基于频率比-深度神经网络耦合模型的滑坡易发性评价

陈航, 刘惠军, 王韬, 孙悦. 基于频率比-深度神经网络耦合模型的滑坡易发性评价——以盐源县为例[J]. 水文地质工程地质, 2024, 51(5): 161-171. doi: 10.16030/j.cnki.issn.1000-3665.202305006
引用本文: 陈航, 刘惠军, 王韬, 孙悦. 基于频率比-深度神经网络耦合模型的滑坡易发性评价——以盐源县为例[J]. 水文地质工程地质, 2024, 51(5): 161-171. doi: 10.16030/j.cnki.issn.1000-3665.202305006
CHEN Hang, LIU Huijun, WANG Tao, SUN Yue. Landslide susceptibility evaluation based on FR-DNN coupling model: A case study on Yanyuan County[J]. Hydrogeology & Engineering Geology, 2024, 51(5): 161-171. doi: 10.16030/j.cnki.issn.1000-3665.202305006
Citation: CHEN Hang, LIU Huijun, WANG Tao, SUN Yue. Landslide susceptibility evaluation based on FR-DNN coupling model: A case study on Yanyuan County[J]. Hydrogeology & Engineering Geology, 2024, 51(5): 161-171. doi: 10.16030/j.cnki.issn.1000-3665.202305006

基于频率比-深度神经网络耦合模型的滑坡易发性评价

  • 基金项目: 四川省核工业地质局二八一大队委托科技项目(AH2021-0357)
详细信息
    作者简介: 陈航(1998—),男,硕士研究生,主要从事地质灾害防治及风险评价工作。E-mail:1457019397@qq.com
    通讯作者: 刘惠军(1972—),男,博士,副教授,主要从事地质灾害防治工作。E-mail:736165148@qq.com
  • 中图分类号: P642.22

Landslide susceptibility evaluation based on FR-DNN coupling model: A case study on Yanyuan County

More Information
  • 盐源县位于青藏高原东南边缘,区域构造活动强烈,在内外动力共同作用下,境内滑坡灾害极其发育,已经造成了巨大的人员伤亡和经济损失,有必要开展滑坡易发性评价,对区域滑坡灾害进行科学管控。依据盐源县1∶5万地质灾害调查成果,选取高程、坡度、坡向、地形曲率、距断层距离、地层岩性、距水系距离、年平均降雨量、地形湿度指数、水流强度指数、归一化植被指数、距道路距离、土地利用类型等13个滑坡易发性评价因子,基于27596个滑坡灾害栅格点数据,将传统频率比(frequency ratio,FR)模型定量分析及数据量化优势,与新兴深度神经网络(deep neural network,DNN)模型强大的非线性学习和拟合能力相结合,构建FR-DNN耦合模型进行滑坡易发性评价,将研究区划分为极高易发区、高易发区、中易发区、低易发区、极低易发区5个等级,面积占比分别为11.90%、18.38%、18.34%、9.13%、42.25%,并与传统FR模型进行对比,用ROC曲线的AUC值进行精度验证。结果表明,FR模型与FR-DNN耦合模型的AUC值分别为0.754、0.859,FR-DNN耦合模型相对于FR模型预测精度提高了10.5%,由此说明FR-DNN耦合模型具有更好的预测能力,更适用于研究区滑坡易发性评价。

  • 加载中
  • 图 1  研究区滑坡灾害点分布

    Figure 1. 

    图 2  DNN模型

    Figure 2. 

    图 3  评价因子分级图

    Figure 3. 

    图 4  FR模型易发性评价图

    Figure 4. 

    图 5  FR-DNN耦合模型易发性评价图

    Figure 5. 

    图 6  ROC曲线

    Figure 6. 

