Land deformation monitoring and spatiotemporal evolution characteristics analysis of coal mine goaf in Jilin Province based on time series InSAR
-
摘要:
吉林省煤炭开采遗留的大量采空区造成严重的地表沉降,给采空区土地规划和经济结构转型升级带来了严重隐患。为填补吉林省煤炭采空区地表形变研究的空白,利用SBAS-InSAR技术对2017—2021年(Sentinel-1B降轨数据,957 景)的地表形变情况进行定量分析,并通过精度评估和现场实地调查验证 InSAR 技术监测结果的可靠性,以分析探讨吉林省煤炭采空区地表形变的发展趋势。研究结果表明:(1)营城、羊草沟和双阳等11个采空区发生了显著的地表沉降,梅河口、万宝和珲春富强采空区因沉陷治理造成地表堆填型抬升;(2)2017—2021年,吉林省煤炭采空区总沉降面积为71.47 km2,最大沉降速率为243.16 mm/a,最大累计沉降量为
1104.3 mm;(3)监测期间,吉林省煤炭采空区整体地表沉降较为缓慢,但羊草沟、浑江区和江源区等9个存在重度沉降以上的采空区,在中心区域发生了严重沉降,其中羊草沟采空区沉降最为严重;(4)吉林省煤炭采空区地表沉降主要由大规模开采地下煤炭资源引起,浅部采空区“活化”是重要因素,软弱岩类的地层岩性和工程地质特性也起到了一定的推动作用,未来沉降可能继续加剧。矿山地质环境保护与土地复垦工程的有效实施是发生堆填型抬升的直接原因。-
关键词:
- 小基线集合成孔径雷达干涉测量技术 /
- 煤炭采空区 /
- 地表形变监测 /
- 时空演化态势 /
- 吉林省
Abstract:A large number of goafs left by coal mining in Jilin Province has caused serious surface subsidence, which has brought serious hidden dangers to the goafs land and the transformation and upgrading of economic structure. To fill the gap in the research on surface deformation of coal mine goaf in Jilin Province, the SBAS-InSAR technology was used to quantitatively analyze the surface deformation from 2017 to 2021 (Sentinel-1B orbital drop data, 957 scenes). The reliability of the monitoring results of InSAR technology was verified through accuracy assessment and field investigation. The development trend of surface deformation in coal mine goaf in Jilin Province was analyzed and discussed. The results show that significant surface subsidence occurred in 11 goaf areas such as Yingcheng, Yangcaogou, and Shuangyang. The surface landfilling uplift was caused by subsidence control in the goafs of Meihekou, Wanbao, and Hunchun Fuqiang. From 2017 to 2021, the total subsidence area of coal goaf in Jilin Province is 71.47 km2, with the maximum subsidence rate of 243.16 mm/a and the maximum cumulative subsidence amount of
1104.3 mm. During the monitoring period, the overall surface subsidence of the coal goaf in Jilin Province is relatively slow. The nine goafs with more than heavy subsidence, such as Yangcaogou, Hunjiang, and Jiangyuan, have serious subsidence in the central areas, among which the Yangcaogou goaf subsidence is the most serious. The surface subsidence of coal mine goaf in Jilin Province is mainly caused by large-scale mining of underground coal resources, and the “activation” of shallow goaf is an important factor. The formation lithology and engineering geological characteristics of soft rocks also play a certain role in promoting it. -
-
表 1 研究区SAR影像数据源
Table 1. SAR image data source in the study area
序号 影像覆盖的研究区 时间范围 影像数 轨道号 1 三道、新立城、营城、羊草沟、双阳、公主岭、孟家岭 2017-01-11—2021-12-16 148 105/446 2 舒兰 2017-01-18—2021-12-11 124 32/442—443 3 蛟河、桦甸 2017-01-18—2021-12-11 124 32/447—448 4 辽源、梅河口、辉南 2017-01-11—2021-12-16 146 105/451 5 二道江、通化县、浑江、江源、临江 2017-01-18—2021-12-11 131 32/453 6 万宝 2017-01-09—2021-12-14 135 76/438 7 和龙、龙井、珲春 2017-01-01—2021-12-18 149 134/451 表 2 SBAS-InSAR数据处理超级主影像、时空基线和像对数
