Geothermal characteristics and high-yield geothermal well parameters in the Baimiaozi sag of Huhe depression
-
摘要:
呼和坳陷白庙子凹陷地热地质条件优越,以往地热勘查主要围绕凹陷中心北部浅埋区热储层布置钻孔,但探获的热储埋藏浅、热储厚度相对薄,探测西南部新近系深部砂岩热储,寻找高产能地热资源是呼和浩特市地热勘查开发的重要方向。文章以白庙子凹陷西南部的TD1孔为依托,通过二维地震剖面解译、钻探、物探测井、放喷试验、水样测试分析,研究新近系热储的特征、深部热对流机制、主要参数等。研究结果表明:(1)白庙子凹陷西南部新近系地热储层厚度大,是地热资源勘查开发的有利目标区,TD1孔新近系深部热储由大厚度砂砾岩组成,热储总厚度299.5 m,占地层总厚度的40.69%;(2)TD1孔在新近系中新统
2030.9 ~2282.5 m深度共发育14层热储层,热储总厚度160.4 m,占地层总厚度的63.75%,孔隙度平均值26.27%,为TD1孔主要出水段;(3)TD1孔口水温75.0°C,孔底最高温度80.7 °C,2030.9 ~2282.5 m深度热储层孔隙度最高,井温梯度明显偏低,推测深部存在热对流;(4)TD1孔放喷试验曲线反映了深部热储层呈强富水性特征,完井稳定涌水量233.12 m3/h,单井供暖潜力达33×104 m2,为目前发现的呼和坳陷最高产能地热井。研究成果揭示了呼和坳陷白庙子凹陷西南部新近系高产能热储特征和单井供暖潜力,可为未来呼和坳陷高产能地热资源勘查开发提供参考借鉴。Abstract:The geothermal geological conditions of Baimiaozi sag in Huhe depression are favorable for geothermal exploration. Previous geothermal investigations primarily focused on boreholes around the northern shallow-buried zone of the sag center, where the thermal reservoirs are shallow and relatively thin. However, exploring deep Neogene sandstone geothermal reservoirs in the southwest of the sag represents a key direction for geothermal exploration and development in Hohhot. Based on the borehole TD1 in the southwest of Baimiaozi sag, this study analyzed the seismic data by interpretation of two dimension seismic profile, drilling, geophysical logging, blowout test, and water sample test, to study the characteristics, deep thermal convection mechanism, and main parameters of the Neogene geothermal reservoir. The results show that the Neogene geothermal reservoir in the southwest of the sag is thick, which is a favorable target for exploration and development of geothermal resources. The deep Neogene geothermal reservoir in borehole TD1 is composed of a considerable thickness of conglomeratic sandstone, with a total thickness of 299.5 m, accounting for 40.69% of the total thickness of the formation. 14 geothermal reservoir layers have been developed in the Neogene Miocene from
2030.9 m to2282.5 m deep in TD1 borehole, with a total thickness of 160.4 m, accounting for 63.75% of the formation’s total thickness and an average porosity value of 26.27%, which is the dominant water-yielding section of the borehole TD1. The wellhead temperature in the borehole TD1 is 75.0 °C, and the max bottom temperature is 80.7 °C. The geothermal gradient from2030.9 m to2282.5 m with high porosity development is significantly lower, suggesting the existence of deep heat convection. The pumping test in borehole TD1 demonstrates the reservoir’s high water yield, with a stable well flow rate of 233.12 m3/h. The heating potential with the single well is estimated at 33×104 m2, making it the highest-yielding geothermal well currently discovered in the Huhe depression. These findings highlight the characteristics of high-yield thermal storage and the single-well heating potential of the Neogene geothermal reservoir in the southwest of Baimiaozi sag, providing valuable insights for the future exploration and development of high-yield geothermal resources in the Huhe depression. -