    表 1  Pearson相关性分析

    Table 1.  Pearson correlation analysis

    评价因子 高程 坡度 坡向 地形
    起伏度
    地形
    曲率
    距断层
    距离
    地层
    岩性
    距水系
    距离
    年平均
    降雨量
    TWI SPI NDVI 距道路
    距离
    土地利用
    类型
    高程 1
    坡度 −0.02 1
    坡向 0.06 0.13 1
    地形起伏度 −0.03 0.78 0.09 1
    地形曲率 0.01 0.33 0.00 0.02 1
    距断层距离 0.18 −0.15 −0.01 −0.09 0.00 1
    地层岩性 −0.35 −0.19 −0.09 −0.12 0.00 0.04 1
    距水系距离 0.34 −0.11 0.03 −0.11 −0.03 0.02 −0.16 1
    年平均降雨量 0.22 0.15 0.04 0.12 0.02 0.00 −0.08 −0.03 1
    TWI −0.11 −0.48 −0.29 −0.33 −0.26 0.11 0.21 0.00 −0.13 1
    SPI −0.01 0.44 −0.20 0.30 −0.28 −0.11 −0.17 −0.02 0.10 0.00 1
    NDVI 0.14 0.29 −0.09 0.20 0.00 −0.09 −0.09 0.02 0.20 −0.21 0.20 1
    距道路距离 0.24 0.24 0.02 0.19 0.02 0.03 −0.19 0.10 0.02 −0.12 0.10 0.09 1
    土地利用类型 −0.83 −0.09 0.00 −0.06 −0.03 0.06 0.08 0.00 0.02 0.06 0.00 −0.23 −0.13 1
    下载: 导出CSV

    表 2  各评价因子频率比值

    Table 2.  Frequency ratios of various evaluation factors

    评价因子 分级 频率比 赋值 滑坡易发性指数 评价因子 分级 频率比 赋值 滑坡易发性指数
    高程/m <1500 8.5747 4 11.1237 年平均降雨量/mm [890,984) 0.4341 2 3.0467
    [1500,2500) 2.2051 3 [984,1078) 1.5039 4
    [2500,3500) 0.3439 2 [1078,1172) 0.6866 3
    3500 0.0000 1 [1172,1278] 0.4222 1
    坡度/(°) [0,15) 0.9418 3 4.3800 地形湿度指数 [0.8,4.7) 0.7858 3 3.9352
    [15,25) 1.7588 5 [4.7,7.1) 1.2536 4
    [25,35) 0.9775 4 [7.1,11.3) 1.3801 5
    [35,45) 0.4331 2 [11.3,16.2) 0.3212 2
    ≥45 0.2688 1 [16.2,30.8] 0.1945 1
    坡向/(°) 平面 0.2070 1 8.5809 水流强度指数 [−10.4,−2.4) 0.2057 1 4.2803
    1.1573 8 [−2.4,2.4) 0.9672 3
    东北 1.1432 7 [2.4,4.2) 0.9947 4
    1.1349 6 [4.2,6.8) 1.2303 5
    东南 1.0428 5 [6.8,19.8] 0.8825 2
    1.0136 4 归一化植被指数 [0,0.2) 0.0000 1 3.8407
    西南 0.8851 3 [0.2,0.4) 0.6901 3
    西 0.8389 2 [0.4,0.6) 1.6129 5
    西北 1.1582 9 [0.6,0.8) 1.0796 4
    地形曲率 <0 1.1118 3 2.7600 [0.8,1] 0.4581 2
    0 0.6610 1 距道路距离/m <100 1.9028 6 4.3969
    >0 0.9872 2 [100,200) 1.2285 5
    距断层距离/m <500 1.5481 5 5.4673 [200,300) 0.5030 4
    [500,1000) 1.3203 4 [300,400) 0.4139 3
    [1000,1500) 0.8863 2 [400,500) 0.2298 2
    [1500,2000) 1.0683 3 ≥500 0.1189 1
    2000 0.6442 1 土地利用类型 水体 0.0000 1 11.6200
    地层岩性 硬岩 0.6593 1 3.7818 林地 0.1849 2
    软硬相间 1.7231 3 淹没植被 0.0000 1
    软岩 1.3994 2 耕地 1.0825 3
    距水系距离/m <500 1.8563 5 4.1476 建筑 8.7269 5
    [500,1000) 1.0599 4 雪/冰 0.0000 1
    [1000,1500) 0.5320 3 裸地 1.6258 4
    [1500,2000 0.3891 2
    2000 0.3103 1
    下载: 导出CSV
  • [1]

    黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报,2007,26(3):433 − 454. [HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(3):433 − 454. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-6915.2007.03.001

    HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433 − 454. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2007.03.001