Table 2. Super master images, spatiotemporal baselines, and image numbers processed by SBAS-InSAR
序号 研究区 超级主影像 时间基线/d 像对数 最小时间基线/d 最大时间基线/d 最小空间基线/m 最大空间基线/m 1 三道 2019-06-30 90 705 12 84 1.80 102.24 新立城 2 营城/羊草沟 2019-06-30 90 713 12 84 1.89 110.47 3 双阳 2019-06-30 90 709 12 84 1.35 107.78 4 公主岭 2019-06-30 90 715 12 84 1.55 111.46 孟家岭 5 舒兰 2019-06-01 120 618 12 120 1.47 116.61 6 蛟河 2019-06-01 120 594 12 120 1.60 100.34 7 桦甸 2019-06-01 120 610 12 120 1.54 109.52 8 西安区 2019-07-12 120 730 12 120 1.82 101.59 东辽县 9 梅河口 2019-07-12 90 701 12 84 1.89 104.52 10 辉南 2019-04-26 90 613 12 84 1.49 123.33 11 二道江 2019-04-14 90 612 12 84 1.36 116.23 通化县 浑江区 12 江源区 2019-04-14 120 618 12 120 1.39 107.68 13 临江 2019-04-14 90 662 12 84 1.34 98.70 14 万宝 2019-10-02 180 688 12 180 1.56 136.20 15 珲春 2019-07-26 120 707 12 120 0.68 91.01 16 和龙/龙井 2019-06-20 90 719 12 84 0.77 104.40 表 3 吉林省煤炭采空区地表形变信息统计
Table 3. Information statistics of surface deformation in the mined-out areas of Jilin Province
序号 采空区 最大累计形变量/mm 最大形变速率/(mm·a−1) 平均形变速率/(mm·a−1) 面积/km2 面积占比/% 1 营城 −278.9 −55.40 −11.38 8.85 12.05 2 羊草沟 − 1104.3 −243.16 −29.32 20.51 27.92 3 双阳 −528.4 −136.36 −30.37 4.23 5.76 4 公主岭 −365.7 −65.58 −28.91 0.55 0.75 5 蛟河 −499.7 −103.73 −46.78 3.24 4.41 6 桦甸 −240.5 −51.65 −21.96 4.26 5.80 7 东辽县 −382.1 −76.00 −37.74 0.27 0.37 8 西安区 −493.8 −96.73 −42.27 3.89 5.29 9 浑江区 −770.9 −163.45 −55.37 2.47 6.08 10 江源区 −566.4 −122.11 −39.47 6.49 8.83 11 珲春 −366.1 −72.07 −21.37 16.71 22.74 12 梅河口 370.3 72.75 19.95 4.14 51.11 13 万宝 140.8 33.64 10.26 1.20 14.82 14 珲春富强 232.2 39.61 17.00 2.76 34.07 表 4 采空区地表沉降程度等级统计
Table 4. Degree grade statistics of mining area surface subsidence
采空区 面积
/km2地表沉降程度等级 轻度(10~<40 mm/a) 中度(40~<60 mm/a) 重度(60~<100 mm/a) 极重度(≥ 100 mm/a) 面积/km2 占比/% 面积/km2 占比/% 面积/km2 占比/% 面积/km2 占比/% 营城 8.85 8.84 99.89 0.01 0.11 羊草沟 20.51 16.44 80.16 1.46 7.12 1.75 8.53 0.86 4.19 双阳 4.23 3.62 85.58 0.31 7.33 0.27 6.38 0.03 0.71 公主岭 0.55 0.48 87.27 0.06 10.91 0.01 1.82 蛟河 3.24 1.68 51.85 0.94 29.01 0.62 19.14 桦甸 4.26 3.99 93.66 0.27 6.34 西安区、东辽县 4.16 2.31 55.53 1.25 30.05 0.60 14.42 浑江区 2.47 1.32 53.44 0.46 18.62 0.49 19.84 0.20 8.10 江源区 6.49 4.27 65.79 1.15 17.72 0.93 14.33 0.14 2.16 珲春 16.71 15.26 91.32 1.26 7.54 0.19 1.14 表 5 采空区地表形变年均速率标准差
Table 5. Standard deviation of average annual rate of surface deformation in mining area
序号 采空区 平均形变速率
标准差范围/(mm·a−1)平均形变速率标准差
平均值/(mm·a−1)1 营城 0.19~ 4.51 2.66 2 羊草沟 0.12~5.02 2.60 3 双阳 0.19~5.03 3.12 4 公主岭 0.10~4.14 2.82 5 蛟河 0.15~3.73 2.66 6 桦甸 0.16~4.19 2.83 7 西安区、东辽县 0.17~3.91 2.00 8 梅河口 0.21~5.95 2.99 9 浑江区 0.12~4.78 2.17 10 江源区 0.19~4.49 3.49 11 万宝 0.13~2.52 1.60 12 珲春 0.05~4.35 2.18 -
