椰壳纤维-石灰协同作用改良黏土性能试验研究

李丽华, 刘文, 白玉霞, 王翠英, 李双琴. 椰壳纤维-石灰协同作用改良黏土性能试验研究[J]. 水文地质工程地质, 2025, 52(1): 130-140. doi: 10.16030/j.cnki.issn.1000-3665.202311016
引用本文: 李丽华, 刘文, 白玉霞, 王翠英, 李双琴. 椰壳纤维-石灰协同作用改良黏土性能试验研究[J]. 水文地质工程地质, 2025, 52(1): 130-140. doi: 10.16030/j.cnki.issn.1000-3665.202311016
LI Lihua, LIU Wen, BAI Yuxia, WANG Cuiying, LI Shuangqin. Experimental study on the synergistic effect of coir fiber and lime to improve soil performance[J]. Hydrogeology & Engineering Geology, 2025, 52(1): 130-140. doi: 10.16030/j.cnki.issn.1000-3665.202311016
Citation: LI Lihua, LIU Wen, BAI Yuxia, WANG Cuiying, LI Shuangqin. Experimental study on the synergistic effect of coir fiber and lime to improve soil performance[J]. Hydrogeology & Engineering Geology, 2025, 52(1): 130-140. doi: 10.16030/j.cnki.issn.1000-3665.202311016

椰壳纤维-石灰协同作用改良黏土性能试验研究

  • 基金项目: 湖北省基金创新群体项目(2024AFA009);国家自然科学基金项目(52278347;U22A20232);湖北省高等学校优秀中青年科技创新团队项目(T2023006)
详细信息
    作者简介: 李丽华(1978—),女,博士,教授,主要从事加筋土、路基工程、环境岩土等方面研究。E-mail:researchmailbox@163.com
    通讯作者: 白玉霞(1991—),女,博士,讲师,主要从事土体加固、微生物岩土、边坡生态修复与防护等研究工作。E-mail:byxhhu@163.com
  • 中图分类号: TU443

Experimental study on the synergistic effect of coir fiber and lime to improve soil performance

More Information
  • 为了解决黏土工程性质差和椰壳纤维利用率低的问题,采用椰壳纤维与石灰协同对黏土进行加固,研究出一种绿色环保、性能高强的土体。通过击实试验、无侧限抗压强度试验研究了纤维掺量、石灰掺量等因素对加固黏土早期击实特性、抗压强度、变形特性、变形模量的影响,并通过扫描电镜和X射线衍射研究了加固黏土微观特征,揭示其协同作用机理。结果表明:石灰的掺入使得黏土最大干密度降低,最佳含水率增大;随着石灰掺量增加,土体抗压强度先增加后减小,土体破坏应变则先减小后增加,土体破坏形式呈现脆性;随着纤维掺量增加,土体抗压强度先增加后减小,土体破坏应变逐渐增加,土体破坏形式呈现塑性;改良土变形模量与抗压强度表现为一定线性关系;改良土中石灰通过与土体反应生成胶凝物质填充土体孔隙,纤维通过形成三维网状结构,并且为水化产物提供生长区域,二者协同作用加固土体。研究结果可为路基改良、边坡修复提供理论和技术指导。

  • 加载中
  • 图 1  加固材料

    Figure 1. 

    图 2  石灰XRD图

    Figure 2. 

    图 3  椰壳纤维SEM图

    Figure 3. 

    图 4  击实试验曲线

    Figure 4. 

    图 5  纤维掺量、纤维长度对土无侧限抗压强度影响

    Figure 5. 

    图 6  石灰掺量对土无侧限抗压强度的影响

    Figure 6. 

    图 7  纤维-石灰土无侧限抗压强度

    Figure 7. 

    图 8  不同纤维掺量下无侧限抗压强度拟合曲线

    Figure 8. 

    图 9  纤维土轴向应力-应变曲线

    Figure 9. 

    图 10  石灰土轴向应力-应变曲线

    Figure 10. 

    图 11  纤维-石灰土轴向应力-应变曲线

    Figure 11. 

