中国地质环境监测院
中国地质灾害防治工程行业协会
主办

边坡地震系数剪切梁计算方法研究

王梦晨, 邓亚虹, 慕焕东, 杨楠, 钱法桥. 边坡地震系数剪切梁计算方法研究[J]. 中国地质灾害与防治学报, 2024, 35(6): 98-105. doi: 10.16031/j.cnki.issn.1003-8035.202410024
引用本文: 王梦晨, 邓亚虹, 慕焕东, 杨楠, 钱法桥. 边坡地震系数剪切梁计算方法研究[J]. 中国地质灾害与防治学报, 2024, 35(6): 98-105. doi: 10.16031/j.cnki.issn.1003-8035.202410024
WANG Mengchen, DENG Yahong, MU Huandong, YANG Nan, QIAN Faqiao. Study on the calculation method of seismic coefficient for slope stability using shear beam theory[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(6): 98-105. doi: 10.16031/j.cnki.issn.1003-8035.202410024
Citation: WANG Mengchen, DENG Yahong, MU Huandong, YANG Nan, QIAN Faqiao. Study on the calculation method of seismic coefficient for slope stability using shear beam theory[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(6): 98-105. doi: 10.16031/j.cnki.issn.1003-8035.202410024

边坡地震系数剪切梁计算方法研究

  • 基金项目: 国家自然科学基金项目(41772275)
详细信息
    作者简介: 王梦晨(1998—),男,博士研究生,主要从事地震边坡稳定性分析研究工作。E-mail:2020226082@chd.edu.cn
    通讯作者: 邓亚虹(1978—),男,博士,教授,博士生导师,主要从事土动力学与地震工程方面的研究。E-mail:dgdyh@chd.edu.cn
  • 中图分类号: P694

Study on the calculation method of seismic coefficient for slope stability using shear beam theory

  • Fund Project: This research is financially supported by National Natural Science Foundation of China, No. 41772275
More Information
  • 拟静力法是评价地震边坡稳定性的常用方法之一,该方法中地震系数的选择直接关系到评估结果的准确性。 因此,深入研究拟静力法中地震系数的确定方法和取值具有重要的理论与工程实际意义。文章依据剪切梁理论,推导了直角梯形边坡的地震边坡响应加速度公式,同时分析了各因素对边坡响应加速度的影响,并确定了不同地震烈度下的地震系数推荐值。最终确定地震烈度分别为Ⅵ、Ⅶ、Ⅷ、Ⅸ度时,所对应的地震系数推荐值分别为0.04,0.07,0.11,0.21。研究结果能够反映边坡的动力响应特征,为地震系数的选择提供科学的理论支持。

  • 加载中
  • 图 1  二维边坡剪切梁模型

    Figure 1. 

    图 2  剪切梁微元示意图

    Figure 2. 

    图 3  不同PGA放大因子下边坡响应加速度曲线图

    Figure 3. 

    图 4  Rg随弹性模量变化图

    Figure 4. 

    图 5  Rg随阻尼比变化图

    Figure 5. 

    图 6  Rg随坡高变化图

    Figure 6. 

    图 7  Rg随坡角变化图

    Figure 7. 

    图 8  简化边坡模型的拟静力法原理图

    Figure 8. 

    图 9  RgPGA关系图

    Figure 9. 

    图 10  RgPGA关系曲线拟合图

    Figure 10. 

    图 11  综合影响系数物理示意图

    Figure 11. 

    图 12  地震系数对比图

    Figure 12. 

