Application and prospects of machine learning for rockfalls, landslides and debris flows
-
摘要:
崩塌、滑坡、泥石流是常见的山区斜坡地质灾害,对人民生命财产安全构成严重威胁。计算机技术的迅速发展和“大数据”时代的到来,为崩塌、滑坡和泥石流灾害风险防控提供了新动力,人工智能成为备受关注的前沿研究内容,而机器学习算法是其中应用最为广泛的方法之一。在大量文献调研的基础上,从经典机器学习算法和深度学习算法2个方面综述了机器学习算法在崩滑流灾害领域的应用,并对目前存在的问题和未来发展方向进行阐述。总结认为:(1)经典机器学习算法可分为监督学习、无监督学习和强化学习3种,广泛应用在滑坡和泥石流灾害的易发性评价中,普遍认为随机森林模型具有较高的预测精度和建模适应能力;(2)常用的深度学习架构包括自编码器、深度置信网络、卷积神经网络和循环神经网络4类,主要应用于崩滑流灾害的识别、易发性评价及位移预测;(3)未来研究需重点加强数据质量与数量、提升模型的可解释性、增强模型可靠性与泛化性、构建实时监测预警系统,推动实现地质灾害的自动识别和快速响应。研究结果为采用机器学习开展斜坡地质灾害防灾减灾工作提供支撑和研究方向。
Abstract:Rockfalls, landslides, and debris flows present significant threats to the safety of mountainous communities globally. With the rapid development of computer technology and the onset of the “big data” era, new avenues and momentum have emerged in disaster prevention and mitigation. Artificial intelligence, notably machine learning algorithms, has emerged as a hot point in this domain. Drawing upon an extensive literature review, this paper provides an overview of the application of machine learning algorithms, encompassing classical and deep learning methodologies. The current issues and future development directions are also discussed. This study highlights the critical role of classical machine learning algorithms—such as supervised, unsupervised, and reinforcement learning in assessing the susceptibility to landslides and debris flow hazards. Notably, the random forest model stands out for its high predictive accuracy and versatile modeling adaptability, making it a dependable tool for landslide susceptibility prediction. Deep learning architectures, including autoencoders, deep belief networks, convolutional neural networks, and recurrent neural networks, are instrumental in hazard identification, susceptibility assessment, and displacement prediction. Future research should prioritize enhancing data quality and quantity, optimizing model interpretability, improving model reliability and generalization, and establishing real-time monitoring and warning systems for automatic identification and rapid response to geological hazards. This study provides support and research directions for the prevention and mitigation of slope geological hazards using machine learning techniques.
-
-
表 1 传统机器学习技术在滑坡识别上的应用效果与应用范围
Table 1. The application effect and scope of classic machine learning technology
方法 识别效果 优点 缺点 应用范围 最大似然法(MLE) 较差 简单,易实现 训练样本必须超过波段数 波段较少的数据 支持向量机(SVM) 小数据集较好,
大数据集较差泛化能力比较强,无须进行
数据降维,易解释对核函数以及参数敏感,
大样本时,效率并不是很高小样本、非线性
识别问题随机森林(RF) 小数据集较差,
大数据集较好泛化能力强,训练速度快,不用做
特征选择,具有稳定的可移植性解释性差 大规模数据和
高维特征方面 -
[1] 刘传正. 地质灾害预警工程体系探讨[J]. 水文地质工程地质,2000,27(4):1 − 4. [LIU Chuanzheng. Study on the forecasting-warning engineering system for the geo-hazards mitigation[J]. Hydrogeology and Engineering Geology,2000,27(4):1 − 4. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-3665.2000.04.001
LIU Chuanzheng. Study on the forecasting-warning engineering system for the geo-hazards mitigation[J]. Hydrogeology and Engineering Geology, 2000, 27(4): 1 − 4. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2000.04.001
[2] FROUDE M J,PETLEY D N. Global fatal landslide occurrence from 2004 to 2016[J]. Natural Hazards and Earth System Sciences,2018,18(8):2161 − 2181. doi: 10.5194/nhess-18-2161-2018
[3] 殷跃平,高少华. 高位远程地质灾害研究:回顾与展望[J]. 中国地质灾害与防治学报,2024,35(1):1 − 18. [YIN Yueping,GAO Shaohua. Research on high-altitude and long-runout rockslides:Review and prospects[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1):1 − 18. (in Chinese with English abstract)]
YIN Yueping, GAO Shaohua. Research on high-altitude and long-runout rockslides: Review and prospects[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 1 − 18. (in Chinese with English abstract)
[4] 许强. 对地质灾害隐患早期识别相关问题的认识与思考[J]. 武汉大学学报(信息科学版),2020,45(11):1651 − 1659. [XU Qiang. Understanding and consideration of related issues in early identification of potential geohazards[J]. Geomatics and Information Science of Wuhan University,2020,45(11):1651 − 1659. (in Chinese with English abstract)]
XU Qiang. Understanding and consideration of related issues in early identification of potential geohazards[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1651 − 1659. (in Chinese with English abstract)
