中国地质环境监测院
中国地质灾害防治工程行业协会
主办

走滑断层作用下上覆土层的变形破坏机理

裴鹏程, 黄帅, 袁静, 张智康. 走滑断层作用下上覆土层的变形破坏机理[J]. 中国地质灾害与防治学报, 2024, 35(6): 115-127. doi: 10.16031/j.cnki.issn.1003-8035.202306029
引用本文: 裴鹏程, 黄帅, 袁静, 张智康. 走滑断层作用下上覆土层的变形破坏机理[J]. 中国地质灾害与防治学报, 2024, 35(6): 115-127. doi: 10.16031/j.cnki.issn.1003-8035.202306029
PEI Pengcheng, HUANG Shuai, YUAN Jing, ZHANG Zhikang. Deformation and failure mechanism of overlying soil lavers under strike-slip fault action[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(6): 115-127. doi: 10.16031/j.cnki.issn.1003-8035.202306029
Citation: PEI Pengcheng, HUANG Shuai, YUAN Jing, ZHANG Zhikang. Deformation and failure mechanism of overlying soil lavers under strike-slip fault action[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(6): 115-127. doi: 10.16031/j.cnki.issn.1003-8035.202306029

走滑断层作用下上覆土层的变形破坏机理

  • 基金项目: 国家重点研发计划项目(2022YFC3070103-01);地震数值预测联合实验室开放基金(2021LNEF04); 博士后基金项目(2021M691391)
详细信息
    作者简介: 裴鹏程(1998—),男,重庆垫江人,土木工程专业,硕士研究生,主要从事管土交互耦合作用研究。E-mail:pengcheng-pei@foxmail.com
    通讯作者: 黄 帅(1987—),男,山东肥城人,土木工程专业,博士,研究员,主要从事流域重大工程抗震分析与韧性提升研究。E-mail:huangshuai3395@163.com
  • 中图分类号: P642.21

Deformation and failure mechanism of overlying soil lavers under strike-slip fault action

More Information
  • 随着西部大开发的推进,工程项目难免需要跨越断裂带。断裂带具有地震活动频繁、岩层错动等特点,这给工程建设和资源开发带来了不小的挑战。为探明跨断层工程结构的敏感性影响因素,文章研究了不同基岩位错量、不同基岩错动速率、跨越断层角度、不同场地土类型和不同场地土厚度对上覆土层的变形破坏和竖向应力的影响机制。结果表明:基岩位错会导致覆土层产生应力集中、破裂、滑动等破坏现象,这些破坏可能会引起土体位移,从而引发山体滑坡、地滑和地面变形等地质灾害的问题,将提高对地下管道、道路、桥梁等工程设施造成损伤破坏的风险。文章聚焦基岩位错造成地面沉降变形、塌陷等问题,发现随着基岩位错量的增大,不同场地土对覆土层的沉降位移、竖向应力都有不同幅度的增长,例如坚硬土基岩位错量2 m时比0.4 m时沉降变形和竖向应力增长5倍左右。此外,发现在跨越断层时选择以90°跨越断层,可以减小沉降变形和应力。相关研究旨在揭示上覆土层的变形破坏以期对不可避免的跨断层工程结构的变形以及抗剪切破坏加固提供技术支撑。

  • 加载中
  • 图 1  鲜水河断裂带位置图

    Figure 1. 

    图 2  有限元模型

    Figure 2. 

    图 3  最大应力云图

    Figure 3. 

    图 4  炉霍段沿迹线(X轴)的竖向应力

    Figure 4. 

    图 5  炉霍段沿断裂带方向(Z轴)的剪切位移

    Figure 5. 

    图 6  炉霍段沿迹线(X轴)的位移

    Figure 6. 

    图 7  不同错动速率时的竖向应力

    Figure 7. 

    图 8  不同错动速率时的竖向位移

    Figure 8. 

    图 9  不同角度跨越断层时的竖向应力

    Figure 9. 

    图 10  不同角度跨越断层时的竖向位移

    Figure 10. 

    图 11  不同场地土的竖向应力

    Figure 11. 

    图 12  不同场地土的竖向位移

    Figure 12. 

    图 13  覆土层30 m时不同场地土的竖向应力

    Figure 13. 