    图 12  破坏应变试验结果

    Figure 12. 

    图 13  变形模量E50试验结果

    Figure 13. 

    图 14  E50qu的关系

    Figure 14. 

    图 15  不同土样的SEM图

    Figure 15. 

    图 16  研究对象XRD图谱分析

    Figure 16. 

    图 17  纤维-石灰土微观机制示意图

    Figure 17. 

    表 1  试验用土基本物理性质

    Table 1.  Basic physical properties of soil for testing

    参数 天然含
    水率/%
    塑限
    /%
    液限
    /%
    塑性
    指数
    最大干密度
    /(g·cm−3
    最优含
    水率/%
    数值 13.5 26.2 51.3 25.1 1.7 19.6
    下载: 导出CSV

    表 2  椰壳纤维基本性质

    Table 2.  Basic properties of coir fiber

    参数 纤维直
    径/mm
    纤维密度
    /(g·cm−3
    抗拉强度/MPa 延伸率/% 初始弹性
    模量/GPa
    数值 2.0~2.5 1.1~1.2 85.2~110.5 0.2~0.3 2.1~2.4
    下载: 导出CSV

    表 3  试验配比

    Table 3.  Test proportions

    试验名称 试验组别 含水率/% 石灰掺量/% 纤维掺量/% 纤维长度/cm 龄期/d
    击实试验 1 0,1,3,6,9 1
    无侧限抗压强度试验 1 19.6 0.25,0.50,0.75,1.00 1,2,3,4 7
    2 最优含水率 0,1,3,6,9 7
    3 最优含水率 1,3,6,9 0.25,0.50,0.75,1.00 3 7
      注:—表示相应试验组别不涉及此量。
    下载: 导出CSV
  • [1]

    熊雨,邓华锋,李建林,等. 火山灰增强微生物固化砂土效果的试验研究[J]. 岩土力学,2022,43(12):3403 − 3415. [XIONG Yu,DENG Huafeng,LI Jianlin,et al. Experimental study of MICP-treated sand enhanced by pozzolan[J]. Rock and Soil Mechanics,2022,43(12):3403 − 3415. (in Chinese with English abstract)]

    XIONG Yu, DENG Huafeng, LI Jianlin, et al. Experimental study of MICP-treated sand enhanced by pozzolan[J]. Rock and Soil Mechanics, 2022, 43(12): 3403 − 3415. (in Chinese with English abstract)

    [2]

    李珍玉,欧阳淼,肖宏彬,等. 植物根系生长形态对膨胀土边坡土体抗剪强度的影响[J]. 中南大学学报(自然科学版),2022,53(1):181 − 189. [LI Zhenyu,OUYANG Miao,XIAO Hongbin,et al. Influence of root growth configuration on shear strength of expansive soil slope[J]. Journal of Central South University (Science and Technology),2022,53(1):181 − 189. (in Chinese with English abstract)] doi: 10.11817/j.issn.1672-7207.2022.01.013

    LI Zhenyu, OUYANG Miao, XIAO Hongbin, et al. Influence of root growth configuration on shear strength of expansive soil slope[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 181 − 189. (in Chinese with English abstract) doi: 10.11817/j.issn.1672-7207.2022.01.013

    [3]

    刘亚斌,梁燊,石川,等. 青藏高原东北部黄土区柠条锦鸡儿根系的锚固效应[J]. 中国地质灾害与防治学报,2023,34(5):107 − 116. [LIU Yabin,LIANG Shen,SHI Chuan,et al. The root anchorage effect of shrub species Caragana Korshinskii Kom in the loess area of northeastern Qinghai–Tibet Plateau[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5):107 − 116. (in Chinese with English abstract)]

    LIU Yabin, LIANG Shen, SHI Chuan, et al. The root anchorage effect of shrub species Caragana Korshinskii Kom in the loess area of northeastern Qinghai–Tibet Plateau[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(5): 107 − 116. (in Chinese with English abstract)

    [4]