[5] 殷跃平. 中国地质灾害减灾战略初步研究[J]. 中国地质灾害与防治学报,2004,15(2):1 − 8. [YIN Yueping. Initial study on the hazard-relief strategy of geological hazard in China[J]. The Chinese Journal of Geological Hazard and Control,2004,15(2):1 − 8. (in Chinese with English abstract)] doi: 10.3969/j.issn.1003-8035.2004.02.001
YIN Yueping. Initial study on the hazard-relief strategy of geological hazard in China[J]. The Chinese Journal of Geological Hazard and Control, 2004, 15(2): 1 − 8. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2004.02.001
[6] 张鸣之,杨飞,马娟,等. 区块链技术在全国地质灾害风险预警系统建设中的应用探索[J]. 水文地质工程地质,2023,50(6):168 − 174. [ZHANG Mingzhi,YANG Fei,MA Juan,et al. Exploration of blockchain technology application in the construction of National Risk Warning System on Landslides[J]. Hydrogeology & Engineering Geology,2023,50(6):168 − 174. (in Chinese with English abstract)]
ZHANG Mingzhi, YANG Fei, MA Juan, et al. Exploration of blockchain technology application in the construction of National Risk Warning System on Landslides[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 168 − 174. (in Chinese with English abstract)
[7] CASAGLI N,FRODELLA W,MORELLI S,et al. Spaceborne,UAV and ground-based remote sensing techniques for landslide mapping,monitoring and early warning[J]. Geoenvironmental Disasters,2017,4(1):9. doi: 10.1186/s40677-017-0073-1
[8] REICHSTEIN M,CAMPS-VALLS G,STEVENS B,et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature,2019,566(7743):195 − 204. doi: 10.1038/s41586-019-0912-1
[9] 彭建兵,李振洪. 地学大数据可否助力地质灾害预报?[J]. 地球科学,2022,47(10):3900 − 3901. [PENG Jianbing,LI Zhenhong. Can geo-big data help geological disaster prediction?[J]. Earth Science,2022,47(10):3900 − 3901. (in Chinese)]
PENG Jianbing, LI Zhenhong. Can geo-big data help geological disaster prediction?[J]. Earth Science, 2022, 47(10): 3900 − 3901. (in Chinese)
[10] 齐永强,李文鹏,郑跃军,等. 地下水机器学习方法研究——水位监测数据驱动的区域补排边界识别[J]. 水文地质工程地质,2022,49(1):1 − 11. [QI Yongqiang,LI Wenpeng,ZHENG Yuejun,et al. Application of machine learning to aquifer analyses:Locating hydrogeological boundaries with water table monitoring data[J]. Hydrogeology & Engineering Geology,2022,49(1):1 − 11. (in Chinese with English abstract)]
QI Yongqiang, LI Wenpeng, ZHENG Yuejun, et al. Application of machine learning to aquifer analyses: Locating hydrogeological boundaries with water table monitoring data[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 1 − 11. (in Chinese with English abstract)
[11] LECUN Y,BENGIO Y,HINTON G. Deep learning[J]. Nature,2015,521(7553):436 − 444. doi: 10.1038/nature14539
[12] 张勤,赵超英,陈雪蓉. 多源遥感地质灾害早期识别技术进展与发展趋势[J]. 测绘学报,2022,51(6):885 − 896. [ZHANG Qin,ZHAO Chaoying,CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multi-source remote sensing[J]. Acta Geodaetica et Cartographica Sinica,2022,51(6):885 − 896. (in Chinese with English abstract)] doi: 10.11947/j.issn.1001-1595.2022.6.chxb202206012
ZHANG Qin, ZHAO Chaoying, CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multi-source remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 885 − 896. (in Chinese with English abstract) doi: 10.11947/j.issn.1001-1595.2022.6.chxb202206012
[13] 牛朝阳,高欧阳,刘伟,等. 光学遥感图像滑坡检测研究进展[J]. 航天返回与遥感,2023,44(3):133 − 144. [NIU Chaoyang,GAO Ouyang,LIU Wei,et al. Research progress of landslide detection in optical remote sensing images[J]. Spacecraft Recovery & Remote Sensing,2023,44(3):133 − 144. (in Chinese with English abstract)] doi: 10.3969/j.issn.1009-8518.2023.03.014
NIU Chaoyang, GAO Ouyang, LIU Wei, et al. Research progress of landslide detection in optical remote sensing images[J]. Spacecraft Recovery & Remote Sensing, 2023, 44(3): 133 − 144. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-8518.2023.03.014
[14] 李为乐,许强,陆会燕,等. 大型岩质滑坡形变历史回溯及其启示[J]. 武汉大学学报(信息科学版),2019,44(7):1043 − 1053. [LI Weile,XU Qiang,LU Huiyan,et al. Tracking the deformation history of large-scale rocky landslides and its enlightenment[J]. Geomatics and Information Science of Wuhan University,2019,44(7):1043 − 1053. (in Chinese with English abstract)]
LI Weile, XU Qiang, LU Huiyan, et al. Tracking the deformation history of large-scale rocky landslides and its enlightenment[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1043 − 1053. (in Chinese with English abstract)
[15] GHORBANZADEH O,BLASCHKE T,GHOLAMNIA K,et al. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection[J]. Remote Sensing,2019,11(2):196. doi: 10.3390/rs11020196