    表 1  土体参数

    Table 1.  Soil parameters

    介质类型 密度/(kg·m−3 弹性模量/MPa 泊松比 黏聚力/kPa 摩擦角/(°)
    基岩 2750 60000 0.28 1200 40
    上覆土层 1850 110 0.32 10 37
    下载: 导出CSV

    表 2  土体参数

    Table 2.  Summary of soil parameters

    土的类型 岩土名称和性状 密度
    /(kg·m−3
    弹性模量
    /MPa
    泊松比 黏聚力
    /kPa
    摩擦角
    /(°)
    实际剪切
    波速/(m·s−1
    土层剪切
    波速/(m·s−1
    坚硬土(岩石) 稳定的岩石,密实的碎石子 2250 1465 0.30 200 30 500 Vs≥500
    中硬土 中密、稍密的碎石子,密实、中密的砾、粗、中砂,
    fak>200的黏性土和粉土,坚硬黄土
    2050 650 0.31 100 20 350 500≥Vs>250
    中软土 稍密的砾、粗、中砂,除松散外的细、粉砂,
    fak<200的黏性土和粉土,fak≥130的填土,可塑黄土
    1850 110 0.32 10 37 150 250≥Vs>140
    软弱土 淤泥和淤泥质土,松散的砂,新近沉积的黏性土和
    粉土,fak<130的填土,新近堆积黄土和流塑黄土
    1700 45 0.35 10 25 100 Vs≤140
      注:fak为地基承载力特征值。
    下载: 导出CSV
  • [1]

    HUANG Shuai,LYU Yuejun,SHA Haijun,et al. Seismic performance assessment of unsaturated soil slope in different groundwater levels[J]. Landslides,2021,18(8):2813 − 2833. doi: 10.1007/s10346-021-01674-w

    [2]

    HUANG Shuai,LYU Yuejun,PENG Yanju,et al. Analysis of factors influencing rockfall runout distance and prediction model based on an improved KNN algorithm[J]. IEEE Access,2019,7:66739 − 66752. doi: 10.1109/ACCESS.2019.2917868

    [3]

    韩征,方振雄,傅邦杰,等. 同震崩塌滑坡的光学遥感影像多特征融合解译方法[J]. 中国地质灾害与防治学报,2022,33(6):103 − 113. [HAN Zheng,FANG Zhenxiong,FU Bangjie,et al. Multi-feature fusion interpretation method of optical remote sensing image for coseismic collapse and landslide[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):103 − 113. (in Chinese with English abstract)] doi: 10.16031/j.cnki.issn.1003-8035.202111008

    HAN Zheng, FANG Zhenxiong, FU Bangjie, et al. Multi-feature fusion interpretation method of optical remote sensing image for coseismic collapse and landslide[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 103 − 113. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.202111008

    [4]

    黄帅,吕悦军,彭艳菊. 基于永久位移的边坡地震稳定性安全评价方法研究[J]. 土木工程学报,2016,49(增刊2):120 − 125. [HUANG Shuai,LYU Yuejun,PENG Yanju. Study on safety evaluation method of seismic stability of slope based on permanent displacement[J]. China Civil Engineering Journal,2016,49(Sup 2):120 − 125. (in Chinese with English abstract)]

    HUANG Shuai, LYU Yuejun, PENG Yanju. Study on safety evaluation method of seismic stability of slope based on permanent displacement[J]. China Civil Engineering Journal, 2016, 49(Sup 2): 120 − 125. (in Chinese with English abstract)

    [5]

    张鹏,王晓宇,唐雪梅,等. 横穿滑坡下X80管道极限滑坡位移分析[J]. 中国地质灾害与防治学报,2023,34(2):21 − 29. [ZHANG Peng,WANG Xiaoyu,TANG Xuemei,et al. Limit displacement of a landslide for an X80 buried pipeline crossing it[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2):21 − 29. (in Chinese with English abstract)]

    ZHANG Peng, WANG Xiaoyu, TANG Xuemei, et al. Limit displacement of a landslide for an X80 buried pipeline crossing it[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(2): 21 − 29. (in Chinese with English abstract)

    [6]

    BRAY J D. Developing mitigation measures for the hazards associated with earthquake surface fault rupture. In:Proceedings of Workshop on Seismic Fault Induced Failures-Possible Remedies for Damage to Urban Facilities[D]. University of Tokyo,Japan,2001:55–79.

    [7]

    MOOSAVI S M,JAFARI M,KAMALIAN M,et al. Experimental investigation of reverse fault rupture-rigid shallow foundation interaction[J]. International Journal of Civil Engineering,2010,8:85 − 98.

