中国地质环境监测院
中国地质灾害防治工程行业协会
主办

土垫层缓冲落石冲击力特性离散元数值模拟分析

陈宇, 沈位刚, 宋忠友, 高攀, 鄢发斌, 雍平, 张锐. 土垫层缓冲落石冲击力特性离散元数值模拟分析[J]. 中国地质灾害与防治学报, 2024, 35(2): 90-97. doi: 10.16031/j.cnki.issn.1003-8035.202211020
引用本文: 陈宇, 沈位刚, 宋忠友, 高攀, 鄢发斌, 雍平, 张锐. 土垫层缓冲落石冲击力特性离散元数值模拟分析[J]. 中国地质灾害与防治学报, 2024, 35(2): 90-97. doi: 10.16031/j.cnki.issn.1003-8035.202211020
CHEN Yu, SHEN Weigang, SONG Zhongyou, GAO Pan, YAN Fabin, YONG Ping, ZHANG Rui. Analysis of soil cushion buffering characteristic for rockfall impact force through discrete element numerical simulation[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(2): 90-97. doi: 10.16031/j.cnki.issn.1003-8035.202211020
Citation: CHEN Yu, SHEN Weigang, SONG Zhongyou, GAO Pan, YAN Fabin, YONG Ping, ZHANG Rui. Analysis of soil cushion buffering characteristic for rockfall impact force through discrete element numerical simulation[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(2): 90-97. doi: 10.16031/j.cnki.issn.1003-8035.202211020

土垫层缓冲落石冲击力特性离散元数值模拟分析

  • 基金项目: 四川省自然资源厅科研项目(Kj-2022-29);国家自然科学基金青年科学基金项目(42107155);中央高校基本科研业务费(2682021CX061)
详细信息
    作者简介: 陈 宇(1976—),男,四川泸州人,本科,高级工程师,主要从事地质灾害防治工程方面的研究和设计工作。E-mail:359310299@qq.com
    通讯作者: 沈位刚(1994—),男,四川乐山人,博士,讲师,主要从事地质灾害防治工程方面的教学科研工作。E-mail:wgshen@foxmail.com
  • 中图分类号: P694

Analysis of soil cushion buffering characteristic for rockfall impact force through discrete element numerical simulation

More Information
  • 棚洞是我国西部山区防治崩塌落石灾害的主要工程措施之一。棚洞顶板以上通常铺设由砂或碎石组成的土垫层。土垫层的作用是避免落石直接冲击棚洞,缓冲落石的冲击力。长期以来,关于土垫层厚度对缓冲效果影响的研究较少,因此,还未形成统一的理论用于指导土垫层厚度的设计。文章运用离散单元方法建立落石冲击土垫层的数值模型,探究垫层厚度和落石下落高度对土垫层缓冲落石冲击力特性的影响。研究结果表明:落石冲击力峰值与落石下落高度呈幂函数关系,顶板中心力峰值与下落高度呈线性正相关关系;随着垫层厚度的增加,落石冲击力峰值减小,当垫层厚度增加到落石直径的1.0倍之后,落石冲击力峰值与垫层厚度无关;随垫层厚度的增大,顶板中心力峰值与落石冲击力峰值的比值减小,垫层缓冲效果增大,当垫层厚度增加到落石直径1.5倍之后,垫层缓冲效果增加不明显;垫层厚度建议取值为落石直径的1.5倍。

  • 加载中
  • 图 1  崩塌落石与棚洞示意图

    Figure 1. 

    图 2  无黏结摩擦模型

    Figure 2. 

    图 3  落石冲击土垫层离散元模型

    Figure 3. 

    图 4  落石冲击力和顶板中心力随时间演化曲线(hf = 3.0 m,H = 30.0 cm)

    Figure 4. 

    图 5  落石冲击力峰值与下落高度的关系

    Figure 5. 

    图 6  顶板中心力峰值与落石下落高度的关系

    Figure 6. 

    图 7  落石冲击力峰值与标准化垫层厚度的关系

    Figure 7. 

    图 8  顶板中心力峰值与标准化垫层厚度的关系

    Figure 8. 

    图 9  顶板中心力峰值和落石冲击力峰值的比值与落石下落高度的关系

    Figure 9. 