[16] JABOYEDOFF M,OPPIKOFER T,ABELLÁN A,et al. Use of LIDAR in landslide investigations:A review[J]. Natural Hazards,2012,61(1):5 − 28. doi: 10.1007/s11069-010-9634-2
[17] 薛强,张茂省,董英,等. 基于DEM和遥感的黄土地质灾害精细化风险识别——以陕北黄土高原区米脂县为例[J]. 中国地质,2023,50(3):926 − 942. [XUE Qiang,ZHANG Maosheng,DONG Ying,et al. Refinement risk identification of loess geo-hazards based on DEM and remote sensing—Taking Mizhi County in the Loess Plateau of Northern Shaanxi as an example[J]. Geology in China,2023,50(3):926 − 942. (in Chinese with English abstract)] doi: 10.12029/gc20220801001
XUE Qiang, ZHANG Maosheng, DONG Ying, et al. Refinement risk identification of loess geo-hazards based on DEM and remote sensing—Taking Mizhi County in the Loess Plateau of Northern Shaanxi as an example[J]. Geology in China, 2023, 50(3): 926 − 942. (in Chinese with English abstract) doi: 10.12029/gc20220801001
[18] BIGGS J,WRIGHT T J. How satellite InSAR has grown from opportunistic science to routine monitoring over the last decade[J]. Nature Communications,2020,11:3863. doi: 10.1038/s41467-020-17587-6
[19] DAI Keren,LI Zhenhong,XU Qiang,et al. Entering the era of earth observation-based landslide warning systems:A novel and exciting framework[J]. IEEE Geoscience and Remote Sensing Magazine,2020,8(1):136 − 153. doi: 10.1109/MGRS.2019.2954395
[20] AN Yong,LONG Jianwu,MABU S. A segmentation network with multiattention and its application to SAR image analysis[J]. IEEJ Transactions on Electrical and Electronic Engineering,2020,15(4):570 − 576. doi: 10.1002/tee.23090
[21] 葛大庆,戴可人,郭兆成,等. 重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J]. 武汉大学学报(信息科学版),2019,44(7):949 − 956. [GE Daqing,DAI Keren,GUO Zhaocheng,et al. Early identification of serious geological hazards with integrated remote sensing technologies:Thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University,2019,44(7):949 − 956. (in Chinese with English abstract)]
GE Daqing, DAI Keren, GUO Zhaocheng, et al. Early identification of serious geological hazards with integrated remote sensing technologies: Thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 949 − 956. (in Chinese with English abstract)
[22] 许强,郭晨,董秀军. 地质灾害航空遥感技术应用现状及展望[J]. 测绘学报,2022,51(10):2020 − 2033. [XU Qiang,GUO Chen,DONG Xiujun. Application status and prospect of aerial remote sensing technology for geohazards[J]. Acta Geodaetica et Cartographica Sinica,2022,51(10):2020 − 2033. (in Chinese with English abstract)] doi: 10.11947/j.AGCS.2022.20220302
XU Qiang, GUO Chen, DONG Xiujun. Application status and prospect of aerial remote sensing technology for geohazards[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2020 − 2033. (in Chinese with English abstract) doi: 10.11947/j.AGCS.2022.20220302
[23] GUZZETTI F,MONDINI A C,CARDINALI M,et al. Landslide inventory maps:New tools for an old problem[J]. Earth-Science Reviews,2012,112(1/2):42 − 66.
[24] HORVITZ E,MULLIGAN D. Data,privacy,and the greater good[J]. Science,2015,349(6245):253 − 255. doi: 10.1126/science.aac4520
[25] REICHENBACH P,ROSSI M,MALAMUD B D,et al. A review of statistically-based landslide susceptibility models[J]. Earth-Science Reviews,2018,180:60 − 91. doi: 10.1016/j.earscirev.2018.03.001
[26] 方然可,刘艳辉,黄志全. 基于机器学习的区域滑坡危险性评价方法综述[J]. 中国地质灾害与防治学报,2021,32(4):1 − 8. [FANG Ranke,LIU Yanhui,HUANG Zhiquan. A review of the methods of regional landslide hazard assessment based on machine learning[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):1 − 8. (in Chinese with English abstract)]
FANG Ranke, LIU Yanhui, HUANG Zhiquan. A review of the methods of regional landslide hazard assessment based on machine learning[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 1 − 8. (in Chinese with English abstract)
[27] NEFESLIOGLU H A,GOKCEOGLU C,SONMEZ H. An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps[J]. Engineering Geology,2008,97(3/4):171 − 191.
[28] XU Chong,DAI Fuchu,XU Xiwei,et al. GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed,China[J]. Geomorphology,2012,145:70 − 80.
[29] PRADHAN B,LEE S. Landslide susceptibility assessment and factor effect analysis:Backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling[J]. Environmental Modelling & Software,2010,25(6):747 − 759.