-
表 1 TD1新近系热储出水层测井解释成果
Table 1. Main Water-yielding stratum logging results of Neogene thermal storage in borehole TD1
层 号 层位 井段/m 层厚/m 电阻率/(Ω·m) 声波时差/(μs·m−1) 孔隙度% 渗透率/(10−3 μm2) 泥质含量/% 解释结论 1 N2w 1546.4 ~1556.1 9.7 7.8 354.6 27.6 489.54 16.5 水层 2 1559.4 ~1566.0 6.6 7.2 337.7 24.8 309.66 15.9 水层 3 1570.7 ~1576.5 5.8 8.5 351.1 27.1 446.36 20.6 水层 4 1580.1 ~1583.1 3.0 7.0 336.3 24.7 310.27 37.1 水层 5 1594.5 ~1598.9 4.4 5.7 345.1 26.2 404.64 22.2 水层 6 1612.7 ~1616.1 3.4 5.5 331.3 23.9 269.11 33.4 水层 7 1633.9 ~1635.3 1.4 3.2 339.5 25.4 357.49 39.4 水层 8 1638.7 ~1642.5 3.8 3.7 341.3 19.0 303.46 40.3 水层 9 1672.3 ~1679.7 7.4 4.3 327.7 23.5 448.40 24.6 水层 10 1689.5 ~1691.3 1.8 3.6 348.0 23.9 612.68 9.8 水层 11 1710.9 ~1716.0 5.1 4.0 326.1 23.0 339.80 20.5 水层 12 1731.6 ~1734.5 2.9 5.7 298.5 18.7 114.55 23.8 水层 13 1738.5 ~1740.7 2.2 4.4 347.1 25.4 436.33 30.6 水层 14 1759.0 ~1762.3 3.3 4.4 338.8 21.4 366.21 23.1 水层 15 1781.1 ~1785.8 4.7 3.9 306.4 20.2 132.44 39.7 水层 16 1797.0 ~1803.1 6.1 4.6 298.9 20.1 139.29 25.0 水层 17 1822.1 ~1825.8 3.7 3.9 307.5 22.3 243.88 35.9 水层 18 1834.7 ~1843.6 8.9 3.9 304.5 21.8 457.45 25.1 水层 19 1861.2 ~1866.6 5.4 3.6 309.1 20.5 316.54 33.3 水层 20 1868.7 ~1872.5 3.8 4.4 306.9 16.0 138.35 43.5 水层 21 1905.8 ~1914.4 8.6 4.7 280.1 16.9 80.36 22.8 水层 22 1917.1 ~1920.2 3.1 4.0 289.2 19.4 250.97 31.9 水层 23 1922.7 ~1926.6 3.9 4.5 293.2 20.1 148.30 25.8 水层 24 1929.8 ~1931.7 1.9 4.9 282.7 14.8 66.80 41.2 水层 25 1935.4 ~1938.8 3.4 3.1 303.3 17.4 209.27 40.2 水层 26 1958.4 ~1962.2 3.8 2.7 371.6 20.4 317.99 29.4 水层 27 1966.7 ~1968.9 2.2 4.5 294.9 17.3 161.86 36.0 水层 28 1981.3 ~1984.1 2.8 2.9 329.8 20.9 406.37 45.1 水层 29 1997.3 ~2004.1 6.8 4.6 257.5 15.7 67.37 23.2 水层 30 2021.7 ~2030.9 9.2 4.9 271.0 18.2 84.56 23.8 水层 31 N1w 2042.4 ~2063.4 21.0 2.8 340.0 25.4 340.28 21.7 水层 32 2064.9 ~2109.3 44.4 3.0 353.2 27.0 515.12 27.2 水层 33 2110.9 ~2113.0 2.1 2.4 353.4 28.1 526.18 23.6 水层 34 2129.3 ~2137.3 8.0 1.9 351.8 27.5 506.15 29.1 水层 35 2138.7 ~2143.0 4.3 1.8 367.3 24.1 756.49 39.3 水层 36 2149.0 ~2171.3 22.3 1.9 350.3 26.5 480.12 23.4 水层 37 2177.9 ~2186.9 9.0 2.0 354.0 25.3 454.73 28.6 水层 38 2197.5 ~2214.8 17.3 1.6 352.0 28.3 574.54 13.5 水层 39 2216.4 ~2224.4 8.0 1.7 345.0 27.0 526.70 13.9 水层 40 2232.7 ~2238.8 6.1 2.0 336.3 25.5 351.78 11.9 水层 41 2242.6 ~2245.7 3.1 2.2 307.0 20.0 231.15 23.8 水层 42 2260.9 ~2263.6 2.7 3.9 310.2 18.1 151.35 32.3 水层 43 2267.2 ~2277.2 10.0 1.7 344.7 27.2 463.48 17.0 水层 44 2280.4 ~2282.5 2.1 1.8 353.6 17.6 77.36 10.7 水层 表 2 TD1孔放喷试验水文地质参数