    [8]

    白光顺,杨雪梅,朱杰勇,等. 基于证据权法的昆明五华区地质灾害易发性评价[J]. 中国地质灾害与防治学报,2022,33(5):128 − 138. [BAI Guangshun,YANG Xuemei,ZHU Jieyong,et al. Susceptibility assessment of geological hazards in Wuhua District of Kuming,China using the weight evidence method[J]. The Chinese Journal of Geological Hazard and Control,2022,33(5):128 − 138. (in Chinese with English abstract)]

    BAI Guangshun, YANG Xuemei, ZHU Jieyong, et al. Susceptibility assessment of geological hazards in Wuhua District of Kuming, China using the weight evidence method[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 128 − 138. (in Chinese with English abstract)

    [9]

    BRAY J D,SEED R B,CLUFF L S,et al. Earthquake fault rupture propagation through soil[J]. Journal of Geotechnical Engineering,1994,120(3):543 − 561. doi: 10.1061/(ASCE)0733-9410(1994)120:3(543)

    [10]

    OETTLE N K,BRAY J D. Fault rupture propagation through previously ruptured soil[J]. Journal of Geotechnical and Geoenvironmental Engineering,2013,139(10):1637 − 1647. doi: 10.1061/(ASCE)GT.1943-5606.0000919

    [11]

    LIN Minglang,CHUNG C F,JENG F S,et al. The deformation of overburden soil induced by thrust faulting and its impact on underground tunnels[J]. Engineering Geology,2007,92(3/4):110 − 132.

    [12]

    FACCIOLI E,ANASTASOPOULOS I,CALLERIO A,et al. Case histories of fault–foundation interaction[J]. Bulletin of Earthquake Engineering,2008,6(4):557 − 583. doi: 10.1007/s10518-008-9089-y

    [13]

    LAZARTE C A,BRAY J D,JOHNSON A M,et al. Surface breakage of the 1992 Landers earthquake and its effects on structures[J]. Bulletin of the Seismological Society of America,1994,84(3):547 − 561. doi: 10.1785/BSSA0840030547

    [14]

    蒋海昆,曲延军,李永莉,等. 中国大陆中强地震余震序列的部分统计特征[J]. 地球物理学报,2006,49(4):1110 − 1117. [JIANG Haikun,QU Yanjun,LI Yongli,et al. Some statistic features of aftershock sequences in Chinese mainland[J]. Chinese Journal of Geophysics,2006,49(4):1110 − 1117. (in Chinese with English abstract)]

    JIANG Haikun, QU Yanjun, LI Yongli, et al. Some statistic features of aftershock sequences in Chinese mainland[J]. Chinese Journal of Geophysics, 2006, 49(4): 1110 − 1117. (in Chinese with English abstract)

    [15]

    铁瑞,王俊,贾连军,等. 强震地震数据统计及其地表破裂特性研究[J]. 世界地震工程,2016,32(1):112 − 116. [TIE Rui,WANG Jun,JIA Lianjun,et al. Data statistics of strong-moderate earthquake and characteristics research of ground rupture[J]. World Earthquake Engineering,2016,32(1):112 − 116. (in Chinese with English abstract)]

    TIE Rui, WANG Jun, JIA Lianjun, et al. Data statistics of strong-moderate earthquake and characteristics research of ground rupture[J]. World Earthquake Engineering, 2016, 32(1): 112 − 116. (in Chinese with English abstract)

    [16]

    STONE K J L,WOOD D M. Effects of dilatancy and particle size observed in model tests on sand[J]. Soils and Foundations,1992,32(4):43 − 57. doi: 10.3208/sandf1972.32.4_43

    [17]

    BRANSBY M F,DAVIES M C R,EL NAHAS A,et al. Centrifuge modelling of reverse fault-foundation interaction[J]. Bulletin of Earthquake Engineering,2008,6(4):607 − 628. doi: 10.1007/s10518-008-9080-7

    [18]

    郭恩栋,冯启民,薄景山,等. 覆盖土层场地地震断裂实验[J]. 地震工程与工程振动,2001,21(3):145 − 149. [GUO Endong,FENG Qimin,BO Jingshan,et al. Seismic test of soil site rupture under fault displacements[J]. Earthquake Engineering and Engineering Vibration,2001,21(3):145 − 149. (in Chinese with English abstract)]