[30] CHEN Wei,XIE Xiaoshen,WANG Jiale,et al. A comparative study of logistic model tree,random forest,and classification and regression tree models for spatial prediction of landslide susceptibility[J]. CATENA,2017,151:147 − 160. doi: 10.1016/j.catena.2016.11.032
[31] TIEN BUI D,TUAN T A,KLEMPE H,et al. Spatial prediction models for shallow landslide hazards:A comparative assessment of the efficacy of support vector machines,artificial neural networks,kernel logistic regression,and logistic model tree[J]. Landslides,2016,13(2):361 − 378. doi: 10.1007/s10346-015-0557-6
[32] 刘福臻,王灵,肖东升. 机器学习模型在滑坡易发性评价中的应用[J]. 中国地质灾害与防治学报,2021,32(6):98 − 106. [LIU Fuzhen,WANG Ling,XIAO Dongsheng. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):98 − 106. (in Chinese with English abstract)]
LIU Fuzhen, WANG Ling, XIAO Dongsheng. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 98 − 106. (in Chinese with English abstract)
[33] FELICÍSIMO Á M,CUARTERO A,REMONDO J,et al. Mapping landslide susceptibility with logistic regression,multiple adaptive regression splines,classification and regression trees,and maximum entropy methods:A comparative study[J]. Landslides,2013,10(2):175 − 189. doi: 10.1007/s10346-012-0320-1
[34] 黄发明,胡松雁,闫学涯,等. 基于机器学习的滑坡易发性预测建模及其主控因子识别[J]. 地质科技通报,2022,41(2):79 − 90. [Huang Faming, Hu Songyan, Yan Xueya, et al. Landslide susceptibility prediction and identification of its main environmentalfactors based on machine learning models[J]. Bulletin of Geological Science and Technology,2022,41(2):79 − 90.(in Chinese with English abstract)]
Huang Faming, Hu Songyan, Yan Xueya, et al. Landslide susceptibility prediction and identification of its main environmentalfactors based on machine learning models[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 79 − 90.(in Chinese with English abstract)
[35] HUANG Yu,ZHAO Lu. Review on landslide susceptibility mapping using support vector machines[J]. CATENA,2018,165:520 − 529. doi: 10.1016/j.catena.2018.03.003
[36] DOU Jie,YUNUS A P,TIEN BUI D,et al. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island,Japan[J]. Science of the Total Environment,2019,662:332 − 346. doi: 10.1016/j.scitotenv.2019.01.221
[37] CHEN Tianqi, GUESTRIN C. XGBoost: A scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco California USA. ACM, 2016: 785 − 794.
[38] 林报嘉,刘晓东,杨川,等. XGBoost机器学习模型与GIS技术结合的公路崩塌灾害易发性研究[J]. 公路,2020,65(7):20 − 26. [LIN Baojia,LIU Xiaodong,YANG Chuan,et al. Avalanche susceptibility assessment of highway based on XGBoost machine learning model and GIS method[J]. Highway,2020,65(7):20 − 26. (in Chinese with English abstract)]
LIN Baojia, LIU Xiaodong, YANG Chuan, et al. Avalanche susceptibility assessment of highway based on XGBoost machine learning model and GIS method[J]. Highway, 2020, 65(7): 20 − 26. (in Chinese with English abstract)
[39] 张威,胡舫瑞,綦巍,等. 基于XGBoost和云模型的地质灾害易发性评价[J]. 中国地质灾害与防治学报,2023,34(6):136 − 145. [ZHANG Wei,HU Fangrui,QI Wei,et al. Susceptibility assessment of geological hazard based on XGBoost and cloud model[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6):136 − 145. (in Chinese with English abstract)]
ZHANG Wei, HU Fangrui, QI Wei, et al. Susceptibility assessment of geological hazard based on XGBoost and cloud model[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 136 − 145. (in Chinese with English abstract)
[40] 张潇远,苏巧梅,赵财胜,等. 一种利用贝叶斯算法优化XGBoost的滑坡易发性评价方法[J]. 测绘科学,2023,48(6):140 − 150. [ZHANG Xiaoyuan,SU Qiaomei,ZHAO Caisheng,et al. A landslide susceptibility evaluation method using Bayesian algorithm to optimize XGBoost[J]. Science of Surveying and Mapping,2023,48(6):140 − 150. (in Chinese with English abstract)]
ZHANG Xiaoyuan, SU Qiaomei, ZHAO Caisheng, et al. A landslide susceptibility evaluation method using Bayesian algorithm to optimize XGBoost[J]. Science of Surveying and Mapping, 2023, 48(6): 140 − 150. (in Chinese with English abstract)
[41] ZHANG Junyi,MA Xianglong,ZHANG Jialan,et al. Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model[J]. Journal of Environmental Management,2023,332:117357. doi: 10.1016/j.jenvman.2023.117357