    JARITNGAM S,YANDELL W O,TANEERANANON P. Development of strength model of lateritic soil-cement[J]. Engineering Journal,2013,17(1):69 − 78. doi: 10.4186/ej.2013.17.1.69

    [5]

    MULUTI S S,KALUMBA D,SOBHEE-BEETUL L,et al. Shear strength of single and multi-layer soil–geosynthetic and geosynthetic–geosynthetic interfaces using large direct shear testing[J]. International Journal of Geosynthetics and Ground Engineering,2023,9(3):33. doi: 10.1007/s40891-023-00450-1

    [6]

    LI Lihua,ZHANG Xin,XIAO Henglin,et al. The triaxial test of polypropylene fiber reinforced fly ash soil[J]. Materials,2022,15(11):3807.

    [7]

    孙振兴,杨忠年,辛泽宇,等. 橡胶纤维加筋膨胀土的剪切强度与强度预测模型[J/OL]. 吉林大学学报(地球科学版),(2024-10-11)[2024-12-01]. [SUN Zhenxing,YANG Zhongnian,XIN Zeyu,et al. Shear strength and strength prediction model of rubber fiber-reinforced expansive soil[J/OL]. Journal of Jilin University (Earth Science Edition),(2024-10-11)[2024-12-01]. https://doi.org/10.13278/j.cnki.jjuese.20240001.(in Chinese with English abstract)]

    SUN Zhenxing, YANG Zhongnian, XIN Zeyu, et al. Shear strength and strength prediction model of rubber fiber-reinforced expansive soil[J/OL]. Journal of Jilin University (Earth Science Edition), (2024-10-11)[2024-12-01]. https://doi.org/10.13278/j.cnki.jjuese.20240001.(in Chinese with English abstract)

    [8]

    宋琨,刘跃,阮迪,等. 玄武岩纤维改良弱膨胀土的强度及裂隙特性研究[J/OL]. 地质科技通报,(2024-08-09)[2024-10-11]. [SONG Kun,LIU Yue,RUAN Di,et al. Study on strength and cracking behavior of weak expansive soil improved by basalt fiber[J/OL]. Bulletin of GeologicalScience and Technology,(2024-08-09)[2024-10-11]. https://doi.org/10.19509/j.cnki.dzkq.tb20240143.(in Chinese with English abstract)]

    SONG Kun, LIU Yue, RUAN Di, et al. Study on strength and cracking behavior of weak expansive soil improved by basalt fiber[J/OL]. Bulletin of GeologicalScience and Technology, (2024-08-09)[2024-10-11]. https://doi.org/10.19509/j.cnki.dzkq.tb20240143.(in Chinese with English abstract)

    [9]

    柴寿喜,张琳,魏丽,等. 冻融作用下纤维加筋固化盐渍土的抗压性能与微观结构[J]. 水文地质工程地质,2022,49(5):96 − 105. [CHAI Shouxi,ZHANG Lin,WEI Li,et al. Compressive properties and microstructure of saline soil added fiber and lime under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology,2022,49(5):96 − 105. (in Chinese with English abstract)]

    CHAI Shouxi, ZHANG Lin, WEI Li, et al. Compressive properties and microstructure of saline soil added fiber and lime under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 96 − 105. (in Chinese with English abstract)

    [10]

    魏洪山,王伟志,徐永福,等. 水泥改良土的拉伸强度特性及其计算方法[J]. 水文地质工程地质,2022,49(6):81 − 89. [WEI Hongshan,WANG Weizhi,XU Yongfu,et al. Tensile strength characteristics and calculation methods of the cement stabilized soil[J]. Hydrogeology & Engineering Geology,2022,49(6):81 − 89. (in Chinese with English abstract)]

    WEI Hongshan, WANG Weizhi, XU Yongfu, et al. Tensile strength characteristics and calculation methods of the cement stabilized soil[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 81 − 89. (in Chinese with English abstract)

    [11]

