Reliability analysis of seismic subsidence of loess foundation based on Kriging surrogate model
-
摘要:
为评估黄土地基在发生地震期间出现的震陷安全水平,本文提出了一种基于Kriging代理模型的黄土地基震陷可靠度分析方法,采用拉丁超立方抽样(LHS)抽取随机变量的样本点,通过FLAC3D有限差分软件建立黄土地基数值模型并计算所抽样本点对应的响应值作为建立Kriging代理模型所需的训练样本点,结合蒙特卡罗法计算黄土地基震陷的可靠度,并分析随机变量的变异性对震陷可靠度的影响。算例分析结果表明:提出的震陷可靠度计算方法相比传统的确定性计算方法能够合理地考虑土性参数的变异性,更加符合实际情况,具有更好的可靠性和适用性。黏聚力的变异系数对震陷最大可靠度的影响更为显著。
-
关键词:
- Kriging代理模型 /
- 黄土地基 /
- 震陷 /
- 可靠度 /
- Monte Carlo
Abstract:In order to evaluate the safety level of seismic subsidence of loess foundation during earthquakes, this paper proposes a reliability analysis method based on the Kriging surrogate model. The sample points of random variables are extracted based on Latin hypercube sampling (LHS). A numerical model of the loess foundation is established using FLAC3D finite difference software, and response values corresponding to the sample point is calculated as the training sample point for establishing Kriging surrogate model. The reliability of seismic subsidence of loess foundation is calculated by Monte Carlo method, and the influence of variability of random variables on seismic subsidence reliability is analyzed. The results show that the proposed seismic subsidence reliability calculation method can reasonably consider the variability of soil parameters compared to traditional deterministic methods, making it more practical with better reliability and applicability. The variation coefficient of cohesion significantly affects the maximum reliability of seismic subsidence.
-
Key words:
- Kriging surrogate model /
- loess foundation /
- seismic subsidence /
- reliability /
- Monte Carlo
-
-
表 1 不同地震波及不同峰值加速度作用下地基震陷量
Table 1. Seismic subsidence of foundation under different seismic waves and peak accelerations.
峰值加速度/g 震陷量/cm 地震波1 地震波2 地震波3 0.1 0.72 1.95 2.65 0.2 2.37 8.40 13.44 0.3 9.10 16.02 21.62 0.4 17.83 21.44 29.52 0.5 19.78 25.29 37.06 0.6 20.08 30.67 40.98 0.7 20.48 35.84 46.98 表 2 分布假设检验结果
Table 2. Distribution hypothesis test results
检验参数 样本量 验证结果 $ {D_{\max }} $ 可接受的临界值 $ D_n^\alpha /\left( {\alpha = 0.05} \right) $ 正态分布 对数正态分布 威布尔分布 结果 $ {D_{\max }} $ 结果 $ {D_{\max }} $ 结果 $ {D_{\max }} $ 内摩擦角 24 √ 0.180 √ 0.223 √ 0.093 0.273 黏聚力 24 √ 0.099 √ 0.125 √ 0.102 0.273 压缩模量 24 √ 0.094 √ 0.146 √ 0.164 0.273 密度 48 √ 0.150 √ 0.185 √ 0.115 0.196 表 3 不同地震波作用下地基震陷破坏概率
Table 3. Probability of foundation subsidence failure under different seismic wave effects
加速度/g 地震波1 地震波2 地震波3 0.1 0 0 0 0.2 0 0 0 0.3 0 0 0 0.4 0 0.072 0.116 0.5 0 0.17 0.378 0.6 0 0.232 0.704 0.7 0.002 0.264 0.888 表 4 不同地震波作用下地基震陷完好概率
Table 4. Probability of intact seismic subsidence of foundation under different seismic wave effects
加速度/g 地震波1 地震波2 地震波3 0.1 0.946 0.854 0.842 0.2 0.392 0.094 0.832 0.3 0.238 0.004 0 0.4 0.01 0 0 0.5 0.018 0 0 0.6 0.012 0 0 0.7 0.002 0 0 表 5 各参数变异系数工况组合表
Table 5. Combination table of variation coefficient for each parameter
工况 COV 密度 弹性模量 黏聚力 摩擦角 1-1 0.01 0.3 0.2 0.3 1-2 0.05 1-3 0.1 1-4 0.15 1-5 0.2 2-1 0.05 0.05 0.2 0.3 2-2 0.1 2-3 0.2 2-4 0.3 2-5 0.4 3-1 0.05 0.3 0.05 0.3 3-2 0.1 3-3 0.2 3-4 0.3 3-5 0.4 4-1 0.05 0.3 0.2 0.1 4-2 0.2 4-3 0.3 4-4 0.4 4-5 0.5 -