[1] 葛伟丽,李元杰,张春明,等. 基于InSAR技术的内蒙古巴彦淖尔市地面沉降演化特征及成因分析[J]. 水文地质工程地质,2022,49(4):198 − 206. [GE Weili,LI Yuanjie,ZHANG Chunming,et al. An attribution analysis of land subsidence features in the city of Bayannur in Inner Mongolia based on InSAR[J]. Hydrogeology & Engineering Geology,2022,49(4):198 − 206. (in Chinese with English abstract)]
GE Weili, LI Yuanjie, ZHANG Chunming, et al. An attribution analysis of land subsidence features in the city of Bayannur in Inner Mongolia based on InSAR[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 198 − 206. (in Chinese with English abstract)
[2] 邹友峰,邓喀中,马伟民. 矿山开采沉陷工程[M]. 徐州:中国矿业大学出版社,2003. [ZOU Youfeng,DENG Kazhong,MA Weimin. Mining subsidence engineering[M]. Xuzhou:China University of Mining & Technology Press,2003. (in Chinese)]
ZOU Youfeng, DENG Kazhong, MA Weimin. Mining subsidence engineering[M]. Xuzhou: China University of Mining & Technology Press, 2003. (in Chinese)
[3] 胡炳南,郭文砚. 我国采煤沉陷区现状、综合治理模式及治理建议[J]. 煤矿开采,2018,23(2):1 − 4. [HU Bingnan,GUO Wenyan. Mining subsidence area status,syntheses governance model and governance recommendation[J]. Coal Mining Technology,2018,23(2):1 − 4. (in Chinese with English abstract)]
HU Bingnan, GUO Wenyan. Mining subsidence area status, syntheses governance model and governance recommendation[J]. Coal Mining Technology, 2018, 23(2): 1 − 4. (in Chinese with English abstract)
[4] 杨建图,姜衍祥,周俊,等. GPS测量地面沉降的可靠性及精度分析[J]. 大地测量与地球动力学,2006,26(1):70 − 75. [YANG Jiantu,JIANG Yanxiang,ZHOU Jun,et al. Analysis on reliability and accuracy of subsidence measurement with GPS technique[J]. Journal of Geodesy and Geodynamics,2006,26(1):70 − 75. (in Chinese with English abstract)] doi: 10.3969/j.issn.1671-5942.2006.01.012
YANG Jiantu, JIANG Yanxiang, ZHOU Jun, et al. Analysis on reliability and accuracy of subsidence measurement with GPS technique[J]. Journal of Geodesy and Geodynamics, 2006, 26(1): 70 − 75. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-5942.2006.01.012
[5] XIA Yuanping,WANG Yunjia,DU Sen,et al. Integration of D-InSAR and GIS technology for identifying illegal underground mining in Yangquan District,Shanxi Province,China[J]. Environmental Earth Sciences,2018,77(8):319. doi: 10.1007/s12665-018-7488-1
[6] 张剑,柯宝贵,刘同木,等. 利用时序InSAR监测兰州市中心城区地面沉降[J]. 测绘科学,2021,46(1):99 − 107. [ZHANG Jian,KE Baogui,LIU Tongmu,et al. Surface subsidence monitoring of Lanzhou downtown area based on time series InSAR technology[J]. Science of Surveying and Mapping,2021,46(1):99 − 107. (in Chinese with English abstract)]
ZHANG Jian, KE Baogui, LIU Tongmu, et al. Surface subsidence monitoring of Lanzhou downtown area based on time series InSAR technology[J]. Science of Surveying and Mapping, 2021, 46(1): 99 − 107. (in Chinese with English abstract)
[7] 朱建军,杨泽发,李志伟. InSAR矿区地表三维形变监测与预计研究进展[J]. 测绘学报,2019,48(2):135 − 144. [ZHU Jianjun,YANG Zefa,LI Zhiwei. Recent progress in retrieving and predicting mining-induced 3D displace-ments using InSAR[J]. Acta Geodaetica et Cartographica Sinica,2019,48(2):135 − 144. (in Chinese with English abstract)] doi: 10.11947/j.AGCS.2019.20180188
