Online monitoring data processing methods for railway slopes and its application: A case study of the Shuohuang Railway
-
摘要:
基于北斗全球卫星导航系统的铁路边坡在线监测系统具有全天时、全天候、高精度和高可靠的特点,监测性能与数据处理模型密切相关。以朔黄(朔州—黄骅)铁路边坡变形在线监测系统为例,针对数据处理中涉及的数据预处理,噪声抑制和变形趋势预测三个环节开展研究。首先在数据预处理中采用3σ准则识别监测数据中的异常值并利用卡尔曼滤波算法对其进行修正,然后将CLEAN算法引入变形监测领域,利用CLEAN算法对监测数据进行噪声抑制,降低噪声分量对后续变形趋势预测的影响,最后利用RBF神经网络对噪声抑制后的数据建模分析,从而获得铁路边坡当前状态和未来变形趋势预测。工程应用表明,所提方法能够有效实现异常值检测及修正,噪声抑制性能良好,变形趋势预测精度高,应用效果较好。
Abstract:The online monitoring system for railway slopes, based on the Beidou global navigation satellite system, features all-weather, all-weather, high-precision, and high reliability. The effectiveness of system monitoring closely correlates with the data processing model. Taking the online monitoring system for slope deformation on the Shuohuang Railway as an example, this study focuses on three crucial aspects of data processing: data preprocessing, noise suppression, and deformation trend prediction. Initially, the 3σ criterion is employed for outlier detection in monitoring data, which is then corrected using the Kalman filter algorithm. Subsequently, the CLEAN algorithm, introduced to the field of deformation monitoring, is utilized to suppress noise, minimizing its impact on subsequent deformation trend predictions. Finally, an RBF neural network is applied for modeling and analyzing the noise-suppressed data to forecast current and future deformation trends of railway slopes. Engineering applications demonstrate that the proposed methods effectively detect and correct outliers, provide robust noise suppression, and yield precise deformation trend predictions, enhancing the practical application of monitoring systems.
-
Key words:
- slope deformation /
- data processing /
- noise suppression /
- neural network /
- outlier detection
-
-
表 1 不同方法预测结果对比
Table 1. Comparison of prediction results using different methods
GM(1,1) 小波变换 所提方法 MRE 0.68 0.27 0.12 RMSE 0.87 0.52 0.23 -
[1] 赵振宇. 基于数值计算的测斜仪监测误差分析[J]. 水文地质工程地质,2021,48(3):157 − 161. [ZHAO Zhenyu. Error analysis of an inclinometer based on numerical analysis[J]. Hydrogeology & Engineering Geology,2021,48(3):157 − 161. (in Chinese with English abstract)]
ZHAO Zhenyu. Error analysis of an inclinometer based on numerical analysis[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 157 − 161. (in Chinese with English abstract)
[2] 袁于思,冯小鹏,李勇,等. 基于PSO-DSRVM的边坡变形预测[J]. 中国地质灾害与防治学报,2023,34(1):1 − 7. [YUAN Yusi,FENG Xiaopeng,LI Yong,et al. Prediction of mine slope deformation based on PSO-DSRVM[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):1 − 7. (in Chinese with English abstract)]
YUAN Yusi, FENG Xiaopeng, LI Yong, et al. Prediction of mine slope deformation based on PSO-DSRVM[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 1 − 7. (in Chinese with English abstract)
[3] 方杨. 基于物联网与云计算的自动化变形监测技术研究[J]. 铁道勘察,2022,48(2):44 − 47. [FANG Yang. Research of automatic deformation monitoring technology based on IOT and cloud computing[J]. Railway Investigation and Surveying,2022,48(2):44 − 47. (in Chinese with English abstract)]
FANG Yang. Research of automatic deformation monitoring technology based on IOT and cloud computing[J]. Railway Investigation and Surveying, 2022, 48(2): 44 − 47. (in Chinese with English abstract)
[4] 刘佳意,陈春利,付昱凯,等. 降雨诱发的浅表堆积层滑坡成因机理与稳定性预测模型[J]. 水文地质工程地质,2024,51(2):183 − 191. [LIU Jiayi,CHEN Chunli,FU Yukai,et al. Mechanism of rainfall-induced shallow landslide and stability prediction model[J]. Hydrogeology & Engineering Geology,2024,51(2):183 − 191. (in Chinese with English abstract)]
LIU Jiayi, CHEN Chunli, FU Yukai, et al. Mechanism of rainfall-induced shallow landslide and stability prediction model[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 183 − 191. (in Chinese with English abstract)
[5] 周苏华,付宇航,邢静康,等. 基于不同统计模型的肯尼亚滑坡危险性评价[J]. 中国地质灾害与防治学报,2023,34(4):114 − 124. [ZHOU Suhua,FU Yuhang,XING Jingkang,et al. Assessment of landslide hazard risk in Kenya based on different statistical models[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4):114 − 124. (in Chinese with English abstract)]
ZHOU Suhua, FU Yuhang, XING Jingkang, et al. Assessment of landslide hazard risk in Kenya based on different statistical models[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 114 − 124. (in Chinese with English abstract)
