中国地质环境监测院
中国地质灾害防治工程行业协会
主办

铁路边坡变形在线监测数据处理方法及其应用

谷牧. 铁路边坡变形在线监测数据处理方法及其应用——以朔黄铁路为例[J]. 中国地质灾害与防治学报, 2025, 36(1): 101-107. doi: 10.16031/j.cnki.issn.1003-8035.202308052
引用本文: 谷牧. 铁路边坡变形在线监测数据处理方法及其应用——以朔黄铁路为例[J]. 中国地质灾害与防治学报, 2025, 36(1): 101-107. doi: 10.16031/j.cnki.issn.1003-8035.202308052
GU Mu. Online monitoring data processing methods for railway slopes and its application: A case study of the Shuohuang Railway[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(1): 101-107. doi: 10.16031/j.cnki.issn.1003-8035.202308052
Citation: GU Mu. Online monitoring data processing methods for railway slopes and its application: A case study of the Shuohuang Railway[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(1): 101-107. doi: 10.16031/j.cnki.issn.1003-8035.202308052

铁路边坡变形在线监测数据处理方法及其应用

  • 基金项目: 国家能源集团科技创新项目(GJNY-20-231);国能朔黄铁路公司科技创新项目(朔其他[2021]367号)
详细信息
    作者简介: 谷 牧(1981—),男,安徽肥东人,工程工务研究员,硕士。研究方向为铁路工务设备运维关键技术。E-mail:mguens@163.com
  • 中图分类号: P642.22

Online monitoring data processing methods for railway slopes and its application: A case study of the Shuohuang Railway

  • 基于北斗全球卫星导航系统的铁路边坡在线监测系统具有全天时、全天候、高精度和高可靠的特点,监测性能与数据处理模型密切相关。以朔黄(朔州—黄骅)铁路边坡变形在线监测系统为例,针对数据处理中涉及的数据预处理,噪声抑制和变形趋势预测三个环节开展研究。首先在数据预处理中采用3σ准则识别监测数据中的异常值并利用卡尔曼滤波算法对其进行修正,然后将CLEAN算法引入变形监测领域,利用CLEAN算法对监测数据进行噪声抑制,降低噪声分量对后续变形趋势预测的影响,最后利用RBF神经网络对噪声抑制后的数据建模分析,从而获得铁路边坡当前状态和未来变形趋势预测。工程应用表明,所提方法能够有效实现异常值检测及修正,噪声抑制性能良好,变形趋势预测精度高,应用效果较好。

  • 加载中
  • 图 1  RBF神经网络模型结构

    Figure 1. 

    图 2  所提方法流程图

    Figure 2. 

    图 3  监测点位布置平面图

    Figure 3. 

    图 4  变形监测数据

    Figure 4. 

    图 5  监测数据异常值检测结果

    Figure 5. 

    图 6  监测数据异常值修正结果

    Figure 6. 

    图 7  监测数据噪声抑制结果

    Figure 7. 

    图 8  变形趋势预测结果

    Figure 8. 

    图 9  不同方法预测误差

    Figure 9. 

    表 1  不同方法预测结果对比

    Table 1.  Comparison of prediction results using different methods

    GM(1,1)小波变换所提方法
    MRE0.680.270.12
    RMSE0.870.520.23
    下载: 导出CSV
  • [1]

    赵振宇. 基于数值计算的测斜仪监测误差分析[J]. 水文地质工程地质,2021,48(3):157 − 161. [ZHAO Zhenyu. Error analysis of an inclinometer based on numerical analysis[J]. Hydrogeology & Engineering Geology,2021,48(3):157 − 161. (in Chinese with English abstract)]

    ZHAO Zhenyu. Error analysis of an inclinometer based on numerical analysis[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 157 − 161. (in Chinese with English abstract)

    [2]

