Experimental study on the synergistic effect of coir fiber and lime to improve soil performance
-
摘要:
为了解决黏土工程性质差和椰壳纤维利用率低的问题,采用椰壳纤维与石灰协同对黏土进行加固,研究出一种绿色环保、性能高强的土体。通过击实试验、无侧限抗压强度试验研究了纤维掺量、石灰掺量等因素对加固黏土早期击实特性、抗压强度、变形特性、变形模量的影响,并通过扫描电镜和X射线衍射研究了加固黏土微观特征,揭示其协同作用机理。结果表明:石灰的掺入使得黏土最大干密度降低,最佳含水率增大;随着石灰掺量增加,土体抗压强度先增加后减小,土体破坏应变则先减小后增加,土体破坏形式呈现脆性;随着纤维掺量增加,土体抗压强度先增加后减小,土体破坏应变逐渐增加,土体破坏形式呈现塑性;改良土变形模量与抗压强度表现为一定线性关系;改良土中石灰通过与土体反应生成胶凝物质填充土体孔隙,纤维通过形成三维网状结构,并且为水化产物提供生长区域,二者协同作用加固土体。研究结果可为路基改良、边坡修复提供理论和技术指导。
Abstract:To solve the problems of poor engineering properties of clay and low utilisation of coir fiber, a green and high-performance soil was obtained by using coir fiber in synergy with lime for clay reinforcement. Compaction test and unconfined compression test were carried out to analyze the influence of fiber content and lime content on the early compressive strength, axial compression deformation characteristics, and deformation modulus parameters of clay. The microscopic mechanism of the synergistic effect of fiber-lime soil was analyzed by scanning electron microscope and X-ray diffraction, and then the synergistic mechanism was discussed. The results show that the addition of lime reduces the maximum dry density and increases the optimum moisture content of the clay. With an increase in lime content, the compressive strength of the soil initially exhibits a rise followed by a decline. The strain of the soil failure shows a decrease first and then an increase, indicating a brittle failure mode. Similarly, as the fiber content increases, the compressive strength of the soil also experiences an initial increase followed by a subsequent decrease. However, in this case, there is a gradual increase in failure strain suggesting a plastic failure mode. The relationship between deformation modulus and compressive strength of improved soil is linear. Lime fills up pores by reacting with the soil to form gelled substances, while fibers form a three-dimensional network structure providing growth areas for hydration products, thereby synergistically reinforcing the soil. This study can provide theoretical and technical guidance for roadbed improvement and slope repair.
-
Key words:
- coir fiber /
- lime /
- clay /
- strength /
- deformation characteristics /
- action mechanism /
- microstructure
-
-
表 1 试验用土基本物理性质
Table 1. Basic physical properties of soil for testing
参数 天然含
水率/%塑限
/%液限
/%塑性
指数最大干密度
/(g·cm−3)最优含
水率/%数值 13.5 26.2 51.3 25.1 1.7 19.6 表 2 椰壳纤维基本性质
Table 2. Basic properties of coir fiber
参数 纤维直
径/mm纤维密度
/(g·cm−3)抗拉强度/MPa 延伸率/% 初始弹性
模量/GPa数值 2.0~2.5 1.1~1.2 85.2~110.5 0.2~0.3 2.1~2.4 表 3 试验配比
Table 3. Test proportions
试验名称 试验组别 含水率/% 石灰掺量/% 纤维掺量/% 纤维长度/cm 龄期/d 击实试验 1 — 0,1,3,6,9 — — 1 无侧限抗压强度试验 1 19.6 — 0.25,0.50,0.75,1.00 1,2,3,4 7 2 最优含水率 0,1,3,6,9 — — 7 3 最优含水率 1,3,6,9 0.25,0.50,0.75,1.00 3 7 注:—表示相应试验组别不涉及此量。 -
[1] 熊雨,邓华锋,李建林,等. 火山灰增强微生物固化砂土效果的试验研究[J]. 岩土力学,2022,43(12):3403 − 3415. [XIONG Yu,DENG Huafeng,LI Jianlin,et al. Experimental study of MICP-treated sand enhanced by pozzolan[J]. Rock and Soil Mechanics,2022,43(12):3403 − 3415. (in Chinese with English abstract)]
XIONG Yu, DENG Huafeng, LI Jianlin, et al. Experimental study of MICP-treated sand enhanced by pozzolan[J]. Rock and Soil Mechanics, 2022, 43(12): 3403 − 3415. (in Chinese with English abstract)