    何俊,栗志翔,石小康,等. 侵蚀环境中碱渣-矿渣固化淤泥的力学性质[J]. 水文地质工程地质,2019,46(6):83 − 89. [HE Jun,LI Zhixiang,SHI Xiaokang,et al. Mechanical properties of the soft soil stabilized with soda residue and ground granulated blast furnace slag under the erosion environment[J]. Hydrogeology & Engineering Geology,2019,46(6):83 − 89. (in Chinese with English abstract)]

    HE Jun, LI Zhixiang, SHI Xiaokang, et al. Mechanical properties of the soft soil stabilized with soda residue and ground granulated blast furnace slag under the erosion environment[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 83 − 89. (in Chinese with English abstract)

    [12]

    李丽华,岳雨薇,肖衡林,等. 稻壳灰-水泥固化镉污染土性能及影响机制[J]. 岩土工程学报,2023,45(2):252 − 261. [LI Lihua,YUE Yuwei,XIAO Henglin,et al. Performance and influence mechanism of Cd-contaminated soil solidified by rice husk ash-cement[J]. Chinese Journal of Geotechnical Engineering,2023,45(2):252 − 261. (in Chinese with English abstract)] doi: 10.11779/CJGE20211326

    LI Lihua, YUE Yuwei, XIAO Henglin, et al. Performance and influence mechanism of Cd-contaminated soil solidified by rice husk ash-cement[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 252 − 261. (in Chinese with English abstract) doi: 10.11779/CJGE20211326

    [13]

    ZHANG Hongzhou,TIAN Limei,WANG Shuang,et al. Experimental study on engineering properties of fiber-stabilized carbide-slag-solidified soil[J]. PLoS One,2022,17(4):e0266732. doi: 10.1371/journal.pone.0266732

    [14]

    李丽华,臧天宝,刘永莉,等. 纤维底渣混合土循环剪切性能研究[J]. 岩石力学与工程学报,2021,40(1):196 − 205. [LI Lihua,ZANG Tianbao,LIU Yongli,et al. Cyclic shear performance of fiber bottom ash mixed soils[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):196 − 205. (in Chinese with English abstract)]

    LI Lihua, ZANG Tianbao, LIU Yongli, et al. Cyclic shear performance of fiber bottom ash mixed soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(1): 196 − 205. (in Chinese with English abstract)

    [15]

    MUÑOZ Y O,DOS SANTOS IZZO R L,DE ALMEIDA J L,et al. The role of rice husk ash,cement and polypropylene fibers on the mechanical behavior of a soil from Guabirotuba Formation[J]. Transportation Geotechnics,2021,31:100673. doi: 10.1016/j.trgeo.2021.100673

    [16]

    DUONG N T,SATOMI T,TAKAHASHI H. Potential of corn husk fiber for reinforcing cemented soil with high water content[J]. Construction and Building Materials,2021,271:121848. doi: 10.1016/j.conbuildmat.2020.121848

    [17]

    吴萌. 石灰基低碳胶凝材料的设计制备与水化机理研究[D]. 南京:东南大学,2021. [WU Meng. Study on design method and hydration mechanism of lime-based low carbon cemetitious materials[D]. Nanjing:Southeast University,2021. (in Chinese with English abstract)]

    WU Meng. Study on design method and hydration mechanism of lime-based low carbon cemetitious materials[D]. Nanjing: Southeast University, 2021. (in Chinese with English abstract)

    [18]

    杨莉,王孝锋,邹梨花,等. 混杂工艺对椰壳-大麻/聚丙烯复合材料力学性能的影响[J]. 复合材料学报,2019,36(9):2093 − 2100. [YANG Li,WANG Xiaofeng,ZOU Lihua,et al. Effects of hybrid process on mechanical properties of coir-hemp/polypropylene composites[J]. Acta Materiae Compositae Sinica,2019,36(9):2093 − 2100. (in Chinese with English abstract)]

    YANG Li, WANG Xiaofeng, ZOU Lihua, et al. Effects of hybrid process on mechanical properties of coir-hemp/polypropylene composites[J]. Acta Materiae Compositae Sinica, 2019, 36(9): 2093 − 2100. (in Chinese with English abstract)

    [19]

