中国地质环境监测院
中国地质灾害防治工程行业协会
主办

聚丙烯纤维水泥加固土质边坡的抗冲刷有效性分析

亓星, 杨浪, 刘焕, 曹汝亮. 聚丙烯纤维水泥加固土质边坡的抗冲刷有效性分析[J]. 中国地质灾害与防治学报, 2025, 36(1): 84-91. doi: 10.16031/j.cnki.issn.1003-8035.202309004
引用本文: 亓星, 杨浪, 刘焕, 曹汝亮. 聚丙烯纤维水泥加固土质边坡的抗冲刷有效性分析[J]. 中国地质灾害与防治学报, 2025, 36(1): 84-91. doi: 10.16031/j.cnki.issn.1003-8035.202309004
QI Xing, YANG Lang, LIU Huan, CAO Ruliang. Analysis of the anti-erosion effectiveness of polypropylene fiber (PPF) cement-reinforced soil for slope protection[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(1): 84-91. doi: 10.16031/j.cnki.issn.1003-8035.202309004
Citation: QI Xing, YANG Lang, LIU Huan, CAO Ruliang. Analysis of the anti-erosion effectiveness of polypropylene fiber (PPF) cement-reinforced soil for slope protection[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(1): 84-91. doi: 10.16031/j.cnki.issn.1003-8035.202309004

聚丙烯纤维水泥加固土质边坡的抗冲刷有效性分析

  • 基金项目: 地质灾害防治与地质环境保护国家重点实验室开放基金(SKLGP2022K008);四川矿产资源研究中心资助项目(SCKCZY2022-YB017)
详细信息
    作者简介: 亓 星(1988—),男,四川成都人,博士,副教授,主要从事地质灾害监测预警与预测评价。E-mail:qixing2009@163.com
  • 中图分类号: P642.22

Analysis of the anti-erosion effectiveness of polypropylene fiber (PPF) cement-reinforced soil for slope protection

  • 以水泥和聚丙烯纤维在粉质黏土边坡坡面抗冲刷防护应用为背景,探讨了聚丙烯纤维水泥加固粉质黏土边坡的抗冲刷有效性。基于室内试验,开展水泥和纤维的掺量对粉质黏土抗剪强度影响试验,并基于试验配比进行边坡冲刷模拟。结果表明:水泥掺量与粉质黏土的抗剪强度呈正相关,聚丙烯纤维可进一步提高加固土的黏聚力;边坡坡比对土体的抗冲刷效果呈先增大后减小的影响;与未加固的素土坡面相比,加固后的边坡坡面抗冲刷能力得到显著提高,从SEM试验中发现,加固土抗冲刷能力提高是由于水泥水化作用和聚丙烯纤维的分散排列使加固后的土壤颗粒相互吸引,形成了坚固的结构,从而提高了土壤抗渗透性。研究结果为边坡抗冲刷防护提供了新的工程应用思路。

  • 加载中
  • 图 1  素土与水泥掺量土竖向应力与抗剪强度之间的关系

    Figure 1. 

    图 2  水泥掺量对粉质黏土内摩擦角和黏聚力的影响

    Figure 2. 

    图 3  水泥土与聚丙烯纤维掺量土竖向应力与抗剪强度之间的关系

    Figure 3. 

    图 4  不同掺量聚丙烯纤维水泥土的黏聚力和内摩擦角以及增长百分比

    Figure 4. 

    图 5  边坡冲刷模拟装置

    Figure 5. 

    图 6  不同流量下的素土和加固土冲刷过程

    Figure 6. 

    图 7  加固前后坡面产土颗粒量与放水流量的关系曲线

    Figure 7. 

    图 8  加固前后产土颗粒总量与放水流量的关系曲线

    Figure 8. 

    图 9  产土颗粒总量与坡比的关系曲线

    Figure 9. 

    图 10  素土和加固土SEM图像

    Figure 10. 