[1] 何晓,王伟志,徐永福,等. 临近既有铁路增建新线地基处理施工影响比较分析[J]. 水文地质工程地质,2024,51(1):111 − 122. [HE Xiao,WANG Weizhi,XU Yongfu,et al. Comparison analysis of the impact of soft ground improvement construction on existing railways near newly constructed lines[J]. Hydrogeology & Engineering Geology,2024,51(1):111 − 122. (in Chinese with English abstract)]
HE Xiao, WANG Weizhi, XU Yongfu, et al. Comparison analysis of the impact of soft ground improvement construction on existing railways near newly constructed lines[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 111 − 122. (in Chinese with English abstract)
[2] 屈宏录,刘德仁,孙英萍,等. 深厚黄土地基浸水湿陷变形及竖向土压力作用分析[J]. 水文地质工程地质,2022,49(4):157 − 164. [QU Honglu,LIU Deren,SUN Yingping,et al. Analysis of collapsible deformation and vertical soil pressure action of thick loess foundation[J]. Hydrogeology & Engineering Geology,2022,49(4):157 − 164. (in Chinese with English abstract)]
QU Honglu, LIU Deren, SUN Yingping, et al. Analysis of collapsible deformation and vertical soil pressure action of thick loess foundation[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 157 − 164. (in Chinese with English abstract)
[3] 郭乐,王家鼎,谷天峰. 宝鸡市渭北台塬马兰黄土震陷特性研究[J]. 水文地质工程地质,2012,39(2):61 − 65. [GUO Le,WANG Jiading,GU Tianfeng. A study of loess seismic subsidence of tableland to the North Weihe River in Baoji City[J]. Hydrogeology & Engineering Geology,2012,39(2):61 − 65. (in Chinese with English abstract)]
GUO Le, WANG Jiading, GU Tianfeng. A study of loess seismic subsidence of tableland to the North Weihe River in Baoji City[J]. Hydrogeology & Engineering Geology, 2012, 39(2): 61 − 65. (in Chinese with English abstract)
[4] 吴志坚,张泽忠,王平,等. 甘南地区黄土残余应变特征研究和震陷灾害区划[J]. 岩土工程学报,2013,35(增刊1):113 − 117. [WU Zhijian,ZHANG Zezhong,WANG Ping,et al. Study on residual strain characteristics of loess in Gannan Area and earthquake subsidence disaster zoning[J]. Chinese Journal of Geotechnical Engineering,2013,35(Sup 1):113 − 117. (in Chinese with English abstract)]
WU Zhijian, ZHANG Zezhong, WANG Ping, et al. Study on residual strain characteristics of loess in Gannan Area and earthquake subsidence disaster zoning[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Sup 1): 113 − 117. (in Chinese with English abstract)
[5] 刘少鹏. 强震作用下黄土场地的震陷评价——以富平县为例[D]. 西安:长安大学,2020. [LIU Shaopeng. Seismic subsidence evaluation of loess site under strong earthquake:A case study of Fuping County[D]. Xi’an:Changan University,2020. (in Chinese with English abstract)]
LIU Shaopeng. Seismic subsidence evaluation of loess site under strong earthquake: A case study of Fuping County[D]. Xi’an: Changan University, 2020. (in Chinese with English abstract)
[6] 王峻,王兰民,李兰. 黄土场地震陷量的试验预测[J]. 西北地震学报,1997,19(2):62 − 66. [WANG Jun,WANG Lanmin,LI Lan. Experimental prediction of earthquake subsidence in loess field[J]. China Earthquake Engineering Journal,1997,19(2):62 − 66. (in Chinese with English abstract)]
WANG Jun, WANG Lanmin, LI Lan. Experimental prediction of earthquake subsidence in loess field[J]. China Earthquake Engineering Journal, 1997, 19(2): 62 − 66. (in Chinese with English abstract)
[7] 刘辉,郑俊杰,章荣军. 考虑不排水抗剪强度空间变异性的黏土边坡系统失效概率分析[J]. 岩土力学,2021,42(6):1529 − 1539. [LIU Hui,ZHENG Junjie,ZHANG Rongjun. System failure probability analysis of cohesive slope considering the spatial variability of undrained shear strength[J]. Rock and Soil Mechanics,2021,42(6):1529 − 1539. (in Chinese with English abstract)]