    薛艳华,高明星,袁飞龙,等. 聚丙烯酰胺对石灰稳定土早期强度和破坏形式的影响[J]. 复合材料学报,2021,38(4):1283 − 1291. [XUE Yanhua,GAO Mingxing,YUAN Feilong,et al. Effect of polyacrylamide on early strength and failure form of lime stabilized soil[J]. Acta Materiae Compositae Sinica,2021,38(4):1283 − 1291. (in Chinese with English abstract)]

    XUE Yanhua, GAO Mingxing, YUAN Feilong, et al. Effect of polyacrylamide on early strength and failure form of lime stabilized soil[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1283 − 1291. (in Chinese with English abstract)

    [20]

    陈一新,王保田,张永奇,等. 石灰改良淤泥质土的试验研究[J]. 科学技术与工程,2014,14(34):273 − 277. [Chen Yixin,Wang Baotian,Zhang Yongqi,et al Experimental study on lime improving muddy soil [J] Science Technology and Engineering,2014,14 (34):273 − 277. (in Chinese with English abstract)]

    Chen Yixin, Wang Baotian, Zhang Yongqi, et al Experimental study on lime improving muddy soil [J] Science Technology and Engineering, 2014, 14 (34): 273 − 277. (in Chinese with English abstract)

    [21]

    中华人民共和国交通运输部. 公路土工试验规程:JTG 3430—2020[S]. 北京:人民交通出版社,2020. [Ministry of Transport of the People’s Republic of China. Test methods of soils for highway engineering:JTG 3430—2020[S]. Beijing:China Communications Press,2020. (in Chinese)]

    Ministry of Transport of the People’s Republic of China. Test methods of soils for highway engineering: JTG 3430—2020[S]. Beijing: China Communications Press, 2020. (in Chinese)

    [22]

    中华人民共和国住房和城乡建设部. 土工试验方法标准:GB/T 50123—2019[S]. 北京:中国计划出版社,2019. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method:GB/T 50123—2019[S]. Beijing:China Planning Press,2019. (in Chinese)]

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

    [23]

    李丽华,余肖婷,肖衡林,等. 稻壳灰加筋土力学性能研究[J]. 岩土力学,2020,41(7):2168 − 2178. [LI Lihua,YU Xiaoting,XIAO Henglin,et al. Mechanical properties of reinforcement about rice husk ash mixed soil[J]. Rock and Soil Mechanics,2020,41(7):2168 − 2178. (in Chinese with English abstract)]

    LI Lihua, YU Xiaoting, XIAO Henglin, et al. Mechanical properties of reinforcement about rice husk ash mixed soil[J]. Rock and Soil Mechanics, 2020, 41(7): 2168 − 2178. (in Chinese with English abstract)

    [24]

    SATYANARAYANA P,BHARADWAJ C P,PATRUDU P N,et al. A study on the engineering properties of expansive soil stabilized with high volume rice husk ash[J]. International Journal of Engineering Science and Technology,2016,8:71 − 76.

    [25]

    祝艳波,余宏明,杨艳霞,等. 红层泥岩改良土特性室内试验研究[J]. 岩石力学与工程学报,2013,32(2):425 − 432. [ZHU Yanbo,YU Hongming,YANG Yanxia,et al. Indoor experimental research on characteristics of improved red-mudstone[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(2):425 − 432. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-6915.2013.02.026

    ZHU Yanbo, YU Hongming, YANG Yanxia, et al. Indoor experimental research on characteristics of improved red-mudstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 425 − 432. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6915.2013.02.026

    [26]

    李丽华,岳雨薇,李文涛,等. 稻壳灰固化重金属污染土力学性能及微观结构研究[J]. 铁道科学与工程学报,2022,19(11):3275 − 3282. [LI Lihua,YUE Yuwei,LI Wentao,et al. Mechanical properties and microstructure of heavy metal contaminated soil solidified by rice husk ash[J]. Journal of Railway Science and Engineering,2022,19(11):3275 − 3282. (in Chinese with English abstract)]