[2] 李珍玉,欧阳淼,肖宏彬,等. 植物根系生长形态对膨胀土边坡土体抗剪强度的影响[J]. 中南大学学报(自然科学版),2022,53(1):181 − 189. [LI Zhenyu,OUYANG Miao,XIAO Hongbin,et al. Influence of root growth configuration on shear strength of expansive soil slope[J]. Journal of Central South University (Science and Technology),2022,53(1):181 − 189. (in Chinese with English abstract)] doi: 10.11817/j.issn.1672-7207.2022.01.013
LI Zhenyu, OUYANG Miao, XIAO Hongbin, et al. Influence of root growth configuration on shear strength of expansive soil slope[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 181 − 189. (in Chinese with English abstract) doi: 10.11817/j.issn.1672-7207.2022.01.013
[3] 刘亚斌,梁燊,石川,等. 青藏高原东北部黄土区柠条锦鸡儿根系的锚固效应[J]. 中国地质灾害与防治学报,2023,34(5):107 − 116. [LIU Yabin,LIANG Shen,SHI Chuan,et al. The root anchorage effect of shrub species Caragana Korshinskii Kom in the loess area of northeastern Qinghai–Tibet Plateau[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5):107 − 116. (in Chinese with English abstract)]
LIU Yabin, LIANG Shen, SHI Chuan, et al. The root anchorage effect of shrub species Caragana Korshinskii Kom in the loess area of northeastern Qinghai–Tibet Plateau[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(5): 107 − 116. (in Chinese with English abstract)
[4] JARITNGAM S,YANDELL W O,TANEERANANON P. Development of strength model of lateritic soil-cement[J]. Engineering Journal,2013,17(1):69 − 78. doi: 10.4186/ej.2013.17.1.69
[5] MULUTI S S,KALUMBA D,SOBHEE-BEETUL L,et al. Shear strength of single and multi-layer soil–geosynthetic and geosynthetic–geosynthetic interfaces using large direct shear testing[J]. International Journal of Geosynthetics and Ground Engineering,2023,9(3):33. doi: 10.1007/s40891-023-00450-1
[6] LI Lihua,ZHANG Xin,XIAO Henglin,et al. The triaxial test of polypropylene fiber reinforced fly ash soil[J]. Materials,2022,15(11):3807.
[7] 孙振兴,杨忠年,辛泽宇,等. 橡胶纤维加筋膨胀土的剪切强度与强度预测模型[J/OL]. 吉林大学学报(地球科学版),(2024-10-11)[2024-12-01]. [SUN Zhenxing,YANG Zhongnian,XIN Zeyu,et al. Shear strength and strength prediction model of rubber fiber-reinforced expansive soil[J/OL]. Journal of Jilin University (Earth Science Edition),(2024-10-11)[2024-12-01]. https://doi.org/10.13278/j.cnki.jjuese.20240001.(in Chinese with English abstract)]
SUN Zhenxing, YANG Zhongnian, XIN Zeyu, et al. Shear strength and strength prediction model of rubber fiber-reinforced expansive soil[J/OL]. Journal of Jilin University (Earth Science Edition), (2024-10-11)[2024-12-01]. https://doi.org/10.13278/j.cnki.jjuese.20240001.(in Chinese with English abstract)
[8] 宋琨,刘跃,阮迪,等. 玄武岩纤维改良弱膨胀土的强度及裂隙特性研究[J/OL]. 地质科技通报,(2024-08-09)[2024-10-11]. [SONG Kun,LIU Yue,RUAN Di,et al. Study on strength and cracking behavior of weak expansive soil improved by basalt fiber[J/OL]. Bulletin of GeologicalScience and Technology,(2024-08-09)[2024-10-11]. https://doi.org/10.19509/j.cnki.dzkq.tb20240143.(in Chinese with English abstract)]
SONG Kun, LIU Yue, RUAN Di, et al. Study on strength and cracking behavior of weak expansive soil improved by basalt fiber[J/OL]. Bulletin of GeologicalScience and Technology, (2024-08-09)[2024-10-11]. https://doi.org/10.19509/j.cnki.dzkq.tb20240143.(in Chinese with English abstract)