Table 2. Blowout test results of hydrogeological parameters for TD1 borehole
落程 放喷时间/h 稳定延续
时间/h热水头
/m稳定动
水位/m涌水量
/(m3·h−1)降深
/m单位涌水量
/(m3·h−1·m−1)出水温度
/°C抽水管
半径/m含水层
厚度/m渗透系数
/(m·d−1)影响半径
/m第一落程 72.00 71.50 +58.12 +16.81 233.12 41.31 5.64 75.0 0.1183 299.5 0.57 312 第二落程 96.00 95.54 +27.81 170.00 30.31 5.61 75.0 0.1183 299.5 0.54 223 第三落程 48.00 47.54 +37.13 117.98 20.99 5.62 74.5 0.1183 299.5 0.52 151 第四落程 24.00 23.52 +47.45 60.51 10.67 5.67 74.5 0.1183 299.5 0.47 73 注:四个落程的渗透系数平均值为0.51 m/d。 表 3 地热钻孔热储参数对比
Table 3. Comparison of geothermal borehole and thermal storage parameters
孔号 井深/m 热储厚度/m 砂厚比/ $ \% $ 平均孔隙度/ $ \% $ 单位涌水量/(m3·h−1·m−1) 孔口出水温度/°C 构造位置 HR5 2404 180.5 N2w:49.0 42.72 20.06 0.85 56.0 凹陷东北部 N1w:114.1 22.02 21.24 E1l:17.4 5.96 22.33 HR6 2400 218.8 N2w:81.3 11.24 16.15 1.46 64.0 凹陷北中部 N1w:137.5 33.54 20.71 HR10 2206 226.1 E3l:226.1 38.45 25.81 4.12 66.0 凹陷北部 TD1 2552 299.5 N2w:139.1 28.71 21.33 5.64 75.0 凹陷西南部 N1w:160.4 63.75 26.27 表 4 TD1孔与呼和坳陷主要地热井基本情况对比表
Table 4. Basic parameters comparison between main geothermal wells in the Huhe depression and borehole TD1
序号 位置/编号 井深
/m利用段
深度/m热储时代 热储
岩性涌水量
/(m3·h−1)单位涌水量
/(m3·h−1·m−1)井口水温
/°C地热井产能
/kW资料
来源1 土默特左旗塔布赛村/TD1 2552 1546.4 ~2282.5 N2w-N1w 砂砾岩 233.12 5.64 75.0 17783.85 本研究,2021年 2 土默特右旗巧儿气村/HBDR2 3016 2288.3 ~2997.0 N2w-N1w 粗砂岩 201.60 1.58 82.0 17068.74 文献[20] 3 土默特左旗独立坝村/HBDR3 2221 1378.10 ~2210.1 N1w-E1l 细砂岩 132.99 2.84 62.0 8135.50 4 土默特左旗后红岱村/R10 2206 1600.3 ~2106.3 E1l 粗砂岩 164.75 4.51 66.0 10844.80 5 土默特左旗台阁牧地区/HR5 2404 2120.0 ~2284.3 N2w-N1w-E1l 细砂岩 73.66 0.85 56.0 3992.06 6 土默特左旗毕克齐/HR6 2400 1267.0 ~2393.5 N2w-N1w 细砂岩 116.70 1.46 64.0 7410.43 7 达拉特旗树林召/ HR7 2602 1884.40 ~2601.0 N2w-N1w 粗砂岩 122.58 1.21 66.0 8068.93 8 土默特右旗萨拉齐/HR8 2404 1440.0 ~2356.0 N2w-N1w 粗砂岩 89.51 1.04 53.0 4538.77 9 包头市滨河新区/HR9 2604 1577.7 ~2581.8 N2w-N1w 粗砂岩 119.30 1.58 64.0 7575.53 -
[1] 王贵玲,刘彦广,朱喜,等. 中国地热资源现状及发展趋势[J]. 地学前缘,2020,27(1):1 − 9. [WANG Guiling,LIU Yanguang,ZHU Xi,et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers,2020,27(1):1 − 9. (in Chinese with English abstract)]
WANG Guiling, LIU Yanguang, ZHU Xi, et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers, 2020, 27(1): 1 − 9. (in Chinese with English abstract)
[2] 汪洋,张旭虎,蒲丛林,等. 河北廊坊南部地区地热水化学特征及成因机制[J]. 地质通报,2022,41(9):1698 − 1706. [WANG Yang,ZHANG Xuhu,PU Conglin,et al. The hydrochemical characteristics of geothermal water and its formation in the South Langfang,Hebei Province[J]. Geological Bulletin of China,2022,41(9):1698 − 1706. (in Chinese with English abstract)] doi: 10.12097/j.issn.1671-2552.2022.09.017
WANG Yang, ZHANG Xuhu, PU Conglin, et al. The hydrochemical characteristics of geothermal water and its formation in the South Langfang, Hebei Province[J]. Geological Bulletin of China, 2022, 41(9): 1698 − 1706. (in Chinese with English abstract) doi: 10.12097/j.issn.1671-2552.2022.09.017