    LI Lihua, YUE Yuwei, LI Wentao, et al. Mechanical properties and microstructure of heavy metal contaminated soil solidified by rice husk ash[J]. Journal of Railway Science and Engineering, 2022, 19(11): 3275 − 3282. (in Chinese with English abstract)

    [27]

    栗培龙,裴仪,胡晋川,等. 电石渣稳定土抗压强度影响因素及预估模型研究[J]. 材料导报,2021,35(22):22092 − 22097. [LI Peilong,PEI Yi,HU Jinchuan,et al. Research on influencing factors and prediction model of compressive strength of carbide slag stabilized soil[J]. Materials Reports,2021,35(22):22092 − 22097. (in Chinese with English abstract)] doi: 10.11896/cldb.20080213

    LI Peilong, PEI Yi, HU Jinchuan, et al. Research on influencing factors and prediction model of compressive strength of carbide slag stabilized soil[J]. Materials Reports, 2021, 35(22): 22092 − 22097. (in Chinese with English abstract) doi: 10.11896/cldb.20080213

    [28]

    宫亚峰,申杨凡,谭国金,等. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报(工学版),2018,48(3):712 − 719. [GONG Yafeng,SHEN Yangfan,TAN Guojin,et al. Unconfined compressive strength of fiber soil with different porosity[J]. Journal of Jilin University (Engineering and Technology Edition),2018,48(3):712 − 719. (in Chinese with English abstract)]

    GONG Yafeng, SHEN Yangfan, TAN Guojin, et al. Unconfined compressive strength of fiber soil with different porosity[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(3): 712 − 719. (in Chinese with English abstract)

    [29]

    阮波,阮晨希,邓林飞,等. 聚丙烯纤维加筋水泥搅拌土拉压性能试验研究[J]. 铁道科学与工程学报,2021,18(1):95 − 103. [Ruan Bo,Ruan Chenxi,Deng Linfei,et al. Experimental study on unconfined compressive strength and splitting tensile strength of polypropylene fiber reinforced cement mixing soil[J]. Journal of Railway Science and Engineering,2021,18(1):95 − 103. (in Chinese with English abstract)]

    Ruan Bo, Ruan Chenxi, Deng Linfei, et al. Experimental study on unconfined compressive strength and splitting tensile strength of polypropylene fiber reinforced cement mixing soil[J]. Journal of Railway Science and Engineering, 2021, 18(1): 95 − 103. (in Chinese with English abstract)

    [30]

    张亭亭,李江山,王平,等. 磷酸镁水泥固化铅污染土的应力-应变特性研究[J]. 岩土力学,2016,37(增刊1):215 − 225. [ZHANG Tingting,LI Jiangshan,WANG Ping,et al. Study on stress-strain characteristics of lead contaminated soil solidified with Trimagnesium phosphate cement [J]. Rock and Soil Mechanics,2016,37(Sup 1):215 − 225. (in Chinese with English abstract)]

    ZHANG Tingting, LI Jiangshan, WANG Ping, et al. Study on stress-strain characteristics of lead contaminated soil solidified with Trimagnesium phosphate cement [J]. Rock and Soil Mechanics, 2016, 37(Sup 1): 215 − 225. (in Chinese with English abstract)

    [31]

    李建军,梁仁旺. 水泥土抗压强度和变形模量试验研究[J]. 岩土力学,2009,30(2):473 − 477. [LI Jianjun,LIANG Renwang. Research on compression strength and modulus of deformation of cemented soil[J]. Rock and Soil Mechanics,2009,30(2):473 − 477. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-7598.2009.02.032

    LI Jianjun, LIANG Renwang. Research on compression strength and modulus of deformation of cemented soil[J]. Rock and Soil Mechanics, 2009, 30(2): 473 − 477. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2009.02.032

    [32]

    陈瑞敏,简文彬,张小芳,等. CSFG-FR协同作用改良淤泥固化土性能试验研究[J]. 岩土力学,2022,43(4):1020 − 1030. [CHEN Ruimin,JIAN Wenbin,ZHANG Xiaofang,et al. Experimental study on performance of sludge stabilized by CSFG-FR synergy[J]. Rock and Soil Mechanics,2022,43(4):1020 − 1030. (in Chinese with English abstract)]