    表 1  PGA与烈度对应关系及地震波基本信息表

    Table 1.  Correspondence between PGA and intensity and basic information on seismic waves

    PGA/g ≤0.05 (0.05,0.1] (0.1,0.2] (0.2,0.4] >0.4
    区域
    数量/条 163 82 117 52 21
    PGAmax/g 0.04934 0.09949 0.2 0.39481 1.23307
    PGAmin/g 0.0029 0.05077 0.10155 0.20021 0.40112
    平均PGA/g 0.03 0.072 0.143 0.298 0.647
    平均卓越周期/s 0.481 0.41 0.241 0.221 0.238
    平均卓越频率/Hz 2.08 2.4 4.149 4.52 4.2
      注:PGAmaxPGAmin分别为所划分区域的地震动数据PGA的最大值与最小值。
    下载: 导出CSV

    表 2  计算参数汇总表

    Table 2.  Summary table of calculation parameters

    H/m B/m α/(°) 阻尼比 E/MPa
    5/10/15/20/25/
    30/35/40/45/50
    70 30 0.1 15
    15 70 20/30/40/50/60/70 0.1 15
    15 70 30 0.1/0.15/0.2/0.25/0.3 15
    15 70 30 0.1 3~25
    下载: 导出CSV

    表 3  地震波信息表

    Table 3.  Seismic wave information table

    地震名称 卓越周期/s 卓越频率/Hz
    1995年日本神户地震 0.16 6.25
    1992年美国兰德斯地震 0.08 12.5
    1999年台湾集集地震 0.12 8.3
    下载: 导出CSV

    表 4  地震系数建议取值表

    Table 4.  Table of recommended values for seismic coefficients

    地震烈度
    PGA/g 0.05 0.10 0.20 0.40
    Rg 1.62 1.42 1.22 1.13
    地震系数 0.04 0.07 0.11 0.21
    下载: 导出CSV

    表 5  地震系数对比表

    Table 5.  Comparison table of seismic coefficients

    来源 取值依据和条件 地震系数
    Terzaghi[18] 地震震级 对于“严重”“破坏性”和“灾难性”地震,水平地震系数分别为0.1、0.2和0.5
    Seed[22] 地震震级且安全系数Fs > 1.15 当震级M=6.5时,k=0.1;当震级M=8.5时,k=0.2
    Hynes-Griffin[20] 地震烈度且安全系数Fs > 1 Ⅵ:0.025、Ⅶ:0.05、Ⅷ:0.1、Ⅸ:0.2
    Marcuson[24] 地震烈度且安全系数Fs > 1 Ⅵ:0.017~0.025、Ⅶ:0.03~0.05、Ⅷ:0.06~0.1、Ⅸ:0.13~0.2
    Baker[21] 地震烈度 Ⅵ:0.0375、Ⅶ:0.075、Ⅷ:0.15、Ⅸ:0.3
    本文计算结果 地震烈度 Ⅵ:0.04、Ⅶ:0.07、Ⅷ:0.11、Ⅸ:0.21
    下载: 导出CSV
  • [1]

    阎渊. 青海门源Ms 6.9地震同震破裂的隧道破坏效应与启示[J]. 地质力学学报,2023,29(6):869 − 878. [YAN Yuan. The tunnel damage effects and implications of the coseismic rupture of the Menyuan Ms 6.9 earthquake in Qinghai,China[J]. Journal of Geomechanics,2023,29(6):869 − 878. (in Chinese with English abstract)] doi: 10.12090/j.issn.1006-6616.2023027

    YAN Yuan. The tunnel damage effects and implications of the coseismic rupture of the Menyuan Ms 6.9 earthquake in Qinghai, China[J]. Journal of Geomechanics, 2023, 29(6): 869 − 878. (in Chinese with English abstract) doi: 10.12090/j.issn.1006-6616.2023027

    [2]

    ZHU Y Q,LIU F,ZHANG G Q,et al. Development and prospect of mobile gravity monitoring and earthquake forecasting in recent ten years in China[J]. Geodesy and Geodynamics,2019,10(6):485 − 491. doi: 10.1016/j.geog.2019.05.006

    [3]