[3] 尹政,柳永刚,张旭儒,等. 张掖盆地地热资源赋存特征及成因分析[J]. 水文地质工程地质,2023,50(1):168 − 178. [YIN Zheng,LIU Yonggang,ZHANG Xuru,et al. An analysis of the endowment characteristics and geneses of geothermal resources in the Zhangye Basin[J]. Hydrogeology & Engineering Geology,2023,50(1):168 − 178. (in Chinese with English abstract)]
YIN Zheng, LIU Yonggang, ZHANG Xuru, et al. An analysis of the endowment characteristics and geneses of geothermal resources in the Zhangye Basin[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 168 − 178. (in Chinese with English abstract)
[4] 杜先利,王泓博,赵容生,等. 松辽盆地南部大情字井区青山口组地热水化学特征及成因模式[J]. 地质科技通报,2024,43(3):22 − 35. [DU Xianli,WANG Hongbo,ZHAO Rrongsheng,et al. Geothermal chemical characteristics and genetic model of the Qingshankou Formation in the Daqingzijing area,southern Songliao Basin[J]. Bulletin of Geological Science and Technology,2024,43(3):22 − 35. (in Chinese with English abstract)]
DU Xianli, WANG Hongbo, ZHAO Rrongsheng, et al. Geothermal chemical characteristics and genetic model of the Qingshankou Formation in the Daqingzijing area, southern Songliao Basin[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 22 − 35. (in Chinese with English abstract)
[5] 张莹,任战利,兰华平,等. 关中盆地新近系蓝田−灞河组热储层物性及渗流特征研究[J]. 地质通报,2024,43(5):712−725. [ZHANG Ying,REN Zhanli,LAN Huaping,et al. [Physical properties and percolation characteristics of Neogene Lantian−Bahe Formation thermal reservoir in Guanzhong Basin. Geological Bulletin of China,2024,43(5):712−725. (in Chinese with English abstract)]
ZHANG Ying, REN Zhanli, LAN Huaping, et al. [Physical properties and percolation characteristics of Neogene Lantian−Bahe Formation thermal reservoir in Guanzhong Basin. Geological Bulletin of China, 2024, 43(5): 712−725. (in Chinese with English abstract)
[6] 蔺文静,刘志明,王婉丽,等. 中国地热资源及其潜力评估[J]. 中国地质,2013,40(1):312 − 321. [LIN Wenjing,LIU Zhiming,WANG Wanli,et al. The assessment of geothermal resources potential of China[J]. Geology in China,2013,40(1):312 − 321. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-3657.2013.01.021
LIN Wenjing, LIU Zhiming, WANG Wanli, et al. The assessment of geothermal resources potential of China[J]. Geology in China, 2013, 40(1): 312 − 321. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3657.2013.01.021
[7] 许天福,陈敬宜,冯波,等. 地热资源开发过程中潜在地下水环境问题[J]. 吉林大学学报(地球科学版),2023,53(4):1149 − 1162. [XU Tianfu,CHEN Jingyi,FENG Bo,et al. Possible problens of groundwater environment in the exploitation of geothermal energy[J]. Journal of Jinlin University(Earth Science Edition),2023,53(4):1149 − 1162. (in Chinese with English abstract)]