[42] KRKAČ M,ŠPOLJARIĆ D,BERNAT S,et al. Method for prediction of landslide movements based on random forests[J]. Landslides,2017,14(3):947 − 960. doi: 10.1007/s10346-016-0761-z
[43] LI Huajin,XU Qiang,HE Yusen,et al. Prediction of landslide displacement with an ensemble-based extreme learning machine and copula models[J]. Landslides,2018,15(10):2047 − 2059. doi: 10.1007/s10346-018-1020-2
[44] LIU Zaobao,SHAO Jianfu,XU Weiya,et al. Comparison on landslide nonlinear displacement analysis and prediction with computational intelligence approaches[J]. Landslides,2014,11(5):889 − 896. doi: 10.1007/s10346-013-0443-z
[45] 赵会芹,于博,陈方,等. 基于高分辨率卫星遥感影像滑坡提取方法研究现状[J]. 遥感技术与应用,2023,38(1):108 − 115. [ZHAO Huiqin,YU Bo,CHEN Fang,et al. Research status of landslide extraction methods based on high-resolution satellite remote sensing images[J]. Remote Sensing Technology and Application,2023,38(1):108 − 115. (in Chinese with English abstract)]
ZHAO Huiqin, YU Bo, CHEN Fang, et al. Research status of landslide extraction methods based on high-resolution satellite remote sensing images[J]. Remote Sensing Technology and Application, 2023, 38(1): 108 − 115. (in Chinese with English abstract)
[46] ZHENG Xiangxiang,HE Guojin,WANG Shanshan,et al. Comparison of machine learning methods for potential active landslide hazards identification with multi-source data[J]. ISPRS International Journal of Geo-Information,2021,10(4):253. doi: 10.3390/ijgi10040253
[47] 龙玉洁,李为乐,黄润秋,等. 汶川地震震后10 a绵远河流域滑坡遥感自动提取与演化趋势分析[J]. 武汉大学学报(信息科学版),2020,45(11):1792 − 1800. [LONG Yujie,LI Weile,HUANG Runqiu,et al. Automatic extraction and evolution trend analysis of landslides in Mianyuan River Basin in the 10 years after Wenchuan earthquake[J]. Geomatics and Information Science of Wuhan University,2020,45(11):1792 − 1800. (in Chinese with English abstract)]
LONG Yujie, LI Weile, HUANG Runqiu, et al. Automatic extraction and evolution trend analysis of landslides in Mianyuan River Basin in the 10 years after Wenchuan earthquake[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1792 − 1800. (in Chinese with English abstract)
[48] SHIRZADI A,SHAHABI H,CHAPI K,et al. A comparative study between popular statistical and machine learning methods for simulating volume of landslides[J]. CATENA,2017,157:213 − 226. doi: 10.1016/j.catena.2017.05.016
[49] 雷成铭,刘春艳,张云斌,等. 基于综合智能分析的广东省崩塌易发性评价[J]. 岩石力学与工程学报,2023,42(增刊2):4248 − 4260. [LEI Chengming,LIU Chunyan,ZHANG Yunbin,et al. Evaluation of landslide susceptibility in Guangdong Province based on comprehensive intelligent analysis[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(Sup 2):4248 − 4260. (in Chinese)]
LEI Chengming, LIU Chunyan, ZHANG Yunbin, et al. Evaluation of landslide susceptibility in Guangdong Province based on comprehensive intelligent analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(Sup 2): 4248 − 4260. (in Chinese)
[50] SHIRZADI A,CHAPI K,SHAHABI H,et al. Rock fall susceptibility assessment along a mountainous road:An evaluation of bivariate statistic,analytical hierarchy process and frequency ratio[J]. Environmental Earth Sciences,2017,76(4):152. doi: 10.1007/s12665-017-6471-6
[51] 黄肖萍,郑莉,杜娟,等. 考虑岩体结构面组合的区域崩塌灾害易发性评价[J]. 安全与环境工程,2023,30(1):163 − 172. [HUANG Xiaoping,ZHENG Li,DU Juan,et al. Regional rockfall hazard susceptibility assessment considering combination modes of rock mass discontinuities[J]. Safety and Environmental Engineering,2023,30(1):163 − 172. (in Chinese with English abstract)]
HUANG Xiaoping, ZHENG Li, DU Juan, et al. Regional rockfall hazard susceptibility assessment considering combination modes of rock mass discontinuities[J]. Safety and Environmental Engineering, 2023, 30(1): 163 − 172. (in Chinese with English abstract)
[52] 刘永垚,第宝锋,詹宇,等. 基于随机森林模型的泥石流易发性评价——以汶川地震重灾区为例[J]. 山地学报,2018,36(5):765 − 773. [LIU Yongyao,DI Baofeng,ZHAN Yu,et al. Debris flows susceptibility assessment in Wenchuan earthquake areas based on random forest algorithm model[J]. Mountain Research,2018,36(5):765 − 773. (in Chinese with English abstract)]
LIU Yongyao, DI Baofeng, ZHAN Yu, et al. Debris flows susceptibility assessment in Wenchuan earthquake areas based on random forest algorithm model[J]. Mountain Research, 2018, 36(5): 765 − 773. (in Chinese with English abstract)