[9] 柴寿喜,张琳,魏丽,等. 冻融作用下纤维加筋固化盐渍土的抗压性能与微观结构[J]. 水文地质工程地质,2022,49(5):96 − 105. [CHAI Shouxi,ZHANG Lin,WEI Li,et al. Compressive properties and microstructure of saline soil added fiber and lime under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology,2022,49(5):96 − 105. (in Chinese with English abstract)]
CHAI Shouxi, ZHANG Lin, WEI Li, et al. Compressive properties and microstructure of saline soil added fiber and lime under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 96 − 105. (in Chinese with English abstract)
[10] 魏洪山,王伟志,徐永福,等. 水泥改良土的拉伸强度特性及其计算方法[J]. 水文地质工程地质,2022,49(6):81 − 89. [WEI Hongshan,WANG Weizhi,XU Yongfu,et al. Tensile strength characteristics and calculation methods of the cement stabilized soil[J]. Hydrogeology & Engineering Geology,2022,49(6):81 − 89. (in Chinese with English abstract)]
WEI Hongshan, WANG Weizhi, XU Yongfu, et al. Tensile strength characteristics and calculation methods of the cement stabilized soil[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 81 − 89. (in Chinese with English abstract)
[11] 何俊,栗志翔,石小康,等. 侵蚀环境中碱渣-矿渣固化淤泥的力学性质[J]. 水文地质工程地质,2019,46(6):83 − 89. [HE Jun,LI Zhixiang,SHI Xiaokang,et al. Mechanical properties of the soft soil stabilized with soda residue and ground granulated blast furnace slag under the erosion environment[J]. Hydrogeology & Engineering Geology,2019,46(6):83 − 89. (in Chinese with English abstract)]
HE Jun, LI Zhixiang, SHI Xiaokang, et al. Mechanical properties of the soft soil stabilized with soda residue and ground granulated blast furnace slag under the erosion environment[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 83 − 89. (in Chinese with English abstract)
[12] 李丽华,岳雨薇,肖衡林,等. 稻壳灰-水泥固化镉污染土性能及影响机制[J]. 岩土工程学报,2023,45(2):252 − 261. [LI Lihua,YUE Yuwei,XIAO Henglin,et al. Performance and influence mechanism of Cd-contaminated soil solidified by rice husk ash-cement[J]. Chinese Journal of Geotechnical Engineering,2023,45(2):252 − 261. (in Chinese with English abstract)] doi: 10.11779/CJGE20211326
LI Lihua, YUE Yuwei, XIAO Henglin, et al. Performance and influence mechanism of Cd-contaminated soil solidified by rice husk ash-cement[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 252 − 261. (in Chinese with English abstract) doi: 10.11779/CJGE20211326
[13] ZHANG Hongzhou,TIAN Limei,WANG Shuang,et al. Experimental study on engineering properties of fiber-stabilized carbide-slag-solidified soil[J]. PLoS One,2022,17(4):e0266732. doi: 10.1371/journal.pone.0266732
[14] 李丽华,臧天宝,刘永莉,等. 纤维底渣混合土循环剪切性能研究[J]. 岩石力学与工程学报,2021,40(1):196 − 205. [LI Lihua,ZANG Tianbao,LIU Yongli,et al. Cyclic shear performance of fiber bottom ash mixed soils[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):196 − 205. (in Chinese with English abstract)]
LI Lihua, ZANG Tianbao, LIU Yongli, et al. Cyclic shear performance of fiber bottom ash mixed soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(1): 196 − 205. (in Chinese with English abstract)
[15] MUÑOZ Y O,DOS SANTOS IZZO R L,DE ALMEIDA J L,et al. The role of rice husk ash,cement and polypropylene fibers on the mechanical behavior of a soil from Guabirotuba Formation[J]. Transportation Geotechnics,2021,31:100673. doi: 10.1016/j.trgeo.2021.100673
[16] DUONG N T,SATOMI T,TAKAHASHI H. Potential of corn husk fiber for reinforcing cemented soil with high water content[J]. Construction and Building Materials,2021,271:121848. doi: 10.1016/j.conbuildmat.2020.121848