XU Tianfu, CHEN Jingyi, FENG Bo, et al. Possible problens of groundwater environment in the exploitation of geothermal energy[J]. Journal of Jinlin University(Earth Science Edition), 2023, 53(4): 1149 − 1162. (in Chinese with English abstract)
[8] 汪集旸,黄少鹏. 中国大陆地区大地热流数据汇编[J]. 地质科学,1988(2):196 − 204. [WANG Jiyang,HUANG Shaopeng. Compilation of heat flowdata for continental area of China[J]. Scientia Geology Sinica,1988(2):196 − 204. (in Chinese with English abstract)]
WANG Jiyang, HUANG Shaopeng. Compilation of heat flowdata for continental area of China[J]. Scientia Geology Sinica, 1988(2): 196 − 204. (in Chinese with English abstract)
[9] 陈墨香,汪集旸,邓孝. 中国地热资源-形成特点和潜力评价[M]. 北京:科学出版社,1994. [CHEN Moxiang,WANG Jiyang,DENG Xiao. Geothermal resources in China-Formation characteristics and potential evaluation[M]. Beijing:Science Press,1994. (in Chinese)]
CHEN Moxiang, WANG Jiyang, DENG Xiao. Geothermal resources in China-Formation characteristics and potential evaluation[M]. Beijing: Science Press, 1994. (in Chinese)
[10] 邱楠生. 中国大陆地区沉积盆地热状况剖面[J]. 地球科学进展,1998,13(5):447 − 451. [QIU Nansheng. Thermal status profile in terrestrial sedimentary basins in china[J]. Advances in Earth Sciences,1998,13(5):447 − 451. (in Chinese with English abstract)] doi: 10.3321/j.issn:1001-8166.1998.05.005
QIU Nansheng. Thermal status profile in terrestrial sedimentary basins in china[J]. Advances in Earth Sciences, 1998, 13(5): 447 − 451. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-8166.1998.05.005
[11] 邱楠生. 不同类型沉积盆地热演化成因模式探讨[J]. 石油勘探与开发,2000,27(2):15 − 17. [QIU Nansheng. Thermal evolution models for different types of basin[J]. Petroleum Exploration and Development,2000,27(2):15 − 17. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-0747.2000.02.005
QIU Nansheng. Thermal evolution models for different types of basin[J]. Petroleum Exploration and Development, 2000, 27(2): 15 − 17. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-0747.2000.02.005
[12] 王贵玲,张薇,梁继运,等. 中国地热资源潜力评价[J]. 地球学报,2017,38(4):449 − 459. [Wang Guiling,ZHANG Wei,LIANG Jiyun,et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica,2017,38(4):449 − 459(in Chinese with English abstract)] doi: 10.3975/cagsb.2017.04.02
Wang Guiling, ZHANG Wei, LIANG Jiyun, et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 2017, 38(4): 449 − 459(in Chinese with English abstract) doi: 10.3975/cagsb.2017.04.02
[13] 李虎平,霍改兰,冯宝爱,等. 内蒙古自治区地热资源现状调查评价与区划[R]. 内蒙古自治区地质调查研究院,2016. [LI Huping,Huo Gailan,Feng Baoai,et al. Investigation,evaluation and zoning of geothermal resources in Inner Mongolia[R]. Geological survey and Research Institute of Inner Mongolia,2016.]
LI Huping, Huo Gailan, Feng Baoai, et al. Investigation, evaluation and zoning of geothermal resources in Inner Mongolia[R]. Geological survey and Research Institute of Inner Mongolia, 2016.
