Characteristics of burned area and susceptibility assessment of post-fire debris flow of Chongqing wildfire in August, 2022
-
摘要:
2022年8月重庆市江津区、巴南区、北碚区相继爆发森林火灾,总过火面积约35 km2。火灾后火烧迹地植被及土壤结构遭到破坏,坡表堆积了厚度1~5 cm不等的灰烬层,受强降雨影响一旦爆发火后泥石流,将对附近村镇基础设施及群众生命财产构成严重威胁。通过遥感解译、现场调查及试验,查明了本次森林火灾火烧区空间分布特征,实测了火烧迹地灰烬层厚度、土壤饱和导水率等参数。结果表明研究区重度、中度和轻度火烧区分别占9.6%、34.0%和56.4%,其对应的坡面灰烬-结构扰动层平均厚度分别为 5.10,3.28 ,1.15 cm。基于专家经验预测模型对火烧区共95条潜在泥石流沟道进行火后泥石流易发性评价,其中1条为高等易发,43条为中等易发,44条为低等易发,7条为不易发,分别占总数的1.05%、45.26%、46.32%、7.37%。考虑到现状条件下各泥石流沟域内中度和重度火烧区仍残留有大量灰烬、泥沙等松散固体物源,且土壤表现出较强的斥水性,中等及高等易发性沟道在雨季一旦受集中降雨影响,爆发火后泥石流的可能性较大。研究成果可为火烧迹地火后泥石流灾害预防与风险管理提供科学依据。
Abstract:In August, 2022, forest fires occurred in Jiangjin District, Banan District, and Beibei District in Chongqing, respectively, with a total burned area of approximately 35 km2. After the wildfire, an ash layer with a thickness of 1~5 cm was deposited on the slope, and the vegetation and soil structure of the burned area were devastated. Affected by concentrated rainfall, it will pose a serious threat to the infrastructure of nearby villages and towns and residents’ lives and properties once the post-fire debris flow occurs. Based on the remote sensing, field investigation, and in-situ tests, the distribution characteristics of burned areas after the fire were identified. The measured data including the thickness of the ash layer, and the saturated hydraulic conductivity of the soil were derived. The severe, moderate, and low burned areas accounted for 9.6%, 34.0%, and 56.4% of the entire area, respectively, with the corresponding average thickness of ash and soil disturbance layer of 15.10 cm, 3.28 cm, and 1.15 cm. According to the prediction model based on expert experience, a total of 95 potential debris flow gullies in burned areas were evaluated for the susceptibility of post-fire debris flow, of which 1 was of high susceptibility, 43 were of medium susceptibility, 44 were of low susceptibility, and 7 were not prone to occur, contributing to 1.05%, 45.26%, 46.32%, and 7.37% of the total, respectively. Considering that a large number of loose solid sources besides ash and sediment still exist in the moderate and severe burned areas within watersheds under the current conditions, with strong water repellency of burned soil, once the medium and high susceptibility gullies are affected by concentrated rainfall in the rainy season, there is a relatively high probability for the post-fire debris flow occurrence. This study provides basic information for the prevention and risk management of post-fire debris flows.
-
Key words:
- Chongqing wildfire /
- fire severity /
- burned area /
- post-fire debris flow /
- susceptibility
-
-
表 1 研究区火烧迹地火烈度判别标准
Table 1. Fire severity criterion of burned areas in the study area
火烈度 特点 未火烧 火烧前后地表覆盖物无变化 轻度火烧 超过 50%的枯枝落叶未完全燃烧 中度火烧 大部分枯枝落叶被烧毁,但是大部分粗可燃物未完全燃烧 重度火烧 枯枝落叶和粗可燃物均被完全烧毁,地表为灰烬覆盖 表 2 研究区火烧迹地火烈度面积统计
Table 2. Fire severity area statistics of burned area in the study area
火烧迹地所在区域 火烈度 轻度火烧 中度火烧 重度火烧 过火面积/km2 面积/km2 占比/% 面积/km2 占比/% 面积/km2 占比/% 江津区 3.81 56.5 2.14 31.7 0.80 11.8 6.75 巴南区 8.24 54.4 5.06 33.5 1.83 12.1 15.14 北碚区 7.61 58.7 4.64 35.8 0.70 5.4 12.95 总计 19.66 56.4 11.84 34.0 3.33 9.6 34.84 表 3 研究区中—重度火烧区面积不同占比沟道数量统计
Table 3. Number of gullies with different proportions in moderate and severe burned area in the study area
火烧迹地所在区域 中—重度火烧区面积占比 <15% 15%~30% 30%~60% >60 沟道数量/条 占比/% 沟道数量/条 占比/% 沟道数量/条 占比/% 沟道数量/条 占比/% 江津区 1 5.3 5 26.3 11 57.9 2 10.5 巴南区 19 34.6 13 23.6 11 20.0 12 21.8 北碚区 5 23.8 9 42.9 7 33.3 0 0 总计 25 26.3 27 28.4 29 30.5 14 14.7 表 4 火后泥石流易发性评价因子等级划分及评分标准