ZHU Jianjun, YANG Zefa, LI Zhiwei. Recent progress in retrieving and predicting mining-induced 3D displace-ments using InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2): 135 − 144. (in Chinese with English abstract) doi: 10.11947/j.AGCS.2019.20180188
[8] 戴真印, 刘岳霖, 张丽平, 等. 基于改进时序InSAR技术的东莞地面沉降时空演变特征[J]. 中国地质灾害与防治学报,2023,34(1):58 − 67. [DAI Zhenyin, LIU Yuelin, ZHANG Liping, et al. Spatial-temporal evolution characteristics of land subsidence in Dongguan City based on improved InSAR technology[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):58 − 67.(in Chinese with English abstract)]
DAI Zhenyin, LIU Yuelin, ZHANG Liping, et al. Spatial-temporal evolution characteristics of land subsidence in Dongguan City based on improved InSAR technology[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 58 − 67.(in Chinese with English abstract)
[9] 牛地, 吴倩, 朱成林. 基于SBAS-InSAR技术的安徽省砀山县地面沉降监测[J]. 中国地质调查,2022,9(5):15 − 23. [NIU Di, WU Qian, ZHU Chenglin. Analysis of monitoring ground subsidence in Dangshan County of Anhui Province based on SBAS-InSAR technology[J]. Geological Survey of China,2022,9(5):15 − 23.(in Chinese with English abstract)]
NIU Di, WU Qian, ZHU Chenglin. Analysis of monitoring ground subsidence in Dangshan County of Anhui Province based on SBAS-InSAR technology[J]. Geological Survey of China, 2022, 9(5): 15 − 23.(in Chinese with English abstract)
[10] 姚佳明,姚鑫,陈剑,等. 基于InSAR技术的缓倾煤层开采诱发顺层岩体地表变形模式研究[J]. 水文地质工程地质,2020,47(3):135 − 146. [YAO Jiaming,YAO Xin,CHEN Jian,et al. A study of deformation mode and formation mechanism of a bedding landslide induced by mining of gently inclined coal seam based on InSAR technology[J]. Hydrogeology & Engineering Geology,2020,47(3):135 − 146. (in Chinese with English abstract)]
YAO Jiaming, YAO Xin, CHEN Jian, et al. A study of deformation mode and formation mechanism of a bedding landslide induced by mining of gently inclined coal seam based on InSAR technology[J]. Hydrogeology & Engineering Geology, 2020, 47(3): 135 − 146. (in Chinese with English abstract)
[11] 黄登冕,张聪,姚晓军,等. 矿山环境遥感监测研究进展[J]. 遥感技术与应用,2022,37(5):1043 − 1055. [HUANG Dengmian,ZHANG Cong,YAO Xiaojun,et al. Research progress of mine environment remote sensing monitoring[J]. Remote Sensing Technology and Application,2022,37(5):1043 − 1055. (in Chinese with English abstract)]
HUANG Dengmian, ZHANG Cong, YAO Xiaojun, et al. Research progress of mine environment remote sensing monitoring[J]. Remote Sensing Technology and Application, 2022, 37(5): 1043 − 1055. (in Chinese with English abstract)
[12] XU Jingmin,ZHU Weibing,XU Jialin,et al. High-intensity longwall mining-induced ground subsidence in Shendong Coalfield,China[J]. International Journal of Rock Mechanics and Mining Sciences,2021,141:104730. doi: 10.1016/j.ijrmms.2021.104730