    [2]

    殷跃平. 中国地质灾害减灾战略初步研究[J]. 中国地质灾害与防治学报,2004,15(2):1 − 8. [YIN Yueping. Initial study on the hazard-relief strategy of geological hazard in China[J]. The Chinese Journal of Geological Hazard and Control,2004,15(2):1 − 8. (in Chinese with English abstract)] doi: 10.3969/j.issn.1003-8035.2004.02.001

    YIN Yueping. Initial study on the hazard-relief strategy of geological hazard in China[J]. The Chinese Journal of Geological Hazard and Control, 2004, 15(2): 1 − 8. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2004.02.001

    [3]

    余祥伟. 盐源地区雷达遥感滑坡灾害识别与形变监测研究[D]. 成都:成都理工大学,2021. [YU Xiangwei. Research on radar remote sensing landslide disaster identification and deformation monitoring in Yanyuan area [D]. Chengdu:Chengdu University of Technology,2021. (in Chinese with English abstract)]

    YU Xiangwei. Research on radar remote sensing landslide disaster identification and deformation monitoring in Yanyuan area [D]. Chengdu: Chengdu University of Technology, 2021. (in Chinese with English abstract)

    [4]

    孙长明,马润勇,尚合欣,等. 基于滑坡分类的西宁市滑坡易发性评价[J]. 水文地质工程地质,2020,47(3):173 − 181. [SUN Changming,MA Runyong,SHANG Hexin,et al. Landslide susceptibility assessment in Xining based on landslide classification[J]. Hydrogeology & Engineering Geology,2020,47(3):173 − 181. (in Chinese with English abstract)]

    SUN Changming, MA Runyong, SHANG Hexin, et al. Landslide susceptibility assessment in Xining based on landslide classification[J]. Hydrogeology & Engineering Geology, 2020, 47(3): 173 − 181. (in Chinese with English abstract)

    [5]

    POURGHASEMI H R,PRADHAN B,GOKCEOGLU C,et al. Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed,Iran[J]. Arabian Journal of Geosciences,2013,6(7):2351 − 2365. doi: 10.1007/s12517-012-0532-7

    [6]

    张艳玲,南征兵,周平根. 利用证据权法实现滑坡易发性区划[J]. 水文地质工程地质,2012,39(2):121 − 125. [ZHANG Yanling,NAN Zhengbing,ZHOU Pinggen. Division of landslide susceptibility based on weights of evidence model[J]. Hydrogeology & Engineering Geology,2012,39(2):121 − 125. (in Chinese with English abstract)]

    ZHANG Yanling, NAN Zhengbing, ZHOU Pinggen. Division of landslide susceptibility based on weights of evidence model[J]. Hydrogeology & Engineering Geology, 2012, 39(2): 121 − 125. (in Chinese with English abstract)

    [7]

    PANCHAL S,SHRIVASTAVA A K. Landslide hazard assessment using analytic hierarchy process (AHP):A case study of National Highway 5 in India[J]. Ain Shams Engineering Journal,2022,13(3):101626. doi: 10.1016/j.asej.2021.10.021

    [8]

    杜国梁,杨志华,袁颖,等. 基于逻辑回归-信息量的川藏交通廊道滑坡易发性评价[J]. 水文地质工程地质,2021,48(5):102 − 111. [DU Guoliang,YANG Zhihua,YUAN Ying,et al. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression-information value method[J]. Hydrogeology & Engineering Geology,2021,48(5):102 − 111. (in Chinese with English abstract)]

    DU Guoliang, YANG Zhihua, YUAN Ying, et al. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression-information value method[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 102 − 111. (in Chinese with English abstract)

    [9]

    胡涛. 贵州省思南县地质灾害危险性评价研究[D]. 武汉:中国地质大学,2020. [HU Tao. Study of Geological Disasters Hazard Assessment in Sinan County of Guizhou Province[D]. Wuhan:China University of Geosciences,2020. (in Chinese with English abstract)]

    HU Tao. Study of Geological Disasters Hazard Assessment in Sinan County of Guizhou Province[D]. Wuhan: China University of Geosciences, 2020. (in Chinese with English abstract)

    [10]