    张培震,邓起东,张竹琪,等. 中国大陆的活动断裂、地震灾害及其动力过程[J]. 中国科学:地球科学,2013,43(10):1607 − 1620. [ZHANG Peizhen,DENG Qidong,ZHANG Zhuqi,et al. Active faults,earthquake hazards and associated geodynamic processes in continental China[J]. Scientia Sinica (Terrae),2013,43(10):1607 − 1620. (in Chinese with English abstract)] doi: 10.1360/zd-2013-43-10-1607

    ZHANG Peizhen, DENG Qidong, ZHANG Zhuqi, et al. Active faults, earthquake hazards and associated geodynamic processes in continental China[J]. Scientia Sinica (Terrae), 2013, 43(10): 1607 − 1620. (in Chinese with English abstract) doi: 10.1360/zd-2013-43-10-1607

    [4]

    LU L,WANG Z J,SONG M L,et al. Stability analysis of slopes with ground water during earthquakes[J]. Engineering Geology,2015,193:288 − 296. doi: 10.1016/j.enggeo.2015.05.001

    [5]

    ZHANG D X,WANG G H. Study of the 1920 Haiyuan earthquake-induced landslides in loess (China)[J]. Engineering Geology,2007,94(1/2):76 − 88.

    [6]

    张辉,徐珂,李珺,等. 三维地震数据模型驱动下的超深全层系复杂构造地应力建模[J/OL]. 地质通报, 2024 (2024-10-12)[2024-11-11]. [ZHANG Hui,XU Ke,LI Jun,et al. 3D full-layer Geomechanical modeling of complex structures in the ultra-deep system driven by 3D seismic data[J/OL]. Geological Bulletin of China, 2024 (2024-10-12)[2024-11-11]. https://kns.cnki.net/kcms/detail/11.4648.P.20241012.1119.002.html. (in Chinese with English abstract)]

    ZHANG Hui, XU Ke, LI Jun, et al. 3D full-layer Geomechanical modeling of complex structures in the ultra-deep system driven by 3D seismic data[J/OL]. Geological Bulletin of China, 2024 (2024-10-12)[2024-11-11]. https://kns.cnki.net/kcms/detail/11.4648.P.20241012.1119.002.html. (in Chinese with English abstract)

    [7]

    KEEFER D K,WARTMAN J,NAVARRO OCHOA C,et al. Landslides caused by the M 7.6 tecomán,Mexico earthquake of January 21,2003[J]. Engineering Geology,2006,86(2/3):183 − 197.

    [8]

    ZHANG S,LI C,ZHANG L M,et al. Quantification of human vulnerability to earthquake-induced landslides using Bayesian network[J]. Engineering Geology,2020,265:105436. doi: 10.1016/j.enggeo.2019.105436

    [9]

    赵佳忆,田述军,李凯,等. 岷江上游汶川地震前后泥石流易发性评价[J]. 中国地质灾害与防治学报,2024,35(1):51 − 59. [ZHAO Jiayi,TIAN Shujun,LI Kai,et al. Susceptibility assessment of debris flow in the upper reaches of the Minjiang River before and after the Wenchuan earthquake[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1):51 − 59. (in Chinese with English abstract)]

    ZHAO Jiayi, TIAN Shujun, LI Kai, et al. Susceptibility assessment of debris flow in the upper reaches of the Minjiang River before and after the Wenchuan earthquake[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 51 − 59. (in Chinese with English abstract)

    [10]

    韩继冲,张朝,曹娟. 基于逻辑回归的地震滑坡易发性评价——以汶川地震、鲁甸地震为例[J]. 灾害学,2021,36(2):193 − 199. [HAN Jichong,ZHANG Hao,CAO Juan. Assessing earthquake-induced landslide susceptibility based on logistic regression in 2008 Wenchuan earthquake and 2014 Ludian earthquake[J]. Journal of Catastrophology,2021,36(2):193 − 199. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-811X.2021.02.034