    表 1  数值模型输入参数

    Table 1.  Input parameters of the numerical model

    变量 数值
    土垫层颗粒直径/cm [1.0, 2.0]
    土颗粒密度/(kg·m−3 2698.2
    颗粒杨氏模量/MPa 1×102
    颗粒泊松比 0.25
    颗粒阻尼系数 0.01
    颗粒摩擦系数 0.6
    颗粒塑性力矩系数 0.15
    计算时步/s 10−6
    重力加速/(m·s−2 9.81
    下载: 导出CSV
  • [1]

    何思明,王东坡,吴永,等. 崩塌滚石灾害的力学机理与防治技术[J]. 自然杂志, 2014, 36(5):336 − 345. [HE Siming, WANG Dongpo, WU Yong, et al. Formation mechanism and key prevention technology of rockfalls[J]. Chinese Journal of Nature, 2014, 36(5):336 − 345. (in Chinese with English abstract)]

    HE Siming, WANG Dongpo, WU Yong, et al. Formation mechanism and key prevention technology of rockfalls[J]. Chinese Journal of Nature, 2014, 36(5): 336 − 345. (in Chinese with English abstract)

    [2]

    王明辉,曹熙平,谯立家. 危岩体精细调查与崩塌过程三维场景模拟——以西南某水电站高边坡为例[J]. 中国地质灾害与防治学报,2023,34(6):86 − 96. [WANG Minghui,CAO Xiping,QIAO Lijia. Comprehensive analysis of hazardous rock mass and simulation of potential rockfall processes using 3D terrain model: a case study of the high cut slope near damsite of a hydropower station in Southern China[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6):86 − 96. (in Chinese with English abstract)]

    WANG Minghui, CAO Xiping, QIAO Lijia. Comprehensive analysis of hazardous rock mass and simulation of potential rockfall processes using 3D terrain model: a case study of the high cut slope near damsite of a hydropower station in Southern China[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 86 − 96. (in Chinese with English abstract)

    [3]

    曾启强,王立朝,刘伟,等. 广州地区岩质边坡崩塌影响范围计算方法初探[J]. 水文地质工程地质,2023,50(5):159 − 168. [ZENG Qiqiang,WANG Lichao,LIU Wei,et al. Calculation methods of the collapse influence range of a simple rock slope in the Guangzhou Area[J]. Hydrogeology & Engineering Geology,2023,50(5):159 − 168. (in Chinese with English abstract)]

    ZENG Qiqiang, WANG Lichao, LIU Wei, et al. Calculation methods of the collapse influence range of a simple rock slope in the Guangzhou Area[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 159 − 168. (in Chinese with English abstract)

    [4]

    张路青,杨志法,许兵. 滚石与滚石灾害[J]. 工程地质学报,2004,12(3):225 − 231. [ZHANG Luqing,YANG Zhifa,XU Bing. Rock falls and rock fall hazards[J]. Journal of Engineering Geology,2004,12(3):225 − 231. (in Chinese with English abstract)]

    ZHANG Luqing, YANG Zhifa, XU Bing. Rock falls and rock fall hazards[J]. Journal of Engineering Geology, 2004, 12(3): 225 − 231. (in Chinese with English abstract)

    [5]

    庞鑫,袁明,卢渊,等. 基于无人机LiDAR仿地飞行技术的高陡边坡危岩体快速识别方法[J]. 地质科技通报,2023,42(6):21 − 30. [PANG Xin,YUAN Ming,LU Yuan,et al. Rapid identification method for the dangerous rock mass of a high-steep slope based on UAV LiDAR and ground imitation flight[J]. Bulletin of Geological Science and Technology,2023,42(6):21 − 30. (in Chinese with English abstract)]

    PANG Xin, YUAN Ming, LU Yuan, et al. Rapid identification method for the dangerous rock mass of a high-steep slope based on UAV LiDAR and ground imitation flight[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 21 − 30. (in Chinese with English abstract)

    [6]

    石润,李嘉雨,陈明浩,等. 基于AHP-3DEC的危岩落石危险性分区与评价[J]. 中国地质灾害与防治学报,2023,34(3):127 − 135. [SHI Run,LI Jiayu,CHEN Minghao,et al. Hazard zoning and assessment of rockfalls based on AHP-3DEC[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3):127 − 135. (in Chinese with English abstract)]

    SHI Run, LI Jiayu, CHEN Minghao, et al. Hazard zoning and assessment of rockfalls based on AHP-3DEC[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 127 − 135. (in Chinese with English abstract)

    [7]

    姚昌银. 落石冲击力的扩散机制[D]. 重庆:重庆交通大学,2018. [YAO Changyin. Diffusion mechanism of rockfall impact force[D]. Chongqing:Chongqing Jiaotong University,2018. (in Chinese with English abstract)]