[53] 李坤,赵俊三,林伊琳,等. 基于RF和SVM模型的东川泥石流易发性评价研究[J]. 云南大学学报(自然科学版),2022,44(1):107 − 115. [LI Kun,ZHAO Junsan,LIN Yilin,et al. Assessment of debris flow susceptibility in Dongchuan based on RF and SVM models[J]. Journal of Yunnan University (Natural Sciences Edition),2022,44(1):107 − 115. (in Chinese with English abstract)]
LI Kun, ZHAO Junsan, LIN Yilin, et al. Assessment of debris flow susceptibility in Dongchuan based on RF and SVM models[J]. Journal of Yunnan University (Natural Sciences Edition), 2022, 44(1): 107 − 115. (in Chinese with English abstract)
[54] ZHANG Yonghong,GE Taotao,TIAN Wei,et al. Debris flow susceptibility mapping using machine-learning techniques in Shigatse Area,China[J]. Remote Sensing,2019,11(23):2801. doi: 10.3390/rs11232801
[55] 吴赛儿,陈剑,ZHOU Wendy,等. 基于逻辑回归模型的泥石流易发性评价与检验:以金沙江上游奔子栏—昌波河段为例[J]. 现代地质,2018,32(3):611 − 622. [WU Saier,CHEN Jian,WENDY Z,et al. Debris-flow susceptibility assessment and validation based on logistic regression model:An example from the benzilan-changbo segment of the upper Jinshajiang River[J]. Geoscience,2018,32(3):611 − 622. (in Chinese with English abstract)]
WU Saier, CHEN Jian, WENDY Z, et al. Debris-flow susceptibility assessment and validation based on logistic regression model: An example from the benzilan-changbo segment of the upper Jinshajiang River[J]. Geoscience, 2018, 32(3): 611 − 622. (in Chinese with English abstract)
[56] 娄佩卿,吴通华,陈杰,等. 基于高分遥感影像和集成机器学习的祁连山区融冻泥流识别研究[J]. 冰川冻土,2023,45(2):786 − 797. [LOU Peiqing,WU Tonghua,CHEN Jie,et al. Solifluction identification in the Qilian Mountains based on high-resolution remote sensing imagery and ensemble machine learning[J]. Journal of Glaciology and Geocryology,2023,45(2):786 − 797. (in Chinese with English abstract)]
LOU Peiqing, WU Tonghua, CHEN Jie, et al. Solifluction identification in the Qilian Mountains based on high-resolution remote sensing imagery and ensemble machine learning[J]. Journal of Glaciology and Geocryology, 2023, 45(2): 786 − 797. (in Chinese with English abstract)
[57] ABANCÓ C,HÜRLIMANN M. Estimate of the debris-flow entrainment using field and topographical data[J]. Natural Hazards,2014,71(1):363 − 383. doi: 10.1007/s11069-013-0930-5
[58] 于国强,张茂省,王根龙,等. 支持向量机和BP神经网络在泥石流平均流速预测模型中的比较与应用[J]. 水利学报,2012,43(增刊2):105 − 110. [YU Guoqiang,ZHANG M (S /X),WANG Genlong,et al. Application and comparison of prediction models of support vector machines and back-propagation artificial neural network for debris flow average velocity[J]. Journal of Hydraulic Engineering,2012,43(Sup 2):105 − 110. (in Chinese)]
YU Guoqiang, ZHANG M (S /X), WANG Genlong, et al. Application and comparison of prediction models of support vector machines and back-propagation artificial neural network for debris flow average velocity[J]. Journal of Hydraulic Engineering, 2012, 43(Sup 2): 105 − 110. (in Chinese)
[59] 焦亮,柳金峰,游勇,等. 基于SVM-RF的泥石流窗口坝闭塞度判别研究[J]. 防灾减灾工程学报,2020,40(3):439 − 446. [JIAO Liang,LIU Jinfeng,YOU Yong,et al. Research on the occlusion of debris flow window-frame dam based on SVM and RF methods[J]. Journal of Disaster Prevention and Mitigation Engineering,2020,40(3):439 − 446. (in Chinese with English abstract)]
JIAO Liang, LIU Jinfeng, YOU Yong, et al. Research on the occlusion of debris flow window-frame dam based on SVM and RF methods[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(3): 439 − 446. (in Chinese with English abstract)
[60] BAUMHOER C A,DIETZ A J,KNEISEL C,et al. Automated extraction of Antarctic glacier and ice shelf fronts from sentinel-1 imagery using deep learning[J]. Remote Sensing,2019,11(21):2529. doi: 10.3390/rs11212529
[61] CI Tianyu,LIU Zhen,WANG Ying. Assessment of the degree of building damage caused by disaster using convolutional neural networks in combination with ordinal regression[J]. Remote Sensing,2019,11(23):2858. doi: 10.3390/rs11232858
[62] SAMEEN M I,SARKAR R,PRADHAN B,et al. Landslide spatial modelling using unsupervised factor optimisation and regularised greedy forests[J]. Computers & Geosciences,2020,134:104336.