    HAN Jichong, ZHANG Hao, CAO Juan. Assessing earthquake-induced landslide susceptibility based on logistic regression in 2008 Wenchuan earthquake and 2014 Ludian earthquake[J]. Journal of Catastrophology, 2021, 36(2): 193 − 199. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2021.02.034

    [11]

    许冲,徐锡伟,周本刚,等. 同震滑坡发生概率研究——新一代地震滑坡危险性模型[J]. 工程地质学报,2019,27(5):1122 − 1130. [XU Chong,XU Xiwei,ZHOU Bengang,et al. Probability of coseismic landslides:A new generation of earthquake-triggered landslide hazard model[J]. Journal of Engineering Geology,2019,27(5):1122 − 1130. (in Chinese with English abstract)]

    XU Chong, XU Xiwei, ZHOU Bengang, et al. Probability of coseismic landslides: A new generation of earthquake-triggered landslide hazard model[J]. Journal of Engineering Geology, 2019, 27(5): 1122 − 1130. (in Chinese with English abstract)

    [12]

    CALLISTO L,RAMPELLO S,FARGNOLI P. Evaluation of slope performance under earthquake loading conditions[J]. Rivista Italiana di Geotecnica,2010,44(4):29 − 41.

    [13]

    姚生海,盖海龙,殷翔,等. 青海门源M6.9级地震地表破裂特征及区域地震活动趋势分析[J]. 地质通报,2024,43(2):340 − 349. [YAO Shenghai,GAI Hailong,YIN Xiang,et al. Analysis on the characteristics of surface rupture and regional seismicity trend of Mengyuan M6.9 earthquake in Qinghai Province[J]. Geological Bulletin of China,2024,43(2):340 − 349. (in Chinese with English abstract)]

    YAO Shenghai, GAI Hailong, YIN Xiang, et al. Analysis on the characteristics of surface rupture and regional seismicity trend of Mengyuan M6.9 earthquake in Qinghai Province[J]. Geological Bulletin of China, 2024, 43(2): 340 − 349. (in Chinese with English abstract)

    [14]

    蒋青江,邓亚虹,杨楠,等. 基于严格条分法的拟动力地震边坡稳定性分析方法研究[J]. 地震工程学报,2023,45(3):716 − 723. [JIANG Qingjiang,DENG Yahong,YANG Nan,et al. Pseudo-dynamic seismic slope stability analysis based on rigorous slice method[J]. China Earthquake Engineering Journal,2023,45(3):716 − 723. (in Chinese with English abstract)]

    JIANG Qingjiang, DENG Yahong, YANG Nan, et al. Pseudo-dynamic seismic slope stability analysis based on rigorous slice method[J]. China Earthquake Engineering Journal, 2023, 45(3): 716 − 723. (in Chinese with English abstract)

    [15]

    DENG D P,LI L. Limit equilibrium analysis of slope stability with coupling nonlinear strength criterion and double-strength reduction technique[J]. International Journal of Geomechanics,2019,19(6):04019052. doi: 10.1061/(ASCE)GM.1943-5622.0001431

    [16]

    SENGANI F,MULENGA F. Application of limit equilibrium analysis and numerical modeling in a case of slope instability[J]. Sustainability,2020,12(21):8870. doi: 10.3390/su12218870

    [17]

    TERZAGHI K. Mechanism of landslides[J]. 1950.

    [18]

    杨楠,邓亚虹,慕焕东,等. 一种基于拟动力法和剩余推力法的地震边坡稳定性分析新方法[J]. 工程地质学报,2023,31(2):607 − 616. [YANG Nan,DENG Yahong,MU Huandong,et al. A new method of seismic slope stability analysis based on pseudo-dynamic method and residual thrust method[J]. Journal of Engineering Geology,2023,31(2):607 − 616. (in Chinese with English abstract)]

    YANG Nan, DENG Yahong, MU Huandong, et al. A new method of seismic slope stability analysis based on pseudo-dynamic method and residual thrust method[J]. Journal of Engineering Geology, 2023, 31(2): 607 − 616. (in Chinese with English abstract)

    [19]

    MARCUSON W F. Moderator's report for session on earth dams and stability of slopes under dynamic loads[C]//Proc. ,Int. Conf. on recent adv. In Geotech. Earthquake Engrg. And Soil Dyn.,Univ. of Missori. 1981,3.