[17] 吴萌. 石灰基低碳胶凝材料的设计制备与水化机理研究[D]. 南京:东南大学,2021. [WU Meng. Study on design method and hydration mechanism of lime-based low carbon cemetitious materials[D]. Nanjing:Southeast University,2021. (in Chinese with English abstract)]
WU Meng. Study on design method and hydration mechanism of lime-based low carbon cemetitious materials[D]. Nanjing: Southeast University, 2021. (in Chinese with English abstract)
[18] 杨莉,王孝锋,邹梨花,等. 混杂工艺对椰壳-大麻/聚丙烯复合材料力学性能的影响[J]. 复合材料学报,2019,36(9):2093 − 2100. [YANG Li,WANG Xiaofeng,ZOU Lihua,et al. Effects of hybrid process on mechanical properties of coir-hemp/polypropylene composites[J]. Acta Materiae Compositae Sinica,2019,36(9):2093 − 2100. (in Chinese with English abstract)]
YANG Li, WANG Xiaofeng, ZOU Lihua, et al. Effects of hybrid process on mechanical properties of coir-hemp/polypropylene composites[J]. Acta Materiae Compositae Sinica, 2019, 36(9): 2093 − 2100. (in Chinese with English abstract)
[19] 薛艳华,高明星,袁飞龙,等. 聚丙烯酰胺对石灰稳定土早期强度和破坏形式的影响[J]. 复合材料学报,2021,38(4):1283 − 1291. [XUE Yanhua,GAO Mingxing,YUAN Feilong,et al. Effect of polyacrylamide on early strength and failure form of lime stabilized soil[J]. Acta Materiae Compositae Sinica,2021,38(4):1283 − 1291. (in Chinese with English abstract)]
XUE Yanhua, GAO Mingxing, YUAN Feilong, et al. Effect of polyacrylamide on early strength and failure form of lime stabilized soil[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1283 − 1291. (in Chinese with English abstract)
[20] 陈一新,王保田,张永奇,等. 石灰改良淤泥质土的试验研究[J]. 科学技术与工程,2014,14(34):273 − 277. [Chen Yixin,Wang Baotian,Zhang Yongqi,et al Experimental study on lime improving muddy soil [J] Science Technology and Engineering,2014,14 (34):273 − 277. (in Chinese with English abstract)]
Chen Yixin, Wang Baotian, Zhang Yongqi, et al Experimental study on lime improving muddy soil [J] Science Technology and Engineering, 2014, 14 (34): 273 − 277. (in Chinese with English abstract)
[21] 中华人民共和国交通运输部. 公路土工试验规程:JTG 3430—2020[S]. 北京:人民交通出版社,2020. [Ministry of Transport of the People’s Republic of China. Test methods of soils for highway engineering:JTG 3430—2020[S]. Beijing:China Communications Press,2020. (in Chinese)]
Ministry of Transport of the People’s Republic of China. Test methods of soils for highway engineering: JTG 3430—2020[S]. Beijing: China Communications Press, 2020. (in Chinese)
[22] 中华人民共和国住房和城乡建设部. 土工试验方法标准:GB/T 50123—2019[S]. 北京:中国计划出版社,2019. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method:GB/T 50123—2019[S]. Beijing:China Planning Press,2019. (in Chinese)]
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
[23] 李丽华,余肖婷,肖衡林,等. 稻壳灰加筋土力学性能研究[J]. 岩土力学,2020,41(7):2168 − 2178. [LI Lihua,YU Xiaoting,XIAO Henglin,et al. Mechanical properties of reinforcement about rice husk ash mixed soil[J]. Rock and Soil Mechanics,2020,41(7):2168 − 2178. (in Chinese with English abstract)]
LI Lihua, YU Xiaoting, XIAO Henglin, et al. Mechanical properties of reinforcement about rice husk ash mixed soil[J]. Rock and Soil Mechanics, 2020, 41(7): 2168 − 2178. (in Chinese with English abstract)
[24] SATYANARAYANA P,BHARADWAJ C P,PATRUDU P N,et al. A study on the engineering properties of expansive soil stabilized with high volume rice husk ash[J]. International Journal of Engineering Science and Technology,2016,8:71 − 76.
