ρre5) 注:ρnir、ρred、ρgreen、ρblue、ρre6、ρre5、ρre7分别为近红外波段、红波段、绿波段、蓝波段、植被红边波段6、植被红边波段5和植被红边波段7的反射率。 表 3 红树林AGB建模方案
Table 3. The AGB modeling scheme for mangrove
模型 建模方案 特征数量 特征类型 ① 多元逐步回归+波段反射率 12 Sentinel-2A的B1—B12波段 ② 多元逐步回归+后向散射系数及衍生变量 4 VH、VV、VV+VH、VV/VH ③ 多元逐步回归+植被指数 13 表2中的各类植被指数 ④ 多元逐步回归+纹理特征 96 Sentinel-1的48个纹理变量,Sentinel-2A的48个纹理变量 ⑤ 多元逐步回归+所有变量 125 所有变量 ⑥ PLSR+所有变量 125 所有变量 表 4 红树林样地AGB分布情况
Table 4. AGB distribution in the sample plots
AGB级别/(t/hm2) 样地数 AGB/(t/hm2) 占比/% ≤40 13 11.45、11.52、11.88、13.63、16.57、19.97、23.85、25.02、26.41、26.54、27.99、36.65、39.97 54.17 40~80 9 42.14、43.45、45.64、48.12、56.42、63.84、65.86、72.10、76.69 37.50 ≥80 2 109.57、157.02 8.33 表 5 各方案模型构建情况
Table 5. Modeling for different approaches
模型 建模方案 筛选特征 R2 R2adj ① 多元逐步回归+波段反射率 B2、B3 0.35 0.29 ② 多元逐步回归+后向散射系数及衍生变量 无显著特征 ③ 多元逐步回归+植被指数 S2REP 0.28 0.25 ④ 多元逐步回归+纹理特征 MP2_7, Corp2_3, CorVV5 0.58 0.52 ⑤ 多元逐步回归+所有变量 CorVV3, Corp2_3, S2REP, B2 0.72 0.66 ⑥ PLSR+所有变量 Corp2_3, SMVH3, B2, CorVV3, S2REP, SMP1_7 0.88 0.84 注:B2、B3为Sentinel-2A影像第2、3波段的反射率;S2REP为哨兵2号数据红边位置指数;MP2_7为Sentinel-2A第2主成分PC2在7×7窗口的纹理变量均值;Corp2_3为Sentinel-2A第2主成分PC2在3×3窗口的纹理变量相关性;CorVV5为VV极化方式在5×5窗口的纹理变量相关性;CorVV3为VV极化方式在3×3窗口的纹理变量相关性;SMVH3为VH极化方式在3×3窗口的纹理特征变量二阶矩;SMP1_7为Sentinel-2A第1主成分PC1在7×7窗口的纹理变量二阶矩。 -
[1] 范航清. 红树林:海岸环保卫士[M]. 南宁:广西科学技术出版社,2000.
FAN Hangqing. Mangroves:Coastal Environmental Protectors [M]. Nanning:Guangxi Science and Technology Press,2000.
[2] 李炎,陈一宁. 基于能量耗散视角的红树林海岸沉积地貌学[J]. 海洋地质与第四纪地质,2023,43(6):25-33.
LI Yan,CHEN Yining. Sedimentary geomorphology of mangrove coasts in perspective of energy dissipation[J]. Marine Geology & Quaternary Geology,2023,43(6):25-33.
[3] 张越,朱虹霓,王一清,等. 海南文昌清澜湾红树林潮沟地下水溶解碳通量的潮汐动态[J]. 海洋地质前沿,2024,40(5):27-39.
ZHANG Yue,ZHU Hongni,WANG Yiqing,et al. Tidal dynamics of dissolved carbon flux in ground water of a mangrove tidal creek in Qinglan Bay,Wenchang,Hainan[J]. Marine Geology Frontiers,2024,40(5):27-39.
[4] KOMIYAMA A,ONG J E,POUNGPARN S. Allometry,biomass,and productivity of mangrove forests:a review[J]. Aquatic Botany,2008,89(2):128-137. doi: 10.1016/j.aquabot.2007.12.006
[5] 赵天舸,于瑞宏,张志磊,等. 湿地植被地上生物量遥感估算方法研究进展[J]. 生态学杂志,2016,35(7):1936-1946.
ZHAO Tianke,YU Ruihong,ZHANG Zhilei,et al. Estimation of wetland vegetation aboveground biomass based on remote sensing data:a review[J]. Chinese Journal of Ecology,2016,35(7):1936-1946.