[14] 何康宁. 河套盆地呼和坳陷油气成藏地质条件分析[D]. 西安:西安石油大学,2015. [HE Kangning. The analysis of petroleum accumulation geological conditions in HuHe depression of HeTao Bain[D]. Xi’an:Xi’an Shiyou University,2015. (in Chinese with English abstract)]
HE Kangning. The analysis of petroleum accumulation geological conditions in HuHe depression of HeTao Bain[D]. Xi’an: Xi’an Shiyou University, 2015. (in Chinese with English abstract)
[15] 胡显穆,常传炜,张文力,等. 内蒙古河套盆地石油普查现阶段评价报告[R]. 地质矿产部第三石油普查勘探大队,1984. [Hu Xianmu,Chang Chuanwei,Zhang Wenli,et al. Evaluation report on the current stage of petroleum census in Hetao Basin,Inner Mongolia[R]. The Third Petroleum Survey and Exploration Brigade of the Ministry of Geology and Mineral Resources,1984. (in Chinese)]
Hu Xianmu, Chang Chuanwei, Zhang Wenli, et al. Evaluation report on the current stage of petroleum census in Hetao Basin, Inner Mongolia[R]. The Third Petroleum Survey and Exploration Brigade of the Ministry of Geology and Mineral Resources, 1984. (in Chinese)
[16] 高仰才,葛玉玮. 内蒙古地热资源成因类型及开发前景初探[J]. 西部资源,2004(3):91 − 95. [GAO Yangcai,GE Yuwei. A preliminary study on genetic types and prospect for geothermal development in inner mongolian autonomous region[J]. Westem Resources,2004(3):91 − 95. (in Chinese with English abstract)]
GAO Yangcai, GE Yuwei. A preliminary study on genetic types and prospect for geothermal development in inner mongolian autonomous region[J]. Westem Resources, 2004(3): 91 − 95. (in Chinese with English abstract)
[17] 闫岩,张迪,赵国春,等. 内蒙古自治区地热资源分布特征与潜力评价[J]. 干旱区资源与环境,2017,31(10):51 − 57. [YAN Yan,ZHANG Di,ZHAO Guochun,et al. Distribution characteristics and potential evaluation of geothermal resources in Inner Mongolia[J]. Journal of Arid Land Resources and Environment,2017,31(10):51 − 57. (in Chinese with English abstract)]
YAN Yan, ZHANG Di, ZHAO Guochun, et al. Distribution characteristics and potential evaluation of geothermal resources in Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2017, 31(10): 51 − 57. (in Chinese with English abstract)
[18] 赵红利. 内蒙古自治区地热资源研究[J]. 西部资源,2012(2):185. [ZHAO Hongli. Research on geothermal resources in Inner Mongolia autonomous region[J]. Western Resources,2012(2):185. (in Chinese with English abstract)]
ZHAO Hongli. Research on geothermal resources in Inner Mongolia autonomous region[J]. Western Resources, 2012(2): 185. (in Chinese with English abstract)
[19] 王贵玲,刘志明,蔺文静. 鄂尔多斯周缘地质构造对地热资源形成的控制作用[J]. 地质学报,2004,78(1):44 − 51. [WANG Guiling,LIU Zhiming,LIN Wenjing. Tectonic control of geothermal resources in the peripheral of ordos basin[J]. Acta Geologica Sinica,2004,78(1):44 − 51. (in Chinese with English abstract)] doi: 10.3321/j.issn:0001-5717.2004.01.006
WANG Guiling, LIU Zhiming, LIN Wenjing. Tectonic control of geothermal resources in the peripheral of ordos basin[J]. Acta Geologica Sinica, 2004, 78(1): 44 − 51. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.2004.01.006
[20] 杨少勇,杨子龙. 内蒙古自治区呼和浩特市毕克齐地区地热资源预可行性勘查[R]. 内蒙古自治区第七地质矿产勘查开发院,2018. [Yang Shaoyong,Yang Zilong. Preliminary feasibility exploration of geothermal resources in Bikeqi,Huhhot,Inner Mongolia Autonomous Region[R]. Inner Mongolia Autonomous Region Seventh Geological and Mineral Exploration and Development Institute,2018. (in Chinese)]
Yang Shaoyong, Yang Zilong. Preliminary feasibility exploration of geothermal resources in Bikeqi, Huhhot, Inner Mongolia Autonomous Region[R]. Inner Mongolia Autonomous Region Seventh Geological and Mineral Exploration and Development Institute, 2018. (in Chinese)
[21] 杨红玉,葛晓东,王巍伟,等. 内蒙古自治区呼包平原地热资源综合勘查评价[R]. 内蒙古第三地质矿产勘查开发有限责任公司,2022. [Yang Hongyu,Ge Xiaodong,Wang Weiwei,et al. Comprehensive exploration and evaluation of geothermal resources in the Hubao Plain of Inner Mongolia Autonomous Region[R]. Inner Mongolia Third Geological and Mineral Exploration and Development Co. Ltd. ,2022. (in Chinese)]