[25] 祝艳波,余宏明,杨艳霞,等. 红层泥岩改良土特性室内试验研究[J]. 岩石力学与工程学报,2013,32(2):425 − 432. [ZHU Yanbo,YU Hongming,YANG Yanxia,et al. Indoor experimental research on characteristics of improved red-mudstone[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(2):425 − 432. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-6915.2013.02.026
ZHU Yanbo, YU Hongming, YANG Yanxia, et al. Indoor experimental research on characteristics of improved red-mudstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 425 − 432. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6915.2013.02.026
[26] 李丽华,岳雨薇,李文涛,等. 稻壳灰固化重金属污染土力学性能及微观结构研究[J]. 铁道科学与工程学报,2022,19(11):3275 − 3282. [LI Lihua,YUE Yuwei,LI Wentao,et al. Mechanical properties and microstructure of heavy metal contaminated soil solidified by rice husk ash[J]. Journal of Railway Science and Engineering,2022,19(11):3275 − 3282. (in Chinese with English abstract)]
LI Lihua, YUE Yuwei, LI Wentao, et al. Mechanical properties and microstructure of heavy metal contaminated soil solidified by rice husk ash[J]. Journal of Railway Science and Engineering, 2022, 19(11): 3275 − 3282. (in Chinese with English abstract)
[27] 栗培龙,裴仪,胡晋川,等. 电石渣稳定土抗压强度影响因素及预估模型研究[J]. 材料导报,2021,35(22):22092 − 22097. [LI Peilong,PEI Yi,HU Jinchuan,et al. Research on influencing factors and prediction model of compressive strength of carbide slag stabilized soil[J]. Materials Reports,2021,35(22):22092 − 22097. (in Chinese with English abstract)] doi: 10.11896/cldb.20080213
LI Peilong, PEI Yi, HU Jinchuan, et al. Research on influencing factors and prediction model of compressive strength of carbide slag stabilized soil[J]. Materials Reports, 2021, 35(22): 22092 − 22097. (in Chinese with English abstract) doi: 10.11896/cldb.20080213
[28] 宫亚峰,申杨凡,谭国金,等. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报(工学版),2018,48(3):712 − 719. [GONG Yafeng,SHEN Yangfan,TAN Guojin,et al. Unconfined compressive strength of fiber soil with different porosity[J]. Journal of Jilin University (Engineering and Technology Edition),2018,48(3):712 − 719. (in Chinese with English abstract)]
GONG Yafeng, SHEN Yangfan, TAN Guojin, et al. Unconfined compressive strength of fiber soil with different porosity[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(3): 712 − 719. (in Chinese with English abstract)
[29] 阮波,阮晨希,邓林飞,等. 聚丙烯纤维加筋水泥搅拌土拉压性能试验研究[J]. 铁道科学与工程学报,2021,18(1):95 − 103. [Ruan Bo,Ruan Chenxi,Deng Linfei,et al. Experimental study on unconfined compressive strength and splitting tensile strength of polypropylene fiber reinforced cement mixing soil[J]. Journal of Railway Science and Engineering,2021,18(1):95 − 103. (in Chinese with English abstract)]
Ruan Bo, Ruan Chenxi, Deng Linfei, et al. Experimental study on unconfined compressive strength and splitting tensile strength of polypropylene fiber reinforced cement mixing soil[J]. Journal of Railway Science and Engineering, 2021, 18(1): 95 − 103. (in Chinese with English abstract)
[30] 张亭亭,李江山,王平,等. 磷酸镁水泥固化铅污染土的应力-应变特性研究[J]. 岩土力学,2016,37(增刊1):215 − 225. [ZHANG Tingting,LI Jiangshan,WANG Ping,et al. Study on stress-strain characteristics of lead contaminated soil solidified with Trimagnesium phosphate cement [J]. Rock and Soil Mechanics,2016,37(Sup 1):215 − 225. (in Chinese with English abstract)]
ZHANG Tingting, LI Jiangshan, WANG Ping, et al. Study on stress-strain characteristics of lead contaminated soil solidified with Trimagnesium phosphate cement [J]. Rock and Soil Mechanics, 2016, 37(Sup 1): 215 − 225. (in Chinese with English abstract)
[31] 李建军,梁仁旺. 水泥土抗压强度和变形模量试验研究[J]. 岩土力学,2009,30(2):473 − 477. [LI Jianjun,LIANG Renwang. Research on compression strength and modulus of deformation of cemented soil[J]. Rock and Soil Mechanics,2009,30(2):473 − 477. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-7598.2009.02.032