[6] 曹庆先,徐大平,鞠洪波. 北部湾沿海5种红树林群落生物量的遥感估算[J]. 广西科学,2011,18(3):289-293. doi: 10.3969/j.issn.1005-9164.2011.03.027
CAO Qingxian,XU Daping,JU Hongbo. Biomass estimation of five kinds of mangrove community in Beibu Gulf based on remote sensing[J]. Guangxi Sciences,2011,18(3):289-293 doi: 10.3969/j.issn.1005-9164.2011.03.027
[7] DUC L N,TRONG C N,S Y H L,et al. Mangrove mapping and above-ground biomass change detection using satellite images in coastal areas of Thai Binh Province,Vietnam[J]. Forest and Society,2019,3(2):248-248. doi: 10.24259/fs.v3i2.7326
[8] BALOLOY A ,BLANCO C A,CANDIDO G C,et al. Estimation of mangrove forest aboveground biomass using multispectral bands,vegetation indices and biophysical variables derived from optical satellite imageries:rapideye,planetscope and Sentinel-2[J]. ISPRS Annals of Photogrammetry,Remote Sensing and Spatial Information Sciences,2018,4(3),29-36.
[9] ZHU Y H,LIU K,LIU L,et al. Retrieval of mangrove aboveground biomass at the individual species level with WorldView-2 images[J]. Remote Sensing,2015,7(9):12192-12214 doi: 10.3390/rs70912192
[10] HIRATA Y,TABUCHI R,PATANAPONPAIBOON P,et al. Estimation of aboveground biomass in mangrove forests using high-resolution satellite data[J]. Journal of Forest Research,2014,19(1):34-41. doi: 10.1007/s10310-013-0402-5
[11] KARIMON M N,ALI Y H,MARIANNE L L V,et al. Modeling and mapping aboveground biomass of the restored mangroves using ALOS-2 PALSAR-2 in East Kalimantan,Indonesia[J]. International Journal of Applied Earth Observations and Geoinformation,2020,91(C):102158.
[12] NAVARRO A J,ALGEET N,FERNÁNDEZ-LANDA A,et al. Integration of UAV,Sentinel-1,and Sentinel-2 data for mangrove plantation aboveground biomass monitoring in Senegal[J]. Remote Sensing,2019,11(1):77-100. doi: 10.3390/rs11010077
[13] WANG D Z,WAN B,LIU J,et al. Estimating aboveground biomass of the mangrove forests on northeast Hainan Island in China using an upscaling method from field plots,UAV-LiDAR data and Sentinel-2 imagery[J]. International Journal of Applied Earth Observation and Geoinformation,2020,85(C):101986-101986.
[14] 吴培强,任广波,张程飞,等. 无人机多光谱和LiDAR的红树林精细识别与生物量估算[J]. 遥感学报,2022,26(6):1169-1181.
WU Peiqiang,REN Guangbo,ZHANG Chengfei,et al. Fine identification and biomass estimation of mangroves based on UAV multispectral and LiDAR[J]. National Remote Sensing Bulletin,2022,26(6):1169-1181.
[15] 罗谨璇,田义超,张强,等. 利用无人机激光雷达估算红树林地上生物量[J]. 海洋学报,2023,45(8):108-119.
LUO Jinxuan,TIAN Yichao,ZHANG Qiang,et al. Estimation of aboveground biomass of mangrove forest using UAV-LiDAR[J]. Haiyang Xuebao,2023,45(8):108-119,
[16] TIAN Y C,HUANG H,ZHOU G Q,et al. Aboveground mangrove biomass estimation in Beibu Gulf using machine learning and UAV remote sensing[J]. Science of the Total Environment,2021,781:146816. doi: 10.1016/j.scitotenv.2021.146816
[17] SIMARD M,FATOYINBO L,SMETANKA C,et al. Mangrove canopy height globally related to precipitation,temperature and cyclone frequency[J]. Nature Geoscience,2019,12(1):40-45. doi: 10.1038/s41561-018-0279-1
[18] 闻馨,刘凯,曹晶晶,等. 基于森林冠层高度和异速生长方程的中国红树林地上生物量估算[J]. 热带地理,2023,43(1):1-11.
WEN Xin,LIU Kai,CAO Jingjing,et al. Estimation of mangrove aboveground biomass in China using forest canopy height through an allometric equation[J]. Tropical Geography,2023,43(1):1-11.
[19] 周蔚,吕延杰,林起楠. 联合光学和合成孔径雷达数据的太平湖森林地上生物量反演研究[J]. 西北林学院学报,2023,38(2):193-200. doi: 10.3969/j.issn.1001-7461.2023.02.27
ZHOU Wei,LYU Yanjie,LIN Qinan. Retrieval of aboveground biomass in Taiping Lake Forests using optical and SAR dataset[J]. Journal of Northwest Forestry University,2023,38(2):193-200. doi: 10.3969/j.issn.1001-7461.2023.02.27
[20] 潘磊,孙玉军,王轶夫,等. 基于Sentinel-1和Sentinel-2数据的杉木林地上生物量估算[J]. 南京林业大学学报(自然科学版),2020,44(3):149-156.