    袁于思,冯小鹏,李勇,等. 基于PSO-DSRVM的边坡变形预测[J]. 中国地质灾害与防治学报,2023,34(1):1 − 7. [YUAN Yusi,FENG Xiaopeng,LI Yong,et al. Prediction of mine slope deformation based on PSO-DSRVM[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):1 − 7. (in Chinese with English abstract)]

    YUAN Yusi, FENG Xiaopeng, LI Yong, et al. Prediction of mine slope deformation based on PSO-DSRVM[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 1 − 7. (in Chinese with English abstract)

    [3]

    方杨. 基于物联网与云计算的自动化变形监测技术研究[J]. 铁道勘察,2022,48(2):44 − 47. [FANG Yang. Research of automatic deformation monitoring technology based on IOT and cloud computing[J]. Railway Investigation and Surveying,2022,48(2):44 − 47. (in Chinese with English abstract)]

    FANG Yang. Research of automatic deformation monitoring technology based on IOT and cloud computing[J]. Railway Investigation and Surveying, 2022, 48(2): 44 − 47. (in Chinese with English abstract)

    [4]

    刘佳意,陈春利,付昱凯,等. 降雨诱发的浅表堆积层滑坡成因机理与稳定性预测模型[J]. 水文地质工程地质,2024,51(2):183 − 191. [LIU Jiayi,CHEN Chunli,FU Yukai,et al. Mechanism of rainfall-induced shallow landslide and stability prediction model[J]. Hydrogeology & Engineering Geology,2024,51(2):183 − 191. (in Chinese with English abstract)]

    LIU Jiayi, CHEN Chunli, FU Yukai, et al. Mechanism of rainfall-induced shallow landslide and stability prediction model[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 183 − 191. (in Chinese with English abstract)

    [5]

    周苏华,付宇航,邢静康,等. 基于不同统计模型的肯尼亚滑坡危险性评价[J]. 中国地质灾害与防治学报,2023,34(4):114 − 124. [ZHOU Suhua,FU Yuhang,XING Jingkang,et al. Assessment of landslide hazard risk in Kenya based on different statistical models[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4):114 − 124. (in Chinese with English abstract)]

    ZHOU Suhua, FU Yuhang, XING Jingkang, et al. Assessment of landslide hazard risk in Kenya based on different statistical models[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 114 − 124. (in Chinese with English abstract)

    [6]

    宋宜祥,尹子航,黄达. 基于Green-Ampt模型的多层结构边坡降雨入渗改进计算方法及稳定性影响研究[J]. 水文地质工程地质,2022,49(6):162 − 170. [SONG Yixiang,YIN Zihang,HUANG Da. Rainfall infiltration process of multi-layer slope based on improved Green-Ampt model stability analysis[J]. Hydrogeology & Engineering Geology,2022,49(6):162 − 170. (in Chinese with English abstract)]

    SONG Yixiang, YIN Zihang, HUANG Da. Rainfall infiltration process of multi-layer slope based on improved Green-Ampt model stability analysis[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 162 − 170. (in Chinese with English abstract)

    [7]

    洪艳. 改进灰色聚类法对边坡稳定性的预测评价[J]. 人民珠江,2018,39(6):85 − 88. [HONG Yan. Improved grey clustering method for evaluation of slope stability prediction[J]. Pearl River,2018,39(6):85 − 88. (in Chinese with English abstract)] doi: 10.3969/j.issn.1001-9235.2018.06.019

    HONG Yan. Improved grey clustering method for evaluation of slope stability prediction[J]. Pearl River, 2018, 39(6): 85 − 88. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-9235.2018.06.019

    [8]

    侯太平,杨前冬,卢雪峰,等. 基于IVDF-SVR耦合模型的边坡变形预测[J]. 人民珠江,2022,43(5):68 − 74. [HOU Taiping,YANG Qiandong,LU Xuefeng,et al. Slope deformation prediction based on IVDF-SVR coupling model[J]. Pearl River,2022,43(5):68 − 74. (in Chinese with English abstract)] doi: 10.3969/j.issn.1001-9235.2022.05.011