LI Jianjun, LIANG Renwang. Research on compression strength and modulus of deformation of cemented soil[J]. Rock and Soil Mechanics, 2009, 30(2): 473 − 477. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2009.02.032
[32] 陈瑞敏,简文彬,张小芳,等. CSFG-FR协同作用改良淤泥固化土性能试验研究[J]. 岩土力学,2022,43(4):1020 − 1030. [CHEN Ruimin,JIAN Wenbin,ZHANG Xiaofang,et al. Experimental study on performance of sludge stabilized by CSFG-FR synergy[J]. Rock and Soil Mechanics,2022,43(4):1020 − 1030. (in Chinese with English abstract)]
CHEN Ruimin, JIAN Wenbin, ZHANG Xiaofang, et al. Experimental study on performance of sludge stabilized by CSFG-FR synergy[J]. Rock and Soil Mechanics, 2022, 43(4): 1020 − 1030. (in Chinese with English abstract)
[33] 王威,黄故. 碱处理对椰壳纤维形态结构的影响[J]. 上海纺织科技,2008,36(10):20 − 22. [WANG Wei,HUANG Gu. The influence of alkali processing on coconut fiber performance[J]. Shanghai Textile Science & Technology,2008,36(10):20 − 22. (in Chinese with English abstract)]
WANG Wei, HUANG Gu. The influence of alkali processing on coconut fiber performance[J]. Shanghai Textile Science & Technology, 2008, 36(10): 20 − 22. (in Chinese with English abstract)
[34] LI Wentao,NI Pengpeng,YI Yaolin. Comparison of reactive magnesia,quick lime,and ordinary Portland cement for stabilization/solidification of heavy metal-contaminated soils[J]. Science of the Total Environment,2019,671:741 − 753. doi: 10.1016/j.scitotenv.2019.03.270
[35] 陈仁朋,DAITA R K,DRNEVICH V P,等. 室内TDR试验监测石灰矿渣加固粘性土的物理化学反应过程[J]. 岩土工程学报,2006,28(2):249 − 255. [CHEN Renpeng,DAITA R K,DRNEVICH V P et al. Laboratory TDR monitoring of physico-chemical process in lime kiln dust stabilized clayey soils[J]. Chinese Journal of Geotechnical Engineering,2006,28(2):249 − 255. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-4548.2006.02.020
CHEN Renpeng, DAITA R K, DRNEVICH V P et al. Laboratory TDR monitoring of physico-chemical process in lime kiln dust stabilized clayey soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 249 − 255. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2006.02.020
[36] TIWARI N,SATYAM N,PUPPALA A J. Strength and durability assessment of expansive soil stabilized with recycled ash and natural fibers[J]. Transportation Geotechnics,2021,29:100556. doi: 10.1016/j.trgeo.2021.100556
[37] 杨政险,李慷,张勇,等. 天然植物纤维预处理方法对水泥基复合材料性能的影响研究进展[J]. 硅酸盐学报,2022,50(2):522 − 532. [YANG Zhengxian,LI Kang,ZHANG Yong,et al. Effect of pretreatment method of natural plant fibers on properties of cement-based materials-a short review[J]. Journal of the Chinese Ceramic Society,2022,50(2):522 − 532. (in Chinese with English abstract)]
YANG Zhengxian, LI Kang, ZHANG Yong, et al. Effect of pretreatment method of natural plant fibers on properties of cement-based materials-a short review[J]. Journal of the Chinese Ceramic Society, 2022, 50(2): 522 − 532. (in Chinese with English abstract)
[38] 章定文,曹智国,张涛,等. 碳化对水泥固化铅污染土物理力学特性的影响及其微观机理[J]. 天津大学学报(自然科学与工程技术版),2020,53(2):192 − 200. [ZHANG Dingwen,CAO Zhiguo,ZHANG Tao,et al. Effect of carbonation on physical-mechanical properties and microstructural characteristics of cement solidified lead-contaminated soils[J]. Journal of Tianjin University (Science and Technology),2020,53(2):192 − 200. (in Chinese with English abstract)]
ZHANG Dingwen, CAO Zhiguo, ZHANG Tao, et al. Effect of carbonation on physical-mechanical properties and microstructural characteristics of cement solidified lead-contaminated soils[J]. Journal of Tianjin University (Science and Technology), 2020, 53(2): 192 − 200. (in Chinese with English abstract)
-