Table 4. Grade division and scoring criteria of assessment factors of susceptibility
评价因子 不易发 低等易发 中等易发 高等易发 中—重度火烧区面积占比/% <15 15~30 30~60 >60 坡面灰烬-结构扰动层平均厚度/cm <1 1~2 2~3 >3 产沙区坡度/(°) <15 15~25 25~32 >32 主沟平均纵坡降/‰ <52 52~105 105~213 >213 流域面积/km² ≥100 <0.2或10~100 5~10 0.2~5 评分区间 [0,25) [25,50) [50,75) [75,100] 表 5 火后泥石流易发性总评分等级划分标准
Table 5. Grading criteria for the total score of post-fire debris flow susceptibility
易发性 不易发 低等易发 中等易发 高等易发 打分 [0,25) [25,50) [50,75) [75,100] 表 6 重庆森林火灾不同火烧区火后泥石流沟道易发性数量统计
Table 6. Statistics on the susceptibility of debris flows in different burned areas of Chongqing wildfire
/条 火烧区 沟道数量 高等易发 中等易发 低等易发 不易发 江津区 19 0 12 7 0 巴南区 55 1 23 25 6 北碚区 21 0 8 12 1 总计 95 1 43 44 7 -
[1] JALALUDIN B,JOHNSTON F,VARDOULAKIS S,et al. Reflections on the catastrophic 2019-2020 Australian bushfires[J]. Innovation (Cambridge (Mass)),2020,1(1):100010.
[2] 胡卸文,王严,杨瀛. 火后泥石流成灾特点及研究现状[J]. 工程地质学报,2018,26(6):1562 − 1573. [HU Xiewen,WANG Yan,YANG Ying. Research actuality and evolution mechanism of post-fire debris flow[J]. Journal of Engineering Geology,2018,26(6):1562 − 1573. (in Chinese with English abstract)]
HU Xiewen, WANG Yan, YANG Ying. Research actuality and evolution mechanism of post-fire debris flow[J]. Journal of Engineering Geology, 2018, 26(6): 1562 − 1573. (in Chinese with English abstract)
[3] 中华人民共和国应急管理部. 2022年全国自然灾害基本情况[EB/OL]. 北京:中华人民共和国应急管理部,2022(2023-01-13)[2023-03-08]. [Ministry of emergencymanggemeht of the people’s republic of China. Basic information on national natural disasters in 2022[EB/OL]. Beijing:Ministry of emergency manggemeht of the people’s republic of China,2022(2023-01-13)[2023-03-08]. https://www.mem.gov.cn/xw/yjglbgzdt/202301/t20230113_440478.shtml.(in Chinese)]
Ministry of emergencymanggemeht of the people’s republic of China. Basic information on national natural disasters in 2022[EB/OL]. Beijing: Ministry of emergency manggemeht of the people’s republic of China, 2022(2023-01-13)[2023-03-08]. https://www.mem.gov.cn/xw/yjglbgzdt/202301/t20230113_440478.shtml.(in Chinese)
[4] WALL S A,ROERING J J,RENGERS F K. Runoff-initiated post-fire debris flow Western Cascades,Oregon[J]. Landslides,2020,17(7):1649 − 1661. doi: 10.1007/s10346-020-01376-9
[5] 胡卸文,侯羿腾,王严,等. 火烧迹地土壤根系特征及其对抗剪强度的影响[J]. 水文地质工程地质,2019,46(5):106 − 112. [HU Xiewen,HOU Yiteng,WANG Yan,et al. Root characteristics and its influences on shear strength in burned areas[J]. Hydrogeology & Engineering Geology,2019,46(5):106 − 112. (in Chinese with English abstract)]
HU Xiewen, HOU Yiteng, WANG Yan, et al. Root characteristics and its influences on shear strength in burned areas[J]. Hydrogeology & Engineering Geology, 2019, 46(5): 106 − 112. (in Chinese with English abstract)
[6] KEAN J W,STALEY D M,LANCASTER J T,et al. Inundation,flow dynamics,and damage in the 9 January 2018 Montecito debris-flow event,California,USA:Opportunities and challenges for post-wildfire risk assessment[J]. Geosphere,2019,15(4):1140 − 1163. doi: 10.1130/GES02048.1
[7] OUYANG Chaojun,XIANG Wen,AN Huicong,et al. Mechanistic analysis and numerical simulation of the 2021 post-fire debris flow in Xiangjiao Catchment,China[J]. Journal of Geophysical Research:Earth Surface,2023,128(1):e2022JF006846. doi: 10.1029/2022JF006846
[8] WELLS W G II. The effects of fire on the generation of debris flows in southern California[J]. Reviews in Engineering Geology,1987,7:105 − 114.