LIU Hui, ZHENG Junjie, ZHANG Rongjun. System failure probability analysis of cohesive slope considering the spatial variability of undrained shear strength[J]. Rock and Soil Mechanics, 2021, 42(6): 1529 − 1539. (in Chinese with English abstract)
[8] 程井,何子瑶,刘忠,等. 基于非线性随机有限元的堤坝边坡可靠度分析[J]. 人民黄河,2023,45(5):137 − 142. [CHENG Jing,HE Ziyao,LIU Zhong,et al. Analysis of embankment slope safety based on nonlinear stochastic finite element method[J]. Yellow River,2023,45(5):137 − 142. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-1379.2023.05.028
CHENG Jing, HE Ziyao, LIU Zhong, et al. Analysis of embankment slope safety based on nonlinear stochastic finite element method[J]. Yellow River, 2023, 45(5): 137 − 142. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-1379.2023.05.028
[9] 刘栗昊,缪林昌. 基于联合灰色关联分析的土质边坡稳定性预测[J]. 公路交通科技,2022,39(10):32 − 39. [LIU Lihao,MIAO Linchang. Prediction of soil slope stability based on conjoint grey correlation analysis[J]. Journal of Highway and Transportation Research and Development,2022,39(10):32 − 39. (in Chinese with English abstract)] doi: 10.3969/j.issn.1002-0268.2022.10.005
LIU Lihao, MIAO Linchang. Prediction of soil slope stability based on conjoint grey correlation analysis[J]. Journal of Highway and Transportation Research and Development, 2022, 39(10): 32 − 39. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-0268.2022.10.005
[10] 曹泽鑫. 基于随机模糊可靠度理论的边坡稳定性评价及应用[D]. 武汉:武汉工程大学,2020. [CAO Zexin. Evaluation and application of slope stability based on stochastic fuzzy reliability theory[D]. Wuhan:Wuhan Institute of Technology,2020. (in Chinese with English abstract)]
CAO Zexin. Evaluation and application of slope stability based on stochastic fuzzy reliability theory[D]. Wuhan: Wuhan Institute of Technology, 2020. (in Chinese with English abstract)
[11] 丁卫锋. 引汉济渭二期工程沿线黄土湿陷性评价研究[D]. 西安:西安科技大学,2020. [DING Weifeng. Study on evaluation of loess collapsibility along the second phase of the project of diverting water from Han to Wei[D]. Xi’an:Xi’an University of Science and Technology,2020. (in Chinese with English abstract)]
DING Weifeng. Study on evaluation of loess collapsibility along the second phase of the project of diverting water from Han to Wei[D]. Xi’an: Xi’an University of Science and Technology, 2020. (in Chinese with English abstract)
[12] 李波,崔金涛,刘念,等. 考虑指标关联分析的软土地基震陷判别逐步判别模型[J]. 建筑科学,2019,35(7):30 − 36. [LI Bo,CUI Jintao,LIU Nian,et al. Stepwise discriminant analysis for subsidence discrimination of foundation in soft clay area considering indicators relational analysis[J]. Building Science,2019,35(7):30 − 36. (in Chinese with English abstract)]
LI Bo, CUI Jintao, LIU Nian, et al. Stepwise discriminant analysis for subsidence discrimination of foundation in soft clay area considering indicators relational analysis[J]. Building Science, 2019, 35(7): 30 − 36. (in Chinese with English abstract)
[13] 谭芳. 基于参数等级划分模糊处理的黄土震陷灾害概率分析[D]. 西安:西安建筑科技大学,2010. [TAN Fang. Probability analysis of loess seismic subsidence based on fuzzy processing of the parameter rank division[D]. Xi’an:Xi’an University of Architecture and Technology,2010. (in Chinese with English abstract)]