    YAO Changyin. Diffusion mechanism of rockfall impact force[D]. Chongqing: Chongqing Jiaotong University, 2018. (in Chinese with English abstract)

    [8]

    刘洋. 滚石冲击棚洞防护结构动力响应及作用机理研究[D]. 成都:成都理工大学, 2017. [LIU Yang. Study on dynamic response and action mechanism of protective structure of shed tunnel impacted by rolling stone[D]. Chengdu:Chengdu University of Technology, 2017. (in Chinese with English abstract)]

    LIU Yang. Study on dynamic response and action mechanism of protective structure of shed tunnel impacted by rolling stone[D]. Chengdu: Chengdu University of Technology, 2017. (in Chinese with English abstract)

    [9]

    王玉锁. 落石冲击下拱形明洞结构概率可靠度分析[M]. 成都:西南交通大学出版社,2017. [WANG Yusuo. Probabilistic reliability analysis of arch open-cut tunnel structure under rockfall impact[M]. Chengdu:Southwest Jiaotong University Press,2017. (in Chinese)]

    WANG Yusuo. Probabilistic reliability analysis of arch open-cut tunnel structure under rockfall impact[M]. Chengdu: Southwest Jiaotong University Press, 2017. (in Chinese)

    [10]

    黄维, 艾东, 胡胜华, 等. 鄂西山区崩塌落石运动特征及危险性分析——以远安县瓦坡崩塌区为例[J]. 中国地质灾害与防治学报,2022,33(6):37 − 43. [HUANG Wei, AI Dong, HU Shenghua, et al. Characteristics of rockfall trajectory and hazard assessment in western Hubei Province:A case study of the Wapo collapse area in Yuan’an County[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):37 − 43. (in Chinese with English abstract)]

    HUANG Wei, AI Dong, HU Shenghua, et al. Characteristics of rockfall trajectory and hazard assessment in western Hubei Province: A case study of the Wapo collapse area in Yuan’an County[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 37 − 43. (in Chinese with English abstract)

    [11]

    杨涛,邓荣贵,刘小丽. 四川地区地震崩塌滑坡的基本特征及危险性分区[J]. 山地学报,2002,20(4):456 − 460. [YANG Tao,DENG Ronggui,LIU Xiaoli. The distributing and subarea character of the seismic landslides in Sichuan[J]. Journal of Mountain Research,2002,20(4):456 − 460. (in Chinese with English abstract)]

    YANG Tao, DENG Ronggui, LIU Xiaoli. The distributing and subarea character of the seismic landslides in Sichuan[J]. Journal of Mountain Research, 2002, 20(4): 456 − 460. (in Chinese with English abstract)

    [12]

    何思明,王东坡,吴永. 崩塌滚石灾害形成演化机理与减灾关键技术[M]. 北京:科学出版社,2015. [HE Siming,WANG Dongpo,WU Yong. Formation and evolution mechanism of rockfall disaster and key technology of disaster reduction[M]. Beijing:Science Press,2015. (in Chinese)]

    HE Siming, WANG Dongpo, WU Yong. Formation and evolution mechanism of rockfall disaster and key technology of disaster reduction[M]. Beijing: Science Press, 2015. (in Chinese)

    [13]

    YAN Peng,ZHANG Jinhua,FANG Qin,et al. Numerical simulation of the effects of falling rock’s shape and impact pose on impact force and response of RC slabs[J]. Construction and Building Materials,2018,160:497 − 504. doi: 10.1016/j.conbuildmat.2017.11.087

    [14]

    袁博,祝介旺. 滚石冲击下棚洞破坏动力响应分析及改进对策——以川藏公路(安久拉山南麓)门式棚洞为例[J]. 水文地质工程地质,2019,46(6):57 − 66. [YUAN Bo,ZHU Jiewang. Dynamic response analyses and improvement countermeasures of shed-tunnel destruction under rolling stone impact:A case study of the shed-tunnel in the southern foot of the Anjiula Mountain on the Sichuan-Tibet Highway[J]. Hydrogeology & Engineering Geology,2019,46(6):57 − 66. (in Chinese with English abstract)]

    YUAN Bo, ZHU Jiewang. Dynamic response analyses and improvement countermeasures of shed-tunnel destruction under rolling stone impact: A case study of the shed-tunnel in the southern foot of the Anjiula Mountain on the Sichuan-Tibet Highway[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 57 − 66. (in Chinese with English abstract)