PAN Lei,SUN Yujun,WANG Yifu,et al. Estimation of aboveground biomass in a Chinese fir (Cunninghamia lanceolata) forest combining data of Sentinel-1 and Sentinel-2[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2020,44(3):149-156.
[21] 张少伟,惠刚盈,韩宗涛,等. 基于光学多光谱与SAR遥感特征快速优化的大区域森林地上生物量估测[J]. 遥感技术与应用,2019,34(5):925-938.
ZHANG Shaowei,HUI Gangying,Han Zongtao,et al. Estimation of large-scale forest aboveground biomass based on fast optimizing remotely sensed features from optical multi-spectral and SAR data[J]. Remote Sensing Technology and Application,2019,34(5):925-938.
[22] PHAM D T,YOKOYA N,XIA J,et al. Comparison of machine learning methods for estimating mangrove above-ground biomass using multiple source remote sensing data in the Red River Delta Biosphere Reserve,Vietnam[J]. Remote Sensing,2020,12(8):1334-1334. doi: 10.3390/rs12081334
[23] HUANG Z M,TIAN Y C,ZHANG Q,et al. Estimating mangrove above-ground biomass at Maowei Sea,Beibu Gulf of China using machine learning algorithm with Sentinel-1 and Sentinel-2 data[J]. Geocarto International,2022,37:15778-15805. doi: 10.1080/10106049.2022.2102226
[24] 谭雨欣,田义超,黄卓梅,等. 北部湾茅尾海无瓣海桑红树林地上生物量反演:基于XGBoost机器学习算法[J]. 生态学报,2023,43(11):4674-4688.
TAN Yuxin,TIAN Yichao,HUANG Zhuomei,et al. Aboveground biomass of Sonneratia apetala mangroves in Mawei Sea of Beibu Gulf based on XGBoost machine learning algorithm[J]. Acta Ecologica Sinica,2023,43(11):4674-4688.
[25] 胡刚,黎洁,覃盈盈,等. 广西北仑河口红树植物种群结构与动态特征[J]. 生态学报,2018,38(9):3022-3034.
HU Gang,LI Jie,QIN Yingying,et al. Population structure and dynamics of mangrove species in Beilun Estuary,Guangxi,southern China[J]. Acta Ecologica Sinica,2018,38(9):3022-3034.
[26] 何琴飞,郑威,黄小荣,等. 广西钦州湾红树林碳储量与分配特征[J]. 中南林业科技大学学报,2017,37(11):121-126.
HE Qinfei,ZHENG Wei,HUANG Xiaorong,et al. Carbon storage and distribution of mangroves at Qinzhou Bay[J]. Journal of Central South University of Forestry & Technology,2017,37(11):121-126.
[27] FU W G,WU Y Y. Estimation of aboveground biomass of different mangrove trees based on canopy diameter and tree height[J]. Procedia Environmental Sciences,2011,10(C):2189-2194.
[28] CLOUGH B F,SCOTT K. Allometric relationships for estimating aboveground biomass in six mangrove species[J]. Forest Ecology and Management,1989,27(2):117-127. doi: 10.1016/0378-1127(89)90034-0
[29] 叶子林,周普良,林辉,等. 纹理特征对森林蓄积量反演模型的影响[J]. 中南林业科技大学学报,2020,40(9):49-56.
YE Zilin,ZHOU Puliang,LIN Hui,et al. Texture features influences on inversion model of forest stock volume[J]. Journal of Central South University of Forestry & Technology,2020,40(9):49-56.
[30] ALONGI D M. Carbon cycling and storage in mangrove forests[J]. Annual Review of Marine Science,2014,6:195-219 doi: 10.1146/annurev-marine-010213-135020
[31] ZHAO P O,LU D S,WANG G X,et al. Examining spectral reflectance saturation in Landsat imagery and corresponding solutions to improve forest aboveground biomass estimation[J]. Remote Sensing,2016,8(6):469. doi: 10.3390/rs8060469
[32] LU D S. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon[J]. International Journal of Remote Sensing,2005,26(12):2509-2525. doi: 10.1080/01431160500142145
[33] KUPLICH M T,CURRAN J P,ATKINSON M P. Relating SAR image texture to the biomass of regenerating tropical forests[J]. International Journal of Remote Sensing,2011,26(21):4829-4854.
-