Yang Hongyu, Ge Xiaodong, Wang Weiwei, et al. Comprehensive exploration and evaluation of geothermal resources in the Hubao Plain of Inner Mongolia Autonomous Region[R]. Inner Mongolia Third Geological and Mineral Exploration and Development Co. Ltd. , 2022. (in Chinese)
[22] 任兆刚,任继成,贾松豪,等. 内蒙古自治区土默特左旗台阁牧地热资源预可行性勘查(地热井施工)[R]. 内蒙古地质工程有限责任公司,2018. [Ren Zhaogang,Ren Jicheng,Jia Songhao,et al. Preliminary feasibility exploration of geothermal resources in Taige,Tumed Left Banner,Inner Mongolia Autonomous Region(geothermal well construction)[R]. Inner Mongolia Geological Engineering Co. Ltd. ,2018. (in Chinese)]
Ren Zhaogang, Ren Jicheng, Jia Songhao, et al. Preliminary feasibility exploration of geothermal resources in Taige, Tumed Left Banner, Inner Mongolia Autonomous Region(geothermal well construction)[R]. Inner Mongolia Geological Engineering Co. Ltd. , 2018. (in Chinese)
[23] 石宇昕. 河套盆地构造特征研究进展[J]. 云南化工,2019,46(10):50 − 51. [SHI Yuxin. Advances in research on structural characteristics of Hetao Basin[J]. Yunnan Chemical Technology,2019,46(10):50 − 51. (in Chinese with English abstract)]
SHI Yuxin. Advances in research on structural characteristics of Hetao Basin[J]. Yunnan Chemical Technology, 2019, 46(10): 50 − 51. (in Chinese with English abstract)
[24] 杨华,李民才,崔永平,等. 河套盆地生物气成藏条件及勘探前景[J]. 石油地质,2005,10(3):16 − 21. [YANG Hua,LI Mincai,CUI Yongping,et al. Accumulation condition and exploration prosects of biogenic gas in Hetao Basin[J]. Petroleum Geolgy,2005,10(3):16 − 21. (in Chinese with English abstract)]
YANG Hua, LI Mincai, CUI Yongping, et al. Accumulation condition and exploration prosects of biogenic gas in Hetao Basin[J]. Petroleum Geolgy, 2005, 10(3): 16 − 21. (in Chinese with English abstract)
[25] 淡伟宁,陈树光,李志军,等. 河套盆地油气勘探新领域及有利方向[J]. 石油学报,2023,44(12):2217 − 2230. [DAN Weining,CHEN Shuguang,LI Zhijun,et al. New fields and favorable directions for oil-gas exploration in Hetao Basin[J]. Acta Petrolei Sinica,2023,44(12):2217 − 2230. (in Chinese with English abstract)] doi: 10.7623/syxb202312013
DAN Weining, CHEN Shuguang, LI Zhijun, et al. New fields and favorable directions for oil-gas exploration in Hetao Basin[J]. Acta Petrolei Sinica, 2023, 44(12): 2217 − 2230. (in Chinese with English abstract) doi: 10.7623/syxb202312013
[26] 姚建国. 河套盆地呼和地区毕探1井完井地质总结报告[R]. 长庆石油勘探局内蒙河套钻探前线指挥部,1988. [Yao Jianguo. Geological summary report on completion of well Bitan 1 in Huhe area,Hetao Basin[R]. Changqing Petroleum Exploration Bureau Inner Mongolia Hetao Drilling Front Headquarters,1988. (in Chinese)]
Yao Jianguo. Geological summary report on completion of well Bitan 1 in Huhe area, Hetao Basin[R]. Changqing Petroleum Exploration Bureau Inner Mongolia Hetao Drilling Front Headquarters, 1988. (in Chinese)
[27] 张艳,亢俊健,雷雨. 反射波二维地震在托克托地区地热勘察中的应用[J]. 人民珠江,2015,36(6):35 − 38. [ZHANG Yan,KANG Junjian,LEI Yu. Application of reflection wave of 2D seismic survey to geothermal exploration in Tuo Ke-tuo area[J]. Pearl River,2015,36(6):35 − 38. (in Chinese with English abstract)] doi: 10.3969/j.issn.1001-9235.2015.06.009
ZHANG Yan, KANG Junjian, LEI Yu. Application of reflection wave of 2D seismic survey to geothermal exploration in Tuo Ke-tuo area[J]. Pearl River, 2015, 36(6): 35 − 38. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-9235.2015.06.009
[28] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 地热资源地质勘查规范:GB/T 11615—2010[S]. 北京:中国标准出版社,2011. [General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China. Geological exploration specification for geothermal resources:GB/T 11615—2010[S]. Beijing:Standards Press of China,2010. (in Chinese)].]