    刘福臻,王灵,肖东升. 机器学习模型在滑坡易发性评价中的应用[J]. 中国地质灾害与防治学报,2021,32(6):98 − 106. [LIU Fuzhen,WANG Ling,XIAO Dongsheng. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):98 − 106. (in Chinese with English abstract)]

    LIU Fuzhen, WANG Ling, XIAO Dongsheng. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 98 − 106. (in Chinese with English abstract)

    [11]

    TEHRANI F S,CALVELLO M,LIU Zhongqiang,et al. Machine learning and landslide studies:Recent advances and applications[J]. Natural Hazards,2022,114(2):1197 − 1245. doi: 10.1007/s11069-022-05423-7

    [12]

    AGEENKO A,HANSEN L C,LYNG K L,et al. Landslide susceptibility mapping using machine learning:A Danish case study[J]. ISPRS International Journal of Geo-Information,2022,11(6):324. doi: 10.3390/ijgi11060324

    [13]

    KIM J C,LEE Sunmin,JUNG H S,et al. Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang,Korea[J]. Geocarto International,2018,33(9):1000 − 1015. doi: 10.1080/10106049.2017.1323964

    [14]

    XIE Wei,NIE Wen,SAFFARI P,et al. Landslide hazard assessment based on Bayesian optimization–support vector machine in Nanping City,China[J]. Natural Hazards,2021,109(1):931 − 948. doi: 10.1007/s11069-021-04862-y

    [15]

    张林梵,王佳运,张茂省,等. 基于BP神经网络的区域滑坡易发性评价[J]. 西北地质,2022,55(2):260 − 270. [ZHANG Linfan,WANG Jiayun,ZHANG Maosheng,et al. Evaluation of regional landslide susceptibility assessment based on BP neural network[J]. Northwestern Geology,2022,55(2):260 − 270. (in Chinese with English abstract)]

    ZHANG Linfan, WANG Jiayun, ZHANG Maosheng, et al. Evaluation of regional landslide susceptibility assessment based on BP neural network[J]. Northwestern Geology, 2022, 55(2): 260 − 270. (in Chinese with English abstract)

    [16]

    YAO Jingyu,QIN Shengwu,QIAO Shuangshuang,et al. Assessment of landslide susceptibility combining deep learning with semi-supervised learning in Jiaohe County,Jilin Province,China[J]. Applied Sciences,2020,10(16):5640. doi: 10.3390/app10165640

    [17]

    HUANG Faming,YAO Chi,LIU Weiping,et al. Landslide susceptibility assessment in the Nantian Area of China:A comparison of frequency ratio model and support vector machine[J]. Geomatics,Natural Hazards and Risk,2018,9(1):919 − 938. doi: 10.1080/19475705.2018.1482963

    [18]

    王世宝,庄建琦,郑佳,等. 基于深度学习的CZ铁路康定—理塘段滑坡易发性评价[J]. 工程地质学报,2022,30(3):908 − 919. [WANG Shibao,ZHUANG Jianqi,ZHENG Jia,et al. Landslide susceptibility evaluation based on deep learning along Kangding-Litang section of cz railway[J]. Journal of Engineering Geology,2022,30(3):908 − 919. (in Chinese with English abstract)]

    WANG Shibao, ZHUANG Jianqi, ZHENG Jia, et al. Landslide susceptibility evaluation based on deep learning along Kangding-Litang section of cz railway[J]. Journal of Engineering Geology, 2022, 30(3): 908 − 919. (in Chinese with English abstract)

    [19]

    王毅,方志策,牛瑞卿,等. 基于深度学习的滑坡灾害易发性分析[J]. 地球信息科学学报,2021,23(12):2244 − 2260. [WANG Yi,FANG Zhice,NIU Ruiqing,et al. Landslide susceptibility analysis based on deep learning[J]. Journal of Geo-Information Science,2021,23(12):2244 − 2260. (in Chinese with English abstract)] doi: 10.12082/dqxxkx.2021.210057

    WANG Yi, FANG Zhice, NIU Ruiqing, et al. Landslide susceptibility analysis based on deep learning[J]. Journal of Geo-Information Science, 2021, 23(12): 2244 − 2260. (in Chinese with English abstract) doi: 10.12082/dqxxkx.2021.210057

    [20]