    CHEN Ruimin, JIAN Wenbin, ZHANG Xiaofang, et al. Experimental study on performance of sludge stabilized by CSFG-FR synergy[J]. Rock and Soil Mechanics, 2022, 43(4): 1020 − 1030. (in Chinese with English abstract)

    [33]

    王威,黄故. 碱处理对椰壳纤维形态结构的影响[J]. 上海纺织科技,2008,36(10):20 − 22. [WANG Wei,HUANG Gu. The influence of alkali processing on coconut fiber performance[J]. Shanghai Textile Science & Technology,2008,36(10):20 − 22. (in Chinese with English abstract)]

    WANG Wei, HUANG Gu. The influence of alkali processing on coconut fiber performance[J]. Shanghai Textile Science & Technology, 2008, 36(10): 20 − 22. (in Chinese with English abstract)

    [34]

    LI Wentao,NI Pengpeng,YI Yaolin. Comparison of reactive magnesia,quick lime,and ordinary Portland cement for stabilization/solidification of heavy metal-contaminated soils[J]. Science of the Total Environment,2019,671:741 − 753. doi: 10.1016/j.scitotenv.2019.03.270

    [35]

    陈仁朋,DAITA R K,DRNEVICH V P,等. 室内TDR试验监测石灰矿渣加固粘性土的物理化学反应过程[J]. 岩土工程学报,2006,28(2):249 − 255. [CHEN Renpeng,DAITA R K,DRNEVICH V P et al. Laboratory TDR monitoring of physico-chemical process in lime kiln dust stabilized clayey soils[J]. Chinese Journal of Geotechnical Engineering,2006,28(2):249 − 255. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-4548.2006.02.020

    CHEN Renpeng, DAITA R K, DRNEVICH V P et al. Laboratory TDR monitoring of physico-chemical process in lime kiln dust stabilized clayey soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 249 − 255. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2006.02.020

    [36]

    TIWARI N,SATYAM N,PUPPALA A J. Strength and durability assessment of expansive soil stabilized with recycled ash and natural fibers[J]. Transportation Geotechnics,2021,29:100556. doi: 10.1016/j.trgeo.2021.100556

    [37]

    杨政险,李慷,张勇,等. 天然植物纤维预处理方法对水泥基复合材料性能的影响研究进展[J]. 硅酸盐学报,2022,50(2):522 − 532. [YANG Zhengxian,LI Kang,ZHANG Yong,et al. Effect of pretreatment method of natural plant fibers on properties of cement-based materials-a short review[J]. Journal of the Chinese Ceramic Society,2022,50(2):522 − 532. (in Chinese with English abstract)]

    YANG Zhengxian, LI Kang, ZHANG Yong, et al. Effect of pretreatment method of natural plant fibers on properties of cement-based materials-a short review[J]. Journal of the Chinese Ceramic Society, 2022, 50(2): 522 − 532. (in Chinese with English abstract)

    [38]

    章定文,曹智国,张涛,等. 碳化对水泥固化铅污染土物理力学特性的影响及其微观机理[J]. 天津大学学报(自然科学与工程技术版),2020,53(2):192 − 200. [ZHANG Dingwen,CAO Zhiguo,ZHANG Tao,et al. Effect of carbonation on physical-mechanical properties and microstructural characteristics of cement solidified lead-contaminated soils[J]. Journal of Tianjin University (Science and Technology),2020,53(2):192 − 200. (in Chinese with English abstract)]

    ZHANG Dingwen, CAO Zhiguo, ZHANG Tao, et al. Effect of carbonation on physical-mechanical properties and microstructural characteristics of cement solidified lead-contaminated soils[J]. Journal of Tianjin University (Science and Technology), 2020, 53(2): 192 − 200. (in Chinese with English abstract)

  • 加载中

(17)

(3)

计量
  • 文章访问数:  264
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2023-11-06
修回日期:  2023-12-28
刊出日期:  2025-01-15

目录