[9] MOODY J A,MARTIN D A. Initial hydrologic and geomorphic response following a wildfire in the Colorado Front Range[J]. Earth Surface Processes and Landforms,2001,26(10):1049 − 1070. doi: 10.1002/esp.253
[10] CANNON S H,BOLDT E M,LABER J L,et al. Rainfall intensity–duration thresholds for postfire debris-flow emergency-response planning[J]. Natural Hazards,2011,59(1):209 − 236. doi: 10.1007/s11069-011-9747-2
[11] RILEY K L,BENDICK R,HYDE K D,et al. Frequency–magnitude distribution of debris flows compiled from global data,and comparison with post-fire debris flows in the western U. S[J]. Geomorphology,2013,191:118 − 128. doi: 10.1016/j.geomorph.2013.03.008
[12] NYMAN P,SMITH H G,SHERWIN C B,et al. Predicting sediment delivery from debris flows after wildfire[J]. Geomorphology,2015,250:173 − 186. doi: 10.1016/j.geomorph.2015.08.023
[13] CANNON S H,GARTNER J E,RUPERT M G,et al. Predicting the probability and volume of postwildfire debris flows in the intermountain western United States[J]. Geological Society of America Bulletin,2010,122(1/2):127 − 144.
[14] RAYMOND C A,MCGUIRE L A,YOUBERG A M,et al. Thresholds for post-wildfire debris flows:Insights from the Pinal Fire,Arizona,USA[J]. Earth Surface Processes and Landforms,2020,45(6):1349 − 1360. doi: 10.1002/esp.4805
[15] STALEY D M,KEAN J W,RENGERS F K. The recurrence interval of post-fire debris-flow generating rainfall in the southwestern United States[J]. Geomorphology,2020,370:107392. doi: 10.1016/j.geomorph.2020.107392
[16] 杨瀛,胡卸文,王严,等. 八角楼乡火后泥石流空间发育特征[J]. 西南交通大学学报,2021,56(4):818 − 827. [YANG Ying,HU Xiewen,WANG Yan,et al. Spatial development characteristics of post-fire debris flow in bajiaolou town[J]. Journal of Southwest Jiaotong University,2021,56(4):818 − 827. (in Chinese with English abstract)]
YANG Ying, HU Xiewen, WANG Yan, et al. Spatial development characteristics of post-fire debris flow in bajiaolou town[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 818 − 827. (in Chinese with English abstract)
[17] HOCH O J,MCGUIRE L A,YOUBERG A M,et al. Hydrogeomorphic recovery and temporal changes in rainfall thresholds for debris flows following wildfire[J]. Journal of Geophysical Research:Earth Surface,2021,126(12):e2021JF006374. doi: 10.1029/2021JF006374
[18] YANG Ying,HU Xiewen,HAN Mei,et al. Post-fire temporal trends in soil properties and revegetation:Insights from different wildfire severities in the Hengduan Mountains,Southwestern China[J]. CATENA,2022,213:106160. doi: 10.1016/j.catena.2022.106160
[19] THOMAS M A,RENGERS F K,KEAN J W,et al. Postwildfire soil-hydraulic recovery and the persistence of debris flow hazards[J]. Journal of Geophysical Research:Earth Surface,2021,126(6):e2021JF006091. doi: 10.1029/2021JF006091
[20] STALEY D M,GARTNER J E,SMOCZYK G M,et al. Emergency assessment of post-fire debris-flow hazards for the 2013 Mountain fire,southern California[R]. Reston, Virginia:U. S. Geological Survey,2013.
[21] CANNON S H,GARTNER J E,WILSON R C,et al. Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California[J]. Geomorphology,2008,96(3/4):250 − 269.