[13] 虎小强,杨树文,闫恒,等. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感,2023,35(1):171 − 179. [HU Xiaoqiang,YANG Shuwen,YAN Heng,et al. Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area,Xinjiang[J]. Remote Sensing for Natural Resources,2023,35(1):171 − 179. (in Chinese with English abstract)]
HU Xiaoqiang, YANG Shuwen, YAN Heng, et al. Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area, Xinjiang[J]. Remote Sensing for Natural Resources, 2023, 35(1): 171 − 179. (in Chinese with English abstract)
[14] 潘光永,陶秋香,陈洋,等. 基于SBAS-InSAR的山东济阳矿区沉降监测与分析[J]. 中国地质灾害与防治学报,2020,31(4):100 − 106. [PAN Guangyong,TAO Qiuxiang,CHEN Yang,et al. Monitoring and analysis of sedimentation in Jiyang mining area of Shandong Province based on SBAS-InSAR[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):100 − 106. (in Chinese with English abstract)]
PAN Guangyong, TAO Qiuxiang, CHEN Yang, et al. Monitoring and analysis of sedimentation in Jiyang mining area of Shandong Province based on SBAS-InSAR[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(4): 100 − 106. (in Chinese with English abstract)
[15] 王洪明,李如仁,覃怡婷,等. 时间序列InSAR技术在矿区地表形变监测中的应用——以内蒙古霍林河露天矿区为例[J]. 中国地质灾害与防治学报,2022,33(2):71 − 78. [WANG Hongming,LI Ruren,QIN Yiting,et al. Application of time series InSAR technology in monitoring ground deformation of mining area:A case study at Huolinhe open pit mining area in Inner Mongolia[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):71 − 78. (in Chinese with English abstract)]
WANG Hongming, LI Ruren, QIN Yiting, et al. Application of time series InSAR technology in monitoring ground deformation of mining area: A case study at Huolinhe open pit mining area in Inner Mongolia[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 71 − 78. (in Chinese with English abstract)
[16] 李达,邓喀中,高晓雄,等. 基于SBAS-InSAR的矿区地表沉降监测与分析[J]. 武汉大学学报(信息科学版),2018,43(10):1531 − 1537. [LI Da,DENG Kazhong,GAO Xiaoxiong,et al. Monitoring and analysis of surface subsidence in mining area based on SBAS-InSAR[J]. Geomatics and Information Science of Wuhan University,2018,43(10):1531 − 1537. (in Chinese with English abstract)]
LI Da, DENG Kazhong, GAO Xiaoxiong, et al. Monitoring and analysis of surface subsidence in mining area based on SBAS-InSAR[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1531 − 1537. (in Chinese with English abstract)
[17] 张凯翔, 张占荣, 于宪煜. SBAS-InSAR和PS-InSAR技术在鲁西南某线性工程沿线地面沉降成因分析中的应用[J]. 中国地质灾害与防治学报,2022,33(4):65 − 76. [ZHANG Kaixiang, ZHANG Zhanrong, YU Xianyu. Application of SBAS-InSAR and PS-InSAR technologies in analysis of landslide subsidence along a linear infrastructure in Southwestern Shandong[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):65 − 76.(in Chinese with English abstract)]
ZHANG Kaixiang, ZHANG Zhanrong, YU Xianyu. Application of SBAS-InSAR and PS-InSAR technologies in analysis of landslide subsidence along a linear infrastructure in Southwestern Shandong[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 65 − 76.(in Chinese with English abstract)