[6] 宋宜祥,尹子航,黄达. 基于Green-Ampt模型的多层结构边坡降雨入渗改进计算方法及稳定性影响研究[J]. 水文地质工程地质,2022,49(6):162 − 170. [SONG Yixiang,YIN Zihang,HUANG Da. Rainfall infiltration process of multi-layer slope based on improved Green-Ampt model stability analysis[J]. Hydrogeology & Engineering Geology,2022,49(6):162 − 170. (in Chinese with English abstract)]
SONG Yixiang, YIN Zihang, HUANG Da. Rainfall infiltration process of multi-layer slope based on improved Green-Ampt model stability analysis[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 162 − 170. (in Chinese with English abstract)
[7] 洪艳. 改进灰色聚类法对边坡稳定性的预测评价[J]. 人民珠江,2018,39(6):85 − 88. [HONG Yan. Improved grey clustering method for evaluation of slope stability prediction[J]. Pearl River,2018,39(6):85 − 88. (in Chinese with English abstract)] doi: 10.3969/j.issn.1001-9235.2018.06.019
HONG Yan. Improved grey clustering method for evaluation of slope stability prediction[J]. Pearl River, 2018, 39(6): 85 − 88. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-9235.2018.06.019
[8] 侯太平,杨前冬,卢雪峰,等. 基于IVDF-SVR耦合模型的边坡变形预测[J]. 人民珠江,2022,43(5):68 − 74. [HOU Taiping,YANG Qiandong,LU Xuefeng,et al. Slope deformation prediction based on IVDF-SVR coupling model[J]. Pearl River,2022,43(5):68 − 74. (in Chinese with English abstract)] doi: 10.3969/j.issn.1001-9235.2022.05.011
HOU Taiping, YANG Qiandong, LU Xuefeng, et al. Slope deformation prediction based on IVDF-SVR coupling model[J]. Pearl River, 2022, 43(5): 68 − 74. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-9235.2022.05.011
[9] 蒋家祥,聂文泽. GNSS自动化监测系统在库区滑坡体变形监测中的应用[J]. 云南水力发电,2022,38(12):88 − 92. [JIANG Jiaxiang,NIE Wenze. Application of GNSS automatic monitoring system in deformation monitoring of landslide mass in reservoir area[J]. Yunnan Water Power,2022,38(12):88 − 92. (in Chinese with English abstract)] doi: 10.3969/j.issn.1006-3951.2022.12.019
JIANG Jiaxiang, NIE Wenze. Application of GNSS automatic monitoring system in deformation monitoring of landslide mass in reservoir area[J]. Yunnan Water Power, 2022, 38(12): 88 − 92. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-3951.2022.12.019
[10] 喻小,赵其华,张埕豪,等. GNSS实时监测在滑坡预警中的应用——以陕西省周至G108路段滑坡为例[J]. 人民长江,2019,50(10):126 − 130. [YU Xiao,ZHAO Qihua,ZHANG Chenghao,et al. Application of GNSS real-time monitoring in landslide early warning:Case of Landslide of G108 section in Zhouzhi County,Shannxi Province[J]. Yangtze River,2019,50(10):126 − 130. (in Chinese with English abstract)]
YU Xiao, ZHAO Qihua, ZHANG Chenghao, et al. Application of GNSS real-time monitoring in landslide early warning: Case of Landslide of G108 section in Zhouzhi County, Shannxi Province[J]. Yangtze River, 2019, 50(10): 126 − 130. (in Chinese with English abstract)
[11] 张赛飞. 陕南某岩质边坡滑坡监测预警研究[D]. 西安:长安大学,2019. [ZHANG Saifei. Study on monitoring and early warning of a rock slope landslide in southern Shaanxi[D]. Xi’an:Changan University,2019. (in Chinese with English abstract)]
ZHANG Saifei. Study on monitoring and early warning of a rock slope landslide in southern Shaanxi[D]. Xi’an: Changan University, 2019. (in Chinese with English abstract)
[12] 马松增,徐建昭,何明月,等. 河南省淤地坝安全自动化监测系统设计与应用[J]. 水土保持通报,2020,40(5):112 − 117. [MA Songzeng,XU Jianzhao,HE Mingyue,et al. Design and application of automatic safety monitoring system for soil-saving dams in He’nan Province[J]. Bulletin of Soil and Water Conservation,2020,40(5):112 − 117. (in Chinese with English abstract)]
MA Songzeng, XU Jianzhao, HE Mingyue, et al. Design and application of automatic safety monitoring system for soil-saving dams in He’nan Province[J]. Bulletin of Soil and Water Conservation, 2020, 40(5): 112 − 117. (in Chinese with English abstract)
[13] 苏金亮,黎盟,艾露,等. 基于北斗GNSS的边坡自动化实时监测数据处理及变形预测方法[J]. 水电能源科学,2022,40(5):146 − 150. [SU Jinliang,LI Meng,AI Lu,et al. Method of data processing and deformation prediction for slope automatic real-time monitoring based on Beidou GNSS[J]. Water Resources and Power,2022,40(5):146 − 150. (in Chinese with English abstract)]
SU Jinliang, LI Meng, AI Lu, et al. Method of data processing and deformation prediction for slope automatic real-time monitoring based on Beidou GNSS[J]. Water Resources and Power, 2022, 40(5): 146 − 150. (in Chinese with English abstract)
-