    [20]

    HYNES-GRIFFIN M E,Franklin A G. Rationalizing the seismic coefficient method[J]. Miscellaneous Paper GL-84-13,Department of the Army,Waterways E xperiment Station,Corps of Engineers,Vicksburg,MI,1984.

    [21]

    BAKER R,SHUKHA R,OPERSTEIN V,et al. Stability charts for pseudo-static slope stability analysis[J]. Soil Dynamics and Earthquake Engineering,2006,26(9):813 − 823. doi: 10.1016/j.soildyn.2006.01.023

    [22]

    SEED H B,MARTIN G R. The seismic coefficient in earth dam design[J]. Journal of the Soil Mechanics and Foundations Division,1966,92(3):25 − 58. doi: 10.1061/JSFEAQ.0000871

    [23]

    陈国兴. 岩土地震工程学[M]. 北京:科学出版社,2007. [CHEN Guoxing. Geotechnical earthquake engineering[M]. Beijing:Science Press,2007. (in Chinese)]

    CHEN Guoxing. Geotechnical earthquake engineering[M]. Beijing: Science Press, 2007. (in Chinese)

    [24]

    MONONOBE N,TAKATA A. MATUMURA M. Seismic stability of earth dam[A]// Proceedings of the 2nd Congress of LaRge Dams[C]. Washington D C,USA,1936,4.

    [25]

    GAZETAS G. A new dynamic model for earth dams evaluated through case histories[J]. Soils and Foundations,1981,21(1):67 − 78. doi: 10.3208/sandf1972.21.67

    [26]

    DAKOULAS P,GAZETAS G. A class of inhomogeneous shear models for seismic response of dams and embankments[J]. International Journal of Soil Dynamics and Earthquake Engineering,1985,4(4):166 − 182.

    [27]

    言志信,张学东,张森,等. 基于双向地震作用下边坡共振特性与固有频率研究[J]. 水文地质工程地质,2011,38(2):46 − 51. [YAN Zhixin,ZHANG Xuedong,ZHANG Sen,et al. Study on resonance characteristics and natural frequency of slope under bi-directional seismic action[J]. Hydrogeology & Engineering Geology,2011,38(2):46 − 51. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-3665.2011.02.008

    YAN Zhixin, ZHANG Xuedong, ZHANG Sen, et al. Study on resonance characteristics and natural frequency of slope under bi-directional seismic action[J]. Hydrogeology & Engineering Geology, 2011, 38(2): 46 − 51. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2011.02.008

    [28]

    KRAMER S L. Geotechnical earthquake engineering[M]. Upper Saddle River,NJ:Prentice Hall,1996.

    [29]

    中华人民共和国住房和城乡建设部,国家质量监督检验检疫总局. 建筑抗震设计规范:GB50011-2010[S]. 北京:中国建筑工业出版社,2010. [People's Republic of China Ministry of Housing and Urban-Rural Development,General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China. Code for seismic design of buildings:GB50011-2010[S]. Beijing:China Architecture & Building Press,2010. ( in Chinese with English abstract]

    People's Republic of China Ministry of Housing and Urban-Rural Development, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Code for seismic design of buildings: GB50011-2010[S]. Beijing: China Architecture & Building Press, 2010. ( in Chinese with English abstract

  • 加载中

(12)

(5)

计量
  • 文章访问数:  427
  • PDF下载数:  34
  • 施引文献:  0
出版历程
收稿日期:  2024-10-21
修回日期:  2024-11-04
刊出日期:  2024-12-25

目录