[63] HU R,FANG F,PAIN C C,et al. Rapid spatio-temporal flood prediction and uncertainty quantification using a deep learning method[J]. Journal of Hydrology,2019,575:911 − 920. doi: 10.1016/j.jhydrol.2019.05.087
[64] 杨文涛,汪明,史培军,等. 基于地形因子分割、分类的面向对象滑坡快速识别方法[J]. 自然灾害学报,2015,24(4):1 − 6. [YANG Wentao,WANG Ming,SHI Peijun,et al. Object-oriented rapid identification of landslides based on terrain factors segmentation and classification[J]. Journal of Natural Disasters,2015,24(4):1 − 6. (in Chinese with English abstract)]
YANG Wentao, WANG Ming, SHI Peijun, et al. Object-oriented rapid identification of landslides based on terrain factors segmentation and classification[J]. Journal of Natural Disasters, 2015, 24(4): 1 − 6. (in Chinese with English abstract)
[65] MARTHA T R,KERLE N,VAN WESTEN C J,et al. Object-oriented analysis of multi-temporal panchromatic images for creation of historical landslide inventories[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2012,67:105 − 119. doi: 10.1016/j.isprsjprs.2011.11.004
[66] LV Zhiyong,SHI Wenzhong,ZHANG Xiaokang,et al. Landslide inventory mapping from bitemporal high-resolution remote sensing images using change detection and multiscale segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(5):1520 − 1532. doi: 10.1109/JSTARS.2018.2803784
[67] IM J,RHEE J,JENSEN J R,et al. An automated binary change detection model using a calibration approach[J]. Remote Sensing of Environment,2007,106(1):89 − 105. doi: 10.1016/j.rse.2006.07.019
[68] ZANETTI M,BRUZZONE L. A theoretical framework for change detection based on a compound multiclass statistical model of the difference image[J]. IEEE Transactions on Geoscience and Remote Sensing,2018,56(2):1129 − 1143. doi: 10.1109/TGRS.2017.2759663
[69] WANG Qi,YUAN Zhenghang,DU Qian,et al. GETNET:A general end-to-end 2-D CNN framework for hyperspectral image change detection[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(1):3 − 13. doi: 10.1109/TGRS.2018.2849692
[70] LV Zhiyong,LIU Tongfei,KONG Xiangbing,et al. Landslide inventory mapping with bitemporal aerial remote sensing images based on the dual-path fully convolutional network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,13:4575 − 4584. doi: 10.1109/JSTARS.2020.2980895
[71] LEI Tao,ZHANG Yuxiao,LV Zhiyong,et al. Landslide inventory mapping from bitemporal images using deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters,2019,16(6):982 − 986. doi: 10.1109/LGRS.2018.2889307
[72] WANG Yu,WANG Xiaofei,JIAN Junfan. Remote sensing landslide recognition based on convolutional neural network[J]. Mathematical Problems in Engineering,2019,2019:8389368. doi: 10.1155/2019/8389368
[73] SHI Wenzhong,ZHANG Min,KE Hongfei,et al. Landslide recognition by deep convolutional neural network and change detection[J]. IEEE Transactions on Geoscience and Remote Sensing,2021,59(6):4654 − 4672. doi: 10.1109/TGRS.2020.3015826
[74] GHORBANZADEH O,MEENA S R,BLASCHKE T,et al. UAV-based slope failure detection using deep-learning convolutional neural networks[J]. Remote Sensing,2019,11(17):2046. doi: 10.3390/rs11172046
[75] QI Wenwen,WEI Mengfei,YANG Wentao,et al. Automatic mapping of landslides by the ResU-net[J]. Remote Sensing,2020,12(15):2487. doi: 10.3390/rs12152487
[76] YI Yaning,ZHANG Wanchang. A new deep-learning-based approach for earthquake-triggered landslide detection from single-temporal RapidEye satellite imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,13:6166 − 6176. doi: 10.1109/JSTARS.2020.3028855
[77] JU Yuanzhen,XU Qiang,JIN Shichao,et al. Loess landslide detection using object detection algorithms in Northwest China[J]. Remote Sensing,2022,14(5):1182. doi: 10.3390/rs14051182
[78] 巨袁臻,许强,金时超,等. 使用深度学习方法实现黄土滑坡自动识别[J]. 武汉大学学报(信息科学版),2020,45(11):1747 − 1755. [JU Yuanzhen,XU Qiang,JIN Shichao,et al. Automatic object detection of loess landslide based on deep learning[J]. Geomatics and Information Science of Wuhan University,2020,45(11):1747 − 1755. (in Chinese with English abstract)]
JU Yuanzhen, XU Qiang, JIN Shichao, et al. Automatic object detection of loess landslide based on deep learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1747 − 1755. (in Chinese with English abstract)
[79] HUA Ye,WANG Xianmin,LI Yongwei,et al. Dynamic development of landslide susceptibility based on slope unit and deep neural networks[J]. Landslides,2021,18(1):281 − 302. doi: 10.1007/s10346-020-01444-0
[80] 董力豪,刘艳辉,黄俊宝,等. 基于卷积神经网络的福建省区域滑坡灾害预警模型[J]. 水文地质工程地质,2024,51(1):145 − 153. [DONG Lihao,LIU Yanhui,HUANG Junbao,et al. An early prediction model of regional landslide disasters in Fujian Province based on convolutional neural network[J]. Hydrogeology & Engineering Geology,2024,51(1):145 − 153. (in Chinese with English abstract)]
DONG Lihao, LIU Yanhui, HUANG Junbao, et al. An early prediction model of regional landslide disasters in Fujian Province based on convolutional neural network[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 145 − 153. (in Chinese with English abstract)
[81] WANG Yi,FANG Zhice,HONG Haoyuan. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County,China[J]. Science of the Total Environment,2019,666:975 − 993. doi: 10.1016/j.scitotenv.2019.02.263
[82] YI Yaning,ZHANG Zhijie,ZHANG Wanchang,et al. Landslide susceptibility mapping using multiscale sampling strategy and convolutional neural network:A case study in Jiuzhaigou Region[J]. CATENA,2020,195:104851. doi: 10.1016/j.catena.2020.104851
[83] SAMEEN M I,PRADHAN B,LEE S. Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment[J]. CATENA,2020,186:104249. doi: 10.1016/j.catena.2019.104249
[84] MUTLU B,NEFESLIOGLU H A,SEZER E A,et al. An experimental research on the use of recurrent neural networks in landslide susceptibility mapping[J]. ISPRS International Journal of Geo-Information,2019,8(12):578. doi: 10.3390/ijgi8120578
[85] WANG Yi,FANG Zhice,WANG Mao,et al. Comparative study of landslide susceptibility mapping with different recurrent neural networks[J]. Computers & Geosciences,2020,138:104445.