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Geological exploration specification for geothermal resources: GB/T 11615—2010[S]. Beijing: Standards Press of China, 2010. (in Chinese)].
[29] 地质矿产部水文地质工程地质技术方法研究队. 水文地质手册[M].2版. 北京:地质出版社,2012. [Hydrogeological Engineering Geological Technology Method Research Team of the Ministry of Geology and Mineral Resources. Hydrogeological handbook[M]. 2nd ed. Beijing:Geological Publishing House,2012. (in Chinese)]
Hydrogeological Engineering Geological Technology Method Research Team of the Ministry of Geology and Mineral Resources. Hydrogeological handbook[M]. 2nd ed. Beijing: Geological Publishing House, 2012. (in Chinese)
[30] 陈常兴,刘佳,叶树刚. 地温测量方法研究与应用——以淮南矿区为例[J]. 煤炭科学技术,2020,48(5):157 − 163. [CHEN Changxing,LIU Jia,YE Shugang. Study and application on ground temperature measurement methods:Taking Huainan Mining Area as an example[J]. Coal Science and Technology,2020,48(5):157 − 163. (in Chinese with English abstract)]
CHEN Changxing, LIU Jia, YE Shugang. Study and application on ground temperature measurement methods: Taking Huainan Mining Area as an example[J]. Coal Science and Technology, 2020, 48(5): 157 − 163. (in Chinese with English abstract)
[31] GIGGENBACH W F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta,1988,52(12):2749 − 2765. doi: 10.1016/0016-7037(88)90143-3
[32] 吴爱民,马峰,王贵玲,等. 雄安新区深部岩溶热储探测与高产能地热井参数研究[J]. 地球学报,2018,39(5):523 − 532. [WU Aimin,MA Feng,WANG Guiling,et al. A study of deep-seated karst geothermal reservoir exploration and huge capacity geothermal well parameters in Xiongan new area[J]. Acta Geoscientica Sinica,2018,39(5):523 − 532. (in Chinese with English abstract)] doi: 10.3975/cagsb.2018.071104
WU Aimin, MA Feng, WANG Guiling, et al. A study of deep-seated karst geothermal reservoir exploration and huge capacity geothermal well parameters in Xiongan new area[J]. Acta Geoscientica Sinica, 2018, 39(5): 523 − 532. (in Chinese with English abstract) doi: 10.3975/cagsb.2018.071104
[33] 王贵玲,高俊,张保建,等. 雄安新区高阳低凸起区雾迷山组热储特征与高产能地热井参数研究[J]. 地质学报,2020,94(7):1970 − 1980. [WANG Guiling,GAO Jun,ZHANG Baojian,et al. Study on the thermal storage characteristics of the Wumishan Formation and huge capacity geothermal well parameters in the Gaoyang low uplift area of Xiong’an New Area[J]. Acta Geologica Sinica,2020,94(7):1970 − 1980. (in Chinese with English abstract)] doi: 10.3969/j.issn.0001-5717.2020.07.006
WANG Guiling, GAO Jun, ZHANG Baojian, et al. Study on the thermal storage characteristics of the Wumishan Formation and huge capacity geothermal well parameters in the Gaoyang low uplift area of Xiong’an New Area[J]. Acta Geologica Sinica, 2020, 94(7): 1970 − 1980. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2020.07.006
-