    GUO Endong, FENG Qimin, BO Jingshan, et al. Seismic test of soil site rupture under fault displacements[J]. Earthquake Engineering and Engineering Vibration, 2001, 21(3): 145 − 149. (in Chinese with English abstract)

    [19]

    刘守华,董津城,徐光明,等. 地下断裂对不同土质上覆土层的工程影响[J]. 岩石力学与工程学报,2005,24(11):1868 − 1874. [LIU Shouhua,DONG Jincheng,XU Guangming,et al. Influence on different overburden soils due to bedrock fracture[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(11):1868 − 1874. (in Chinese with English abstract)]

    LIU Shouhua, DONG Jincheng, XU Guangming, et al. Influence on different overburden soils due to bedrock fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(11): 1868 − 1874. (in Chinese with English abstract)

    [20]

    BRAY J D,SEED R B,SEED H B. Analysis of earthquake fault rupture propagation through cohesive soil[J]. Journal of Geotechnical Engineering,1994,120(3):562 − 580. doi: 10.1061/(ASCE)0733-9410(1994)120:3(562)

    [21]

    SCOTT R F,SCHOUSTRA J J. Nuclear power plant siting on deep alluvium[J]. Journal of the Geotechnical Engineering Division,1974,100(4):449 − 459. doi: 10.1061/AJGEB6.0000037

    [22]

    H TANIYAMA,H WATANABE. Deformation of sandy deposits by fault movement[A]. Proc. 12th WCEE. 2000.

    [23]

    郭恩栋,邵广彪,薄景山,等. 覆盖土层场地地震断裂反应分析方法[J]. 地震工程与工程振动,2002,22(5):122 − 126. [GUO Endong,SHAO Guangbiao,BO Jingshan,et al. A method for earthquake rupture analysis of overlying soil site[J]. Earthquake Engineering and Engineering Vibration,2002,22(5):122 − 126. (in Chinese with English abstract)]

    GUO Endong, SHAO Guangbiao, BO Jingshan, et al. A method for earthquake rupture analysis of overlying soil site[J]. Earthquake Engineering and Engineering Vibration, 2002, 22(5): 122 − 126. (in Chinese with English abstract)

    [24]

    李红,邓志辉,陈连旺,等. 走滑断层地震地表破裂带分布影响因素数值模拟研究——以1973年炉霍MS7.6地震为例[J]. 地球物理学报,2019,62(8):2871 − 2884. [LI Hong,DENG Zhihui,CHEN Lianwang,et al. Simulation study on the influencing factors of surface rupture zone distribution of strike-slip fault:Take LuhuoMS7.6 earthquake in 1973 for example[J]. Chinese Journal of Geophysics,2019,62(8):2871 − 2884. (in Chinese with English abstract)]

    LI Hong, DENG Zhihui, CHEN Lianwang, et al. Simulation study on the influencing factors of surface rupture zone distribution of strike-slip fault: Take LuhuoMS7.6 earthquake in 1973 for example[J]. Chinese Journal of Geophysics, 2019, 62(8): 2871 − 2884. (in Chinese with English abstract)

    [25]

    朱秀星,仝兴华,薛世峰. 跨越断层的埋地管道抗震设计[J]. 油气储运,2009,28(10):30 − 33. [ZHU Xiuxing,TONG Xinghua,XUE Shifeng. Aseismic design for buried pipeline crossing fault[J]. Oil & Gas Storage and Transportation,2009,28(10):30 − 33. (in Chinese with English abstract)]

    ZHU Xiuxing, TONG Xinghua, XUE Shifeng. Aseismic design for buried pipeline crossing fault[J]. Oil & Gas Storage and Transportation, 2009, 28(10): 30 − 33. (in Chinese with English abstract)

    [26]

    屈宏录,刘德仁,孙英萍,等. 深厚黄土地基浸水湿陷变形及竖向土压力作用分析[J]. 水文地质工程地质,2022,49(4):157 − 164. [QU Honglu, LIU Deren, SUN Yingping, et al. Analysis of collapsible deformation and vertical soil pressure action of thick loess foundation[J]. Hydrogeology & Engineering Geology,2022,49(4):157 − 164. (in Chinese with English abstract)]

    QU Honglu, LIU Deren, SUN Yingping, et al. Analysis of collapsible deformation and vertical soil pressure action of thick loess foundation[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 157 − 164. (in Chinese with English abstract)

    [27]