    [15]

    何思明,李新坡,吴永. 考虑弹塑性变形的泥石流大块石冲击力计算[J]. 岩石力学与工程学报,2007,26(8):1664 − 1669. [HE Siming,LI Xinpo,WU Yong. Calculation of impact force of outrunner blocks in debris flow considering elastoplastic deformation[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(8):1664 − 1669. (in Chinese with English abstract)]

    HE Siming, LI Xinpo, WU Yong. Calculation of impact force of outrunner blocks in debris flow considering elastoplastic deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1664 − 1669. (in Chinese with English abstract)

    [16]

    何思明,李新坡,吴永. 滚石冲击荷载作用下土体屈服特性研究[J]. 岩石力学与工程学报,2008,27(增刊1):2973 − 2977. [HE Siming,LI Xinpo,WU Yong. Research on yield property of soil under rock-fall impact[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(Sup):2973 − 2977. (in Chinese with English abstract)]

    HE Siming, LI Xinpo, WU Yong. Research on yield property of soil under rock-fall impact[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(Sup): 2973 − 2977. (in Chinese with English abstract)

    [17]

    何思明. 滚石对防护结构的冲击压力计算[J]. 工程力学,2010,27(9):175 − 180. [HE Siming. Calculation of compact pressure of rock-fall on shield structures[J]. Engineering Mechanics,2010,27(9):175 − 180. (in Chinese with English abstract)]

    HE Siming. Calculation of compact pressure of rock-fall on shield structures[J]. Engineering Mechanics, 2010, 27(9): 175 − 180. (in Chinese with English abstract)

    [18]

    何思明,沈均,罗渝,等. 滚石坡面法向冲击动力响应特性研究[J]. 工程力学,2011,28(6):118 − 124. [HE Siming,SHEN Jun,LUO Yu,et al. Study on the characteristics of normal impact of post-earthquake rock-fall on slope[J]. Engineering Mechanics,2011,28(6):118 − 124. (in Chinese with English abstract)]

    HE Siming, SHEN Jun, LUO Yu, et al. Study on the characteristics of normal impact of post-earthquake rock-fall on slope[J]. Engineering Mechanics, 2011, 28(6): 118 − 124. (in Chinese with English abstract)

    [19]

    WANG Yusuo,XU Ming,YANG Chao,et al. Effects of elastoplastic strengthening of gravel soil on rockfall impact force and penetration depth[J]. International Journal of Impact Engineering,2020,136:103411. doi: 10.1016/j.ijimpeng.2019.103411

    [20]

    何思明,吴永,沈均. 泥石流大块石冲击力的简化计算[J]. 自然灾害学报,2009,18(5):51 − 56. [HE Siming,WU Yong,SHEN Jun. Simplified calculation of impact force of massive stone in debris flow[J]. Journal of Natural Disasters,2009,18(5):51 − 56(in Chinese with English abstract)]

    HE Siming, WU Yong, SHEN Jun. Simplified calculation of impact force of massive stone in debris flow[J]. Journal of Natural Disasters, 2009, 18(5): 51 − 56(in Chinese with English abstract)

    [21]

    WANG Xing,XIA Yongxu,ZHOU Tianyue. Theoretical analysis of rockfall impacts on the soil cushion layer of protective structures[J]. Advances in Civil Engineering,2018:1 − 18.

    [22]

    候天兴,杨兴国,黄成,等. 基于冲量定理的滚石对构筑物冲击力计算方法[J]. 岩石力学与工程学报,2015,34(增刊1):3116 − 3122. [HOU Tianxing,YANG Xingguo,HUANG Cheng,et al. A calculation method based on impulse theorem to determine impact force of rockfall on structure[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(Sup 1):3116 − 3122. (in Chinese with English abstract)]

    HOU Tianxing, YANG Xingguo, HUANG Cheng, et al. A calculation method based on impulse theorem to determine impact force of rockfall on structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Sup 1): 3116 − 3122. (in Chinese with English abstract)

    [23]

    WANG Baolin,CAVERS D S. A simplified approach for rockfall ground penetration and impact stress calculations[J]. Landslides,2008,5(3):305 − 310. doi: 10.1007/s10346-008-0123-6

    [24]

    DI PRISCO C,VECCHIOTTI M. A rheological model for the description of boulder impacts on granular strata[J]. Géotechnique,2006,56(7):469 − 482.