[86] THI NGO P T,PANAHI M,KHOSRAVI K,et al. Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran[J]. Geoscience Frontiers,2021,12(2):505 − 519. doi: 10.1016/j.gsf.2020.06.013
[87] XU Shiluo,NIU Ruiqing. Displacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges Area,China[J]. Computers & Geosciences,2018,111:87 − 96.
[88] JIANG Hongwei,LI Yuanyao,ZHOU Chao,et al. Landslide displacement prediction combining LSTM and SVR algorithms:A case study of shengjibao landslide from the Three Gorges Reservoir Area[J]. Applied Sciences,2020,10(21):7830. doi: 10.3390/app10217830
[89] YANG Beibei,YIN Kunlong,LACASSE S,et al. Time series analysis and long short-term memory neural network to predict landslide displacement[J]. Landslides,2019,16(4):677 − 694. doi: 10.1007/s10346-018-01127-x
[90] LI Huajin,XU Qiang,HE Yusen,et al. Modeling and predicting reservoir landslide displacement with deep belief network and EWMA control charts:A case study in Three Gorges Reservoir[J]. Landslides,2020,17(3):693 − 707. doi: 10.1007/s10346-019-01312-6
[91] MENG Qingxiang,WANG Huanling,HE Mingjie,et al. Displacement prediction of water-induced landslides using a recurrent deep learning model[J]. European Journal of Environmental and Civil Engineering,2023,27(7):2460 − 2474. doi: 10.1080/19648189.2020.1763847
[92] BICKEL V T,AARON J,MANCONI A,et al. Impacts drive lunar rockfalls over billions of years[J]. Nat Commun,2020,11(1):2862. doi: 10.1038/s41467-020-16653-3
[93] BICKEL V T,LANARAS C,MANCONI A,et al. Automated detection of lunar rockfalls using a convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(6):3501 − 3511. doi: 10.1109/TGRS.2018.2885280
[94] BICKEL V T,CONWAY S J,TESSON P A,et al. Deep learning-driven detection and mapping of rockfalls on Mars[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,13:2831 − 2841. doi: 10.1109/JSTARS.2020.2991588
[95] YOKOYA N,YAMANOI K,HE Wei,et al. Breaking limits of remote sensing by deep learning from simulated data for flood and debris-flow mapping[J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60:4400115.
[96] JI Shunping,YU Dawen,SHEN Chaoyong,et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides,2020,17(6):1337 − 1352. doi: 10.1007/s10346-020-01353-2
[97] 曾韬睿,王林峰,张俞,等. 基于CatBoost-SHAP模型的滑坡易发性建模及可解释性[J]. 中国地质灾害与防治学报,2024,35(1):37 − 50. [ZENG Taorui,WANG Linfeng,ZHANG Yu,et al. Landslide susceptibility modeling and interpretability based on CatBoost-SHAP model[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1):37 − 50. (in Chinese with English abstract)]
ZENG Taorui, WANG Linfeng, ZHANG Yu, et al. Landslide susceptibility modeling and interpretability based on CatBoost-SHAP model[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 37 − 50. (in Chinese with English abstract)
[98] CHENG M,FANG F,PAIN C C,et al. Data-driven modelling of nonlinear spatio-temporal fluid flows using a deep convolutional generative adversarial network[J]. Computer Methods in Applied Mechanics and Engineering,2020,365:113000. doi: 10.1016/j.cma.2020.113000
[99] 李阳春,刘黔云,李潇,等. 基于机器学习的滑坡崩塌地质灾害气象风险预警研究[J]. 中国地质灾害与防治学报,2021,32(3):118 − 123. [LI Yangchun,LIU Qianyun,LI Xiao,et al. Exploring early warning and forecasting of meteorological risk of landslide and rockfall induced by meteorological factors by the approach of machine learning[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):118 − 123. (in Chinese with English abstract)]
LI Yangchun, LIU Qianyun, LI Xiao, et al. Exploring early warning and forecasting of meteorological risk of landslide and rockfall induced by meteorological factors by the approach of machine learning[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 118 − 123. (in Chinese with English abstract)
-