[18] 朱晓燕,王艳丽,赵莉,等. 吉林省重点煤炭基地土地复垦工程土地整理潜力分析[J]. 吉林农业大学学报,2010,32(增刊1):60 − 63. [ZHU Xiaoyan,WANG Yanli,ZHAO Li,et al. Jilin Province key coal base land reclamation project land arrangements potential analyzes[J]. Journal of Jilin Agricultural University,2010,32(Sup 1):60 − 63. (in Chinese with English abstract)]
ZHU Xiaoyan, WANG Yanli, ZHAO Li, et al. Jilin Province key coal base land reclamation project land arrangements potential analyzes[J]. Journal of Jilin Agricultural University, 2010, 32(Sup 1): 60 − 63. (in Chinese with English abstract)
[19] 朱叶飞,朱锦旗,詹雅婷,等. 基于小基线InSAR技术监测九台营城矿区2012年地表形变[J]. 遥感技术与应用,2015,30(2):370 − 375. [ZHU Yefei,ZHU Jinqi,ZHAN Yating,et al. Monitoring Yingcheng Mine surface deformation in Jiutai city based on small baseline InSAR technology[J]. Remote Sensing Technology and Application,2015,30(2):370 − 375. (in Chinese with English abstract)]
ZHU Yefei, ZHU Jinqi, ZHAN Yating, et al. Monitoring Yingcheng Mine surface deformation in Jiutai city based on small baseline InSAR technology[J]. Remote Sensing Technology and Application, 2015, 30(2): 370 − 375. (in Chinese with English abstract)
[20] 杨航,张文春,林楠. 基于星载雷达数据的舒兰市典型矿区地面形变监测研究[J]. 测绘与空间地理信息,2020,43(12):164 − 167. [YANG Hang,ZHANG Wenchun,LIN Nan. Research on ground deformation monitoring of typical mining areas in Shulan city based on satellite radar data[J]. Geomatics & Spatial Information Technology,2020,43(12):164 − 167. (in Chinese with English abstract)] doi: 10.3969/j.issn.1672-5867.2020.12.046
YANG Hang, ZHANG Wenchun, LIN Nan. Research on ground deformation monitoring of typical mining areas in Shulan city based on satellite radar data[J]. Geomatics & Spatial Information Technology, 2020, 43(12): 164 − 167. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-5867.2020.12.046
[21] 陈怀玉. 国道丹阿线新华至英安段煤矿采空区变形特征分析[D]. 长春:吉林大学,2020. [CHEN Huaiyu. Analysis of Deformation Characteristics of Coal Mine Goaf in Xinhua-Ying’an Section of Planned Dandong-Altai National Highway[D]. Changchun:Jilin University,2020. (in Chinese with English abstract)]
CHEN Huaiyu. Analysis of Deformation Characteristics of Coal Mine Goaf in Xinhua-Ying’an Section of Planned Dandong-Altai National Highway[D]. Changchun: Jilin University, 2020. (in Chinese with English abstract)
[22] 皮士凤. 吉林省煤炭资源状况及其找煤潜力[J]. 中国煤炭地质,2008,20(11):5 − 8. [PI Shifeng. Status of coal resources and look for coal potential in Jilin Province[J]. Coal Geology of China,2008,20(11):5 − 8. (in Chinese with English abstract)] doi: 10.3969/j.issn.1674-1803.2008.11.002
PI Shifeng. Status of coal resources and look for coal potential in Jilin Province[J]. Coal Geology of China, 2008, 20(11): 5 − 8. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-1803.2008.11.002
[23] BERARDINO P,FORNARO G,LANARI R,et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2375 − 2383. doi: 10.1109/TGRS.2002.803792