    [25]

    ZHANG Guangcheng,TANG Huiming,XIANG Xin,et al. Theoretical study of rockfall impacts based on logistic curves[J]. International Journal of Rock Mechanics and Mining Sciences,2015,78:133 − 143. doi: 10.1016/j.ijrmms.2015.06.001

    [26]

    罗杰,肖建春,马克俭,等. 落石冲击下多种类型土壤缓冲性能研究[J]. 防灾减灾工程学报,2019,39(1):164 − 170. [LUO Jie,XIAO Jianchun,MA Kejian,et al. Study on buffering performance of various types of soils under rockfall impact[J]. Journal of Disaster Prevention and Mitigation Engineering,2019,39(1):164 − 170. (in Chinese with English abstract)]

    LUO Jie, XIAO Jianchun, MA Kejian, et al. Study on buffering performance of various types of soils under rockfall impact[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(1): 164 − 170. (in Chinese with English abstract)

    [27]

    王林峰,刘丽,唐芬,等. 基于落石棚洞冲击试验的落石冲击力研究[J]. 防灾减灾工程学报,2018,38(6):973 − 979. [WANG Linfeng,LIU Li,TANG Fen,et al. Study on impact force of rockfall impact experiment on shed tunnel[J]. Journal of Disaster Prevention and Mitigation Engineering,2018,38(6):973 − 979. (in Chinese with English abstract)]

    WANG Linfeng, LIU Li, TANG Fen, et al. Study on impact force of rockfall impact experiment on shed tunnel[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(6): 973 − 979. (in Chinese with English abstract)

    [28]

    CALVETTI F,PRISCO C,VECCHIOTTI M. Experimental and numerical study of rock-fall impacts on granular soils Rivista Italiana di Geotecnica[J]. Rivista Italiana di Geotecnica,2005,4:95 − 109.

    [29]

    KAWAHARA S,MURO T. Effects of dry density and thickness of sandy soil on impact response due to rockfall[J]. Journal of Terramechanics,2006,43(3):329 − 340. doi: 10.1016/j.jterra.2005.05.009

    [30]

    王林峰,姚昌银,邹政,等. 基于离散元方法的落石冲击力变化规律研究[J]. 铁道建筑,2017,57(6):101 − 105. [WANG Linfeng,YAO Changyin,ZOU Zheng,et al. Study on change law of rockfall impact force based on discrete element method[J]. Railway Engineering,2017,57(6):101 − 105. (in Chinese with English abstract)]

    WANG Linfeng, YAO Changyin, ZOU Zheng, et al. Study on change law of rockfall impact force based on discrete element method[J]. Railway Engineering, 2017, 57(6): 101 − 105. (in Chinese with English abstract)

    [31]

    江巍,宋鹏程,陈玮,等. 基于PFC2D的土体缓冲落石冲击能力研究[J]. 长江科学院院报,2019,36(4):49 − 54. [JIANG Wei,SONG Pengcheng,CHEN Wei,et al. Cushioning capacity of soils against rockfall’s impact force based on two-dimensional particle flow code[J]. Journal of Yangtze River Scientific Research Institute,2019,36(4):49 − 54. (in Chinese with English abstract)]

    JIANG Wei, SONG Pengcheng, CHEN Wei, et al. Cushioning capacity of soils against rockfall’s impact force based on two-dimensional particle flow code[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(4): 49 − 54. (in Chinese with English abstract)

    [32]

    ZHANG Lingran,LAMBERT S,NICOT F. Discrete dynamic modelling of the mechanical behaviour of a granular soil[J]. International Journal of Impact Engineering,2017,103:76 − 89. doi: 10.1016/j.ijimpeng.2017.01.009

    [33]

    WANG Yucang,MORA P. The ESyS_Particle:A New 3-D Discrete Element Model with Single Particle Rotation[M]//Advances in Geocomputing. Berlin,Heidelberg:Springer,2009:183 − 228.

    [34]

    SHEN Weigang,ZHAO Tao,DAI Feng. Influence of particle size on the buffering efficiency of soil cushion layer against rockfall impact[J]. Natural Hazards,2021,108(2):1469 − 1488. doi: 10.1007/s11069-021-04741-6

  • 加载中

(9)

(1)

计量
  • 文章访问数:  262
  • PDF下载数:  58
  • 施引文献:  0
出版历程
收稿日期:  2022-11-09
修回日期:  2023-01-12
刊出日期:  2024-04-25

目录