    边加敏. 多级荷载下弱膨胀土的膨胀变形特性试验研究[J]. 水文地质工程地质,2020,47(5):125 − 133. [BIAN Jiamin. An experimental study of expansion deformation characteristics of weak expansive soil under multi-stage load[J]. Hydrogeology & Engineering Geology,2020,47(5):125 − 133. (in Chinese with English abstract)]

    BIAN Jiamin. An experimental study of expansion deformation characteristics of weak expansive soil under multi-stage load[J]. Hydrogeology & Engineering Geology, 2020, 47(5): 125 − 133. (in Chinese with English abstract)

    [28]

    王伟,王兴,周勋,等. 砂卵石地层盾构区间地表沉降影响因素聚类分析[J]. 吉林大学学报(地球科学版),2024,54(1):219 − 230. [WANG Wei,WANG Xing,ZHOU Xun,et al. Cluster analysis of influencing factors of surface subsidence in shield interval of sandy gravel stratum[J]. Journal of Jilin University (Earth Science Edition),2024,54(1):219 − 230. (in Chinese with English abstract)]

    WANG Wei, WANG Xing, ZHOU Xun, et al. Cluster analysis of influencing factors of surface subsidence in shield interval of sandy gravel stratum[J]. Journal of Jilin University (Earth Science Edition), 2024, 54(1): 219 − 230. (in Chinese with English abstract)

    [29]

    沈杰,徐浩,邓虎成,等. 复杂断裂区地应力场分布特征及扰动机制研究——以鄂尔多斯盆地定北地区上古生界为例[J/OL]. 中国地质,2023:1 − 19. (2023-10-10)[2023-11-24]. [SHEN Jie,XU Hao,DENG Hucheng,et al. Distribution characteristics and disturbance mechanism of geostress field in complex fault zone: a case study of Upper Paleozoic in Dingbei area of Ordos Basin[J/OL]. Geology in China,2023:1 − 19. (2023-10-10)[2023-11-24]. https://kns.cnki.net/kcms/detail/11.1167.P.20231009.1405.008.html. (in Chinese with English abstract)]

    SHEN Jie, XU Hao, DENG Hucheng, et al. Distribution characteristics and disturbance mechanism of geostress field in complex fault zone: a case study of Upper Paleozoic in Dingbei area of Ordos Basin[J/OL]. Geology in China, 2023: 1 − 19. (2023-10-10)[2023-11-24]. https://kns.cnki.net/kcms/detail/11.1167.P.20231009.1405.008.html. (in Chinese with English abstract)

    [30]

    吕国森,章旭,张云辉,等. 川西鲜水河、安宁河和龙门山断裂带地热水的水文地球化学特征及成因模式的讨论[J]. 中国地质,2024,51(1):341 − 359. [LYU Guosen, ZHANG Xu, ZHANG Yunhui, et al. Discussion on hydrogeochemical characteristics and genetic model of geothermal waters in Xianshuihe, Anninghe and Longmenshan fault zones in western Sichuan, China[J]. Geology in China,2024,51(1):341 − 359. (in Chinese with English abstract)]

    LYU Guosen, ZHANG Xu, ZHANG Yunhui, et al. Discussion on hydrogeochemical characteristics and genetic model of geothermal waters in Xianshuihe, Anninghe and Longmenshan fault zones in western Sichuan, China[J]. Geology in China, 2024, 51(1): 341 − 359. (in Chinese with English abstract)

    [31]

    王清,吕作俊,姚萌,等. 崇明东滩吹填区黏性土层抗剪强度随时间变化特征及机理[J]. 吉林大学学报(地球科学版),2023,53(4):1163 − 1174. [WANG Qing, LYU Zuojun, YAO Meng, et al. Characteristics and mechanism of shear strength variation with time of cohesive soil layers in Chongming Dongtan reclamation area[J]. Journal of Jilin University (Earth Science Edition),2023,53(4):1163 − 1174. (in Chinese with English abstract)]

    WANG Qing, LYU Zuojun, YAO Meng, et al. Characteristics and mechanism of shear strength variation with time of cohesive soil layers in Chongming Dongtan reclamation area[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(4): 1163 − 1174. (in Chinese with English abstract)

  • 加载中

(13)

(2)

计量
  • 文章访问数:  237
  • PDF下载数:  26
  • 施引文献:  0
出版历程
收稿日期:  2023-06-21
修回日期:  2023-10-10
录用日期:  2023-12-20
刊出日期:  2024-12-25

目录