[24] 李世金,张书毕,张秋昭,等. 自适应伪相干值改进的InSAR干涉图Goldstein滤波算法[J]. 金属矿山,2018(7):152 − 156. [LI Shijin,ZHANG Shubi,ZHANG Qiuzhao,et al. Improvement of Goldstein filtering algorithm for in SAR interferogram based on adaptive pseudo-correlation[J]. Metal Mine,2018(7):152 − 156. (in Chinese with English abstract)]
LI Shijin, ZHANG Shubi, ZHANG Qiuzhao, et al. Improvement of Goldstein filtering algorithm for in SAR interferogram based on adaptive pseudo-correlation[J]. Metal Mine, 2018(7): 152 − 156. (in Chinese with English abstract)
[25] 王志勇,孟庆颖. InSAR相位解缠算法在矿区沉降监测中的对比与分析[J]. 遥感信息,2014,29(6):47 − 51. [WANG Zhiyong,MENG Qingying. Comparison and analysis of phase unwrapping algorithms in mining subsidence monitoring[J]. Remote Sensing Information,2014,29(6):47 − 51. (in Chinese with English abstract)]
WANG Zhiyong, MENG Qingying. Comparison and analysis of phase unwrapping algorithms in mining subsidence monitoring[J]. Remote Sensing Information, 2014, 29(6): 47 − 51. (in Chinese with English abstract)
[26] 张玮. 时序InSAR方法监测矿区地面沉降的研究[D]. 北京:中国地质大学(北京),2021. [ZHANG Wei. Study on monitoring land subsidence in mining area by time-series InSAR method[D]. Beijing:China University of Geosciences (Beijing),2021. (in Chinese with English abstract)]
ZHANG Wei. Study on monitoring land subsidence in mining area by time-series InSAR method[D]. Beijing: China University of Geosciences (Beijing), 2021. (in Chinese with English abstract)
[27] 中国地质灾害防治工程行业协会. 地质灾害InSAR监测技术指南(试行):T/CAGHP 013—2018[S]. 北京:中国地质大学出版社,2017. [China Association of Geological Disaster Prevention and Control Engineering. Guideline of InSAR monitoring for geo-hazard:T/CAGHP 013—2018[S]. Beijing:China University of Geosciences Press,2017. (in Chinese)]
China Association of Geological Disaster Prevention and Control Engineering. Guideline of InSAR monitoring for geo-hazard: T/CAGHP 013—2018[S]. Beijing: China University of Geosciences Press, 2017. (in Chinese)
[28] 刘义新. 我国浅埋煤层快速开采下地表沉陷规律研究现状与展望[J]. 煤矿安全,2018,49(4):205 − 207. [LIU Yixin. Research status and prospect of surface subsidence laws under rapid mining of shallow coal seam in China[J]. Safety in Coal Mines,2018,49(4):205 − 207. (in Chinese with English abstract)]
LIU Yixin. Research status and prospect of surface subsidence laws under rapid mining of shallow coal seam in China[J]. Safety in Coal Mines, 2018, 49(4): 205 − 207. (in Chinese with English abstract)
[29] 朱琳,宫辉力,李小娟,等. 区域地面沉降研究进展与展望[J]. 水文地质工程地质,2024,51(4):167 − 177. [ZHU Lin,GONG Huili,LI Xiaojuan,et al. Research progress and prospect of land subsidence[J]. Hydrogeology & Engineering Geology,2024,51(4):167 − 177. (in Chinese with English abstract)]
ZHU Lin, GONG Huili, LI Xiaojuan, et al. Research progress and prospect of land subsidence[J]. Hydrogeology & Engineering Geology, 2024, 51(4): 167 − 177. (in Chinese with English abstract)
-