    郭子正,殷坤龙,黄发明,等. 基于滑坡分类和加权频率比模型的滑坡易发性评价[J]. 岩石力学与工程学报,2019,38(2):287 − 300. [GUO Zizheng,YIN Kunlong,HUANG Faming,et al. Evaluation of landslide susceptibility based on landslide classification and weighted frequency ratio model[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(2):287 − 300. (in Chinese with English abstract)]

    GUO Zizheng, YIN Kunlong, HUANG Faming, et al. Evaluation of landslide susceptibility based on landslide classification and weighted frequency ratio model[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2): 287 − 300. (in Chinese with English abstract)

    [21]

    HONG Haoyuan,CHEN Wei,XU Chong,et al. Rainfall-induced landslide susceptibility assessment at the Chongren Area (China) using frequency ratio,certainty factor,and index of entropy[J]. Geocarto International,2016:1-16.

    [22]

    AKINCI H,YAVUZ OZALP A. Landslide susceptibility mapping and hazard assessment in Artvin (Turkey) using frequency ratio and modified information value model[J]. Acta Geophysica,2021,69(3):725 − 745. doi: 10.1007/s11600-021-00577-7

    [23]

    庄育龙,田原,程楚云. 基于深度神经网络的滑坡危险性评价——以深圳市为例[J]. 地理与地理信息科学,2019,35(2):104 − 110. [ZHUANG Yulong,TIAN Yuan,CHENG Chuyun. Landslide susceptibility assessment based on deep neural network:A case study of Shenzhen[J]. Geography and Geo-Information Science,2019,35(2):104 − 110. (in Chinese with English abstract)] doi: 10.3969/j.issn.1672-0504.2019.02.016

    ZHUANG Yulong, TIAN Yuan, CHENG Chuyun. Landslide susceptibility assessment based on deep neural network: A case study of Shenzhen[J]. Geography and Geo-Information Science, 2019, 35(2): 104 − 110. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-0504.2019.02.016

    [24]

    吴常润,角媛梅,王金亮,等. 基于频率比-逻辑回归耦合模型的双柏县滑坡易发性评价[J]. 自然灾害学报,2021,30(4):213 − 224. [WU Changrun,JIAO Yuanmei,WANG Jinliang,et al. Frequency ratio and logistic regression models based coupling analysis for susceptibility of landslide in Shuangbai County[J]. Journal of Natural Disasters,2021,30(4):213 − 224. (in Chinese with English abstract)]

    WU Changrun, JIAO Yuanmei, WANG Jinliang, et al. Frequency ratio and logistic regression models based coupling analysis for susceptibility of landslide in Shuangbai County[J]. Journal of Natural Disasters, 2021, 30(4): 213 − 224. (in Chinese with English abstract)

    [25]

    ITO R,NAKAE K,HATA J,et al. Semi-supervised deep learning of brain tissue segmentation[J]. Neural Networks,2019,116:25 − 34. doi: 10.1016/j.neunet.2019.03.014

    [26]

    REICHENBACH P,ROSSI M,MALAMUD B D,et al. A review of statistically-based landslide susceptibility models[J]. Earth-Science Reviews,2018,180:60 − 91. doi: 10.1016/j.earscirev.2018.03.001

    [27]

    王进,郭靖,王卫东,等. 权重线性组合与逻辑回归模型在滑坡易发性区划中的应用与比较[J]. 中南大学学报(自然科学版),2012,43(5):1932 − 1939. [WANG Jin,GUO Jing,WANG Weidong,et al. Application and comparison of weighted linear combination model and logistic regression model in landslide susceptibility mapping[J]. Journal of Central South University (Science and Technology),2012,43(5):1932 − 1939. (in Chinese with English abstract)]

    WANG Jin, GUO Jing, WANG Weidong, et al. Application and comparison of weighted linear combination model and logistic regression model in landslide susceptibility mapping[J]. Journal of Central South University (Science and Technology), 2012, 43(5): 1932 − 1939. (in Chinese with English abstract)

    [28]

    张钟远,邓明国,徐世光,等. 镇康县滑坡易发性评价模型对比研究[J]. 岩石力学与工程学报,2022,41(1):157 − 171. [ZHANG Zhongyuan,DENG Mingguo,XU Shiguang,et al. Comparison of landslide susceptibility assessment models in Zhenkang County,Yunnan Province,China[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(1):157 − 171. (in Chinese with English abstract)]