    HOU Taiping, YANG Qiandong, LU Xuefeng, et al. Slope deformation prediction based on IVDF-SVR coupling model[J]. Pearl River, 2022, 43(5): 68 − 74. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-9235.2022.05.011

    [9]

    蒋家祥,聂文泽. GNSS自动化监测系统在库区滑坡体变形监测中的应用[J]. 云南水力发电,2022,38(12):88 − 92. [JIANG Jiaxiang,NIE Wenze. Application of GNSS automatic monitoring system in deformation monitoring of landslide mass in reservoir area[J]. Yunnan Water Power,2022,38(12):88 − 92. (in Chinese with English abstract)] doi: 10.3969/j.issn.1006-3951.2022.12.019

    JIANG Jiaxiang, NIE Wenze. Application of GNSS automatic monitoring system in deformation monitoring of landslide mass in reservoir area[J]. Yunnan Water Power, 2022, 38(12): 88 − 92. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-3951.2022.12.019

    [10]

    喻小,赵其华,张埕豪,等. GNSS实时监测在滑坡预警中的应用——以陕西省周至G108路段滑坡为例[J]. 人民长江,2019,50(10):126 − 130. [YU Xiao,ZHAO Qihua,ZHANG Chenghao,et al. Application of GNSS real-time monitoring in landslide early warning:Case of Landslide of G108 section in Zhouzhi County,Shannxi Province[J]. Yangtze River,2019,50(10):126 − 130. (in Chinese with English abstract)]

    YU Xiao, ZHAO Qihua, ZHANG Chenghao, et al. Application of GNSS real-time monitoring in landslide early warning: Case of Landslide of G108 section in Zhouzhi County, Shannxi Province[J]. Yangtze River, 2019, 50(10): 126 − 130. (in Chinese with English abstract)

    [11]

    张赛飞. 陕南某岩质边坡滑坡监测预警研究[D]. 西安:长安大学,2019. [ZHANG Saifei. Study on monitoring and early warning of a rock slope landslide in southern Shaanxi[D]. Xi’an:Changan University,2019. (in Chinese with English abstract)]

    ZHANG Saifei. Study on monitoring and early warning of a rock slope landslide in southern Shaanxi[D]. Xi’an: Changan University, 2019. (in Chinese with English abstract)

    [12]

    马松增,徐建昭,何明月,等. 河南省淤地坝安全自动化监测系统设计与应用[J]. 水土保持通报,2020,40(5):112 − 117. [MA Songzeng,XU Jianzhao,HE Mingyue,et al. Design and application of automatic safety monitoring system for soil-saving dams in He’nan Province[J]. Bulletin of Soil and Water Conservation,2020,40(5):112 − 117. (in Chinese with English abstract)]

    MA Songzeng, XU Jianzhao, HE Mingyue, et al. Design and application of automatic safety monitoring system for soil-saving dams in He’nan Province[J]. Bulletin of Soil and Water Conservation, 2020, 40(5): 112 − 117. (in Chinese with English abstract)

    [13]

    苏金亮,黎盟,艾露,等. 基于北斗GNSS的边坡自动化实时监测数据处理及变形预测方法[J]. 水电能源科学,2022,40(5):146 − 150. [SU Jinliang,LI Meng,AI Lu,et al. Method of data processing and deformation prediction for slope automatic real-time monitoring based on Beidou GNSS[J]. Water Resources and Power,2022,40(5):146 − 150. (in Chinese with English abstract)]

    SU Jinliang, LI Meng, AI Lu, et al. Method of data processing and deformation prediction for slope automatic real-time monitoring based on Beidou GNSS[J]. Water Resources and Power, 2022, 40(5): 146 − 150. (in Chinese with English abstract)

  • 加载中

(9)

(1)

计量
  • 文章访问数:  98
  • PDF下载数:  19
  • 施引文献:  0
出版历程
收稿日期:  2023-08-30
修回日期:  2024-01-09
录用日期:  2025-01-03
刊出日期:  2025-02-25

目录