TAN Fang. Probability analysis of loess seismic subsidence based on fuzzy processing of the parameter rank division[D]. Xi’an: Xi’an University of Architecture and Technology, 2010. (in Chinese with English abstract)
[14] 任森,邓龙胜,范文,等. 陕西富平黄土震陷特性及震陷小区划[J]. 中国地质灾害与防治学报,2023,34(4):134 − 143. [REN Sen,DENG Longsheng,FAN Wen,et al. Characteristics of loess seismic subsidence and corresponding micro-zonation for the Fuping Country,Shaanxi[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4):134 − 143. (in Chinese with English abstract)]
REN Sen, DENG Longsheng, FAN Wen, et al. Characteristics of loess seismic subsidence and corresponding micro-zonation for the Fuping Country, Shaanxi[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 134 − 143. (in Chinese with English abstract)
[15] 孙军杰,田文通,徐舜华,等. 概率性分析在黄土场地动力沉降评价中的应用[J]. 岩土力学,2013,34(8):2158 − 2164. [SUN Junjie,TIAN Wentong,XU Shunhua,et al. Application of probability analysis method to quantitative evaluation of dynamic settlements of natural loess field[J]. Rock and Soil Mechanics,2013,34(8):2158 − 2164. (in Chinese with English abstract)]
SUN Junjie, TIAN Wentong, XU Shunhua, et al. Application of probability analysis method to quantitative evaluation of dynamic settlements of natural loess field[J]. Rock and Soil Mechanics, 2013, 34(8): 2158 − 2164. (in Chinese with English abstract)
[16] 赵文博,曹佳文,郭长宝,等. 甘肃岷县阳坡村大型古滑坡发育特征与稳定性评价[J/OL]. 地质通报,2024(2024-08-05)[2024-09-06] [ZHAO Wenbo,CAO Jiawen,GUO Changbao,et al. Developmental characteristics and stability simulation of Yangpo Village large-scale ancient landslides in Minxian County, Gansu Province, China[J/OL]. Geological Bulletin of China,2024(2024-08-05)[2024-09-06]. https://kns.cnki.net/kcms/detail/11.4648.P.20240802.1808.003.html. (in Chinese with English abstract)]
ZHAO Wenbo, CAO Jiawen, GUO Changbao, et al. Developmental characteristics and stability simulation of Yangpo Village large-scale ancient landslides in Minxian County, Gansu Province, China[J/OL]. Geological Bulletin of China, 2024(2024-08-05)[2024-09-06]. https://kns.cnki.net/kcms/detail/11.4648.P.20240802.1808.003.html. (in Chinese with English abstract)
[17] 吴玮江,王国亚,张国信,等. 甘肃岷县永光1#流滑型黄土滑坡的远程滑动特征[J]. 中国地质灾害与防治学报,2023,34(6):3 − 12. [WU Weijiang,WANG Guoya,ZHANG Guoxin,et al. Long-runout characteristics of the Yongguang 1# loess flowslide in Minxian County, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6):3 − 12. (in Chinese with English abstract)]
WU Weijiang, WANG Guoya, ZHANG Guoxin, et al. Long-runout characteristics of the Yongguang 1# loess flowslide in Minxian County, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 3 − 12. (in Chinese with English abstract)
[18] 薛强, 张茂省, 董英, 等. 基于DEM和遥感的黄土地质灾害精细化风险识别——以陕北黄土高原区米脂县为例[J]. 中国地质,2023,50(3):926 − 942. [XUE Qiang, ZHANG Maosheng, DONG Ying, et al. Refinement risk identification of loess geo-hazards based on DEM and remote sensing:Taking Mizhi County in the Loess Plateau of northern Shaanxi as an example[J]. Geology in China,2023,50(3):926 − 942. (in Chinese with English abstract)]
XUE Qiang, ZHANG Maosheng, DONG Ying, et al. Refinement risk identification of loess geo-hazards based on DEM and remote sensing: Taking Mizhi County in the Loess Plateau of northern Shaanxi as an example[J]. Geology in China, 2023, 50(3): 926 − 942. (in Chinese with English abstract)
-