    ZHANG Zhongyuan, DENG Mingguo, XU Shiguang, et al. Comparison of landslide susceptibility assessment models in Zhenkang County, Yunnan Province, China[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(1): 157 − 171. (in Chinese with English abstract)

    [29]

    张洪吉,赵铮,陈建华,等. 面向滑坡危险性评价的深度一维卷积神经网络方法——以四川省芦山县为例[J]. 自然灾害学报,2021,30(3):191 − 198. [ZHANG Hongji,ZHAO Zheng,CHEN Jianhua,et al. A deep one-dimensional convolutional neural network method for landslide risk assessment:A case study in Lushan,Sichuan,China[J]. Journal of Natural Disasters,2021,30(3):191 − 198. (in Chinese with English abstract)]

    ZHANG Hongji, ZHAO Zheng, CHEN Jianhua, et al. A deep one-dimensional convolutional neural network method for landslide risk assessment: A case study in Lushan, Sichuan, China[J]. Journal of Natural Disasters, 2021, 30(3): 191 − 198. (in Chinese with English abstract)

    [30]

    闫举生,谭建民. 基于不同因子分级法的滑坡易发性评价——以湖北远安县为例[J]. 中国地质灾害与防治学报,2019,30(1):52 − 60. [YAN Jusheng,TAN Jianmin. Landslide susceptibility assessment based on different factor classification methods:A case study in Yuan’an County of Hubei Province[J]. The Chinese Journal of Geological Hazard and Control,2019,30(1):52 − 60. (in Chinese with English abstract)]

    YAN Jusheng, TAN Jianmin. Landslide susceptibility assessment based on different factor classification methods: A case study in Yuan’an County of Hubei Province[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(1): 52 − 60. (in Chinese with English abstract)

    [31]

    COSTACHE R,NGO P T T,BUI D T. Novel ensembles of deep learning neural network and statistical learning for flash-flood susceptibility mapping[J]. Water,2020,12(6):1549. doi: 10.3390/w12061549

    [32]

    LEE Sunmin,BAEK W K,JUNG H S,et al. Susceptibility mapping on urban landslides using deep learning approaches in Mt. Umyeon[J]. Applied Sciences,2020,10(22):8189. doi: 10.3390/app10228189

    [33]

    刘坚,李树林,陈涛. 基于优化随机森林模型的滑坡易发性评价[J]. 武汉大学学报(信息科学版),2018,43(7):1085 − 1091. [LIU Jian,LI Shulin,CHEN Tao. Landslide susceptibility assesment based on optimized random forest model[J]. Geomatics and Information Science of Wuhan University,2018,43(7):1085 − 1091. (in Chinese with English abstract)]

    LIU Jian, LI Shulin, CHEN Tao. Landslide susceptibility assesment based on optimized random forest model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1085 − 1091. (in Chinese with English abstract)

    [34]

    任敬,范宣梅,赵程,等. 贵州省都匀市滑坡易发性评价研究[J]. 水文地质工程地质,2018,45(5):165 − 172. [REN Jing,FAN Xuanmei,ZHAO Cheng,et al. Evaluation of the landslide vulnerability in Duyun of Guizhou Province[J]. Hydrogeology & Engineering Geology,2018,45(5):165 − 172. (in Chinese with English abstract)]

    REN Jing, FAN Xuanmei, ZHAO Cheng, et al. Evaluation of the landslide vulnerability in Duyun of Guizhou Province[J]. Hydrogeology & Engineering Geology, 2018, 45(5): 165 − 172. (in Chinese with English abstract)

    [35]

    LIU Yanrong,MENG Zhongqiu,ZHU Lei,et al. Optimizing the sample selection of machine learning models for landslide susceptibility prediction using information value models in the Dabie Mountain Area of Anhui,China[J]. Sustainability,2023,15(3):1971. doi: 10.3390/su15031971

  • 加载中

(6)

(2)

计量
  • 文章访问数:  66
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2023-05-04
修回日期:  2023-12-22
录用日期:  2024-01-09
刊出日期:  2024-09-15

目录