[22] 胡卸文,金涛,殷万清,等. 西昌市经久乡森林火灾火烧区特点及火后泥石流易发性评价[J]. 工程地质学报,2020,28(4):762 − 771. [HU Xiewen,JIN Tao,YIN Wanqing,et al. The characteristics of forest fire burned area and sus-ceptibility assessment of post-fire debris flow in jingjiu township,Xichang city[J]. Journal of Engineering Geology,2020,28(4):762 − 771. (in Chinese with English abstract)]
HU Xiewen, JIN Tao, YIN Wanqing, et al. The characteristics of forest fire burned area and sus-ceptibility assessment of post-fire debris flow in jingjiu township, Xichang city[J]. Journal of Engineering Geology, 2020, 28(4): 762 − 771. (in Chinese with English abstract)
[23] 任云. 四川九龙县色脚沟火后泥石流成灾机理及危险性评价[D]. 成都:西南交通大学,2018. [REN Yun. Disaster Mechanism and Risk Assessment of Debris Flow after Sejiaogou Fire in Jiulong County,Sichuan Province[D]. Chengdu:Southwest Jiaotong University,2018. (in Chinese with English abstract)]
REN Yun. Disaster Mechanism and Risk Assessment of Debris Flow after Sejiaogou Fire in Jiulong County, Sichuan Province[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese with English abstract)
[24] JOHNSON P A,MCCUEN R H,HROMADKA T V. Magnitude and frequency of debris flows[J]. Journal of Hydrology,1991,123(1/2):69 − 82.
[25] HUNGR O,MORGAN G C,KELLERHALS R. Quantitative analysis of debris torrent hazards for design of remedial measures[J]. Canadian Geotechnical Journal,1984,21(4):663 − 677. doi: 10.1139/t84-073
[26] JIN Tao,HU Xiewen,LIU Bo,et al. Susceptibility prediction of post-fire debris flows in Xichang,China,using a logistic regression model from a spatiotemporal perspective[J]. Remote Sensing,2022,14(6):1306. doi: 10.3390/rs14061306
[27] ADDISON P,OOMMEN T,SHA Qiuying. Assessment of post-wildfire debris flow occurrence using classifier tree[J]. Geomatics,Natural Hazards and Risk,2019,10(1):505 − 518. doi: 10.1080/19475705.2018.1530306
[28] KERN A N,ADDISON P,OOMMEN T,et al. Machine learning based predictive modeling of debris flow probability following wildfire in the intermountain western United States[J]. Mathematical Geosciences,2017,49(6):717 − 735. doi: 10.1007/s11004-017-9681-2
[29] 李峰,张效亮,刘华国. 重庆市主要构造地震危险性评价[J]. 地震地质,2013,35(3):518 − 531. [LI Feng,ZHANG Xiaoliang,LIU Huaguo. Seismic hazard analysis of the main faults in Chongqing urban area[J]. Seismology and Geology,2013,35(3):518 − 531. (in Chinese with English abstract)] doi: 10.3969/j.issn.0253-4967.2013.03.006
LI Feng, ZHANG Xiaoliang, LIU Huaguo. Seismic hazard analysis of the main faults in Chongqing urban area[J]. Seismology and Geology, 2013, 35(3): 518 − 531. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2013.03.006
[30] MILLER J D,THODE A E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR)[J]. Remote Sensing of Environment,2007,109(1):66 − 80. doi: 10.1016/j.rse.2006.12.006
[31] FASSNACHT F E,SCHMIDT-RIESE E,KATTENBORN T,et al. Explaining Sentinel 2-based dNBR and RdNBR variability with reference data from the bird’s eye (UAS) perspective[J]. International Journal of Applied Earth Observation and Geoinformation,2021,95:102262. doi: 10.1016/j.jag.2020.102262
[32] PARSONS A,ROBICHAUD P R,LEWIS S A,et al. Field guide for mapping post-fire soil burn severity[R]. Fort Collins:U. S. Department of Agriculture,Forest Service,Rocky Mountain Research Station,2010.
[33] 王严,胡卸文,金涛,等. 火后泥石流形成过程的物源启动模式研究[J]. 工程地质学报,2019,27(6):1415 − 1423. [WANG Yan,HU Xiewen,JIN Tao,et al. Material initiation of debris flow generation processes after hillside fires[J]. Journal of Engineering Geology,2019,27(6):1415 − 1423. (in Chinese with English abstract)]
WANG Yan, HU Xiewen, JIN Tao, et al. Material initiation of debris flow generation processes after hillside fires[J]. Journal of Engineering Geology, 2019, 27(6): 1415 − 1423. (in Chinese with English abstract)
[34] GABET E J,BOOKTER A. Physical,chemical and hydrological properties of Ponderosa pine ash[J]. International Journal of Wildland Fire,2011,20(3):443. doi: 10.1071/WF09105
[35] 杨相斌,胡卸文,曹希超,等. 四川西昌电池厂沟火后泥石流成灾特征及防治措施分析[J]. 中国地质灾害与防治学报,2022,33(4):1 − 8. [YANG Xiangbin,HU Xiewen,CAO Xichao,et al. Analysis on disaster characteristics and prevention measures of the post-fire debris flow in Dianchichang gully,Xichang of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):1 − 8. (in Chinese with English abstract)]
YANG Xiangbin, HU Xiewen, CAO Xichao, et al. Analysis on disaster characteristics and prevention measures of the post-fire debris flow in Dianchichang gully, Xichang of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 1 − 8. (in Chinese with English abstract)
[36] 黄健,胡卸文,金涛,等. 四川西昌 “3·30” 火烧区响水沟火后泥石流成灾机理[J]. 中国地质灾害与防治学报,2022,33(3):15 − 22. [HUANG Jian,HU Xiewen,JIN Tao,et al. Mechanism of the post-fire debris flow of the Xiangshui gully in “3·30” fire area of Xichang,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):15 − 22. (in Chinese with English abstract)]
HUANG Jian, HU Xiewen, JIN Tao, et al. Mechanism of the post-fire debris flow of the Xiangshui gully in “3·30” fire area of Xichang, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 15 − 22. (in Chinese with English abstract)
[37] 任云,胡卸文,王严,等. 四川省九龙县色脚沟火后泥石流成灾机理[J]. 水文地质工程地质,2018,45(6):150 − 156. [REN Yun,HU Xiewen,WANG Yan,et al. Disaster mechanism of the Sejiao post-fire debris flow in Jiulong County of Sichuan[J]. Hydrogeology & Engineering Geology,2018,45(6):150 − 156. (in Chinese with English abstract)]
REN Yun, HU Xiewen, WANG Yan, et al. Disaster mechanism of the Sejiao post-fire debris flow in Jiulong County of Sichuan[J]. Hydrogeology & Engineering Geology, 2018, 45(6): 150 − 156. (in Chinese with English abstract)
[38] GABET E J,STERNBERG P. The effects of vegetative ash on infiltration capacity,sediment transport,and the generation of progressively bulked debris flows[J]. Geomorphology,2008,101(4):666 − 673. doi: 10.1016/j.geomorph.2008.03.005
[39] BODÍ M B,MARTIN D A,BALFOUR V N,et al. Wildland fire ash:Production,composition and eco-hydro-geomorphic effects[J]. Earth-Science Reviews,2014,130:103 − 127. doi: 10.1016/j.earscirev.2013.12.007
[40] 张绍科,胡卸文,王严,等. 四川省冕宁县华岩子沟火后泥石流成灾机理[J]. 中国地质灾害与防治学报,2021,32(5):79 − 85. [ZHANG Shaoke,HU Xiewen,WANG Yan,et al. Disaster mechanism of post-fire debris flow in Huayanzi gully,Mianning County,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):79 − 85. (in Chinese with English abstract)]
ZHANG Shaoke, HU Xiewen, WANG Yan, et al. Disaster mechanism of post-fire debris flow in Huayanzi gully, Mianning County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 79 − 85. (in Chinese with English abstract)
[41] 王严,胡卸文,杨瀛,等. 火烧迹地土壤斥水性和渗透性变化特性[J]. 水文地质工程地质,2019,46(6):40 − 45. [WANG Yan,HU Xiewen,YANG Ying,et al. Research on the change in soil water repellency and permeability in burned areas[J]. Hydrogeology & Engineering Geology,2019,46(6):40 − 45. (in Chinese with English abstract)]
WANG Yan, HU Xiewen, YANG Ying, et al. Research on the change in soil water repellency and permeability in burned areas[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 40 − 45. (in Chinese with English abstract)
[42] HYDE K D,WILCOX A C,JENCSO K,et al. Effects of vegetation disturbance by fire on channel initiation thresholds[J]. Geomorphology,2014,214:84 − 96. doi: 10.1016/j.geomorph.2014.03.013
[43] STALEY D M,NEGRI J A,KEAN J W,et al. Prediction of spatially explicit rainfall intensity–duration thresholds for post-fire debris-flow generation in the western United States[J]. Geomorphology,2017,278:149 − 162. doi: 10.1016/j.geomorph.2016.10.019
[44] CAO Xichao,HU Xiewen,HAN Mei,et al. Characteristics and predictive models of hillslope erosion in burned areas in Xichang,China,on March 30,2020[J]. CATENA,2022,217:106509. doi: 10.1016/j.catena.2022.106509
-