    表 1  试验用土的物理性质

    Table 1.  Physical properties of test soils

    参数 天然含水率/% 最优含水率/% 塑限 液限 塑性指数 最大干密度
    /(g·cm−3
    粒径/%
    >0.25 mm 0.25~0.075 mm <0.075 mm
    取值 11.5 12 18.09 33.54 15.45 2.28 6.88 28.26 64.86
    下载: 导出CSV

    表 2  聚丙烯纤维主要物理特性

    Table 2.  Physical properties of polypropylene fibers

    类型 直径/mm 密度/(g·cm−3 抗拉强度/MPa 弹性模量/MPa 熔点/°C 燃点/°C 耐酸碱性
    束状单丝 3 0.91 ≥350 3500 160 550 极强
    下载: 导出CSV

    表 3  试验主要参数

    Table 3.  Main parameters of the experiment

    组数 土壤类型 坡比 放水流量/(L·h−1
    8组 素土
    聚丙烯纤维加固土
    1∶1.73 50
    100
    150
    200
    10组 素土
    聚丙烯纤维加固土
    1∶1.73 100
    1∶1.19
    1∶1
    1∶0.84
    1∶0.58
    下载: 导出CSV
  • [1]

    潘俊义,侯大勇,李荣建,等. 不同雨强下黄土边坡降雨入渗测试与分析[J]. 工程地质学报,2018,26(5):1170 − 1177. [PAN Junyi,HOU Dayong,LI Rongjian,et al. Rainfall infiltration test and analysis of loess slope under different rainfall intensities[J]. Journal of Engineering Geology,2018,26(5):1170 − 1177. (in Chinese with English abstract)]

    PAN Junyi, HOU Dayong, LI Rongjian, et al. Rainfall infiltration test and analysis of loess slope under different rainfall intensities[J]. Journal of Engineering Geology, 2018, 26(5): 1170 − 1177. (in Chinese with English abstract)

    [2]

    周志军,赵涛,钟世福,等. 基于地震力作用下的黄土边坡稳定性分析[J]. 公路交通科技,2013,30(9):38 − 42. [ZHOU Zhijun,ZHAO Tao,ZHONG Shifu,et al. Analysis on stability of loess slope based on effect of earthquake force[J]. Journal of Highway and Transportation Research and Development,2013,30(9):38 − 42. (in Chinese with English abstract)]

    ZHOU Zhijun, ZHAO Tao, ZHONG Shifu, et al. Analysis on stability of loess slope based on effect of earthquake force[J]. Journal of Highway and Transportation Research and Development, 2013, 30(9): 38 − 42. (in Chinese with English abstract)

    [3]

    许强,唐然. 红层及其地质灾害研究[J]. 岩石力学与工程学报,2023,42(1):28 − 50. [XU Qiang,TANG Ran. Study on red beds and its geological hazards[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(1):28 − 50. (in Chinese with English abstract)]

    XU Qiang, TANG Ran. Study on red beds and its geological hazards[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(1): 28 − 50. (in Chinese with English abstract)

    [4]

    彭和鹏,李馨馨. 考虑土层软化及渗流应力耦合的边坡稳定性分析[J]. 武汉大学学报(工学版),2022,55(2):117 − 122. [PENG Hepeng,LI Xinxin. Slope stability analysis considering soil softening and seepage-stress coupling effect[J]. Engineering Journal of Wuhan University,2022,55(2):117 − 122. (in Chinese with English abstract)]

    PENG Hepeng, LI Xinxin. Slope stability analysis considering soil softening and seepage-stress coupling effect[J]. Engineering Journal of Wuhan University, 2022, 55(2): 117 − 122. (in Chinese with English abstract)

    [5]

    孙永帅,贾苍琴,王贵和. 降雨对边坡稳定性影响研究综述[J]. 施工技术,2012,41(17):63 − 66. [SUN Yongshuai,JIA Cangqin,WANG Guihe. Overview of research on stability of slope during rainfall[J]. Construction Technology,2012,41(17):63 − 66. (in Chinese with English abstract)]

    SUN Yongshuai, JIA Cangqin, WANG Guihe. Overview of research on stability of slope during rainfall[J]. Construction Technology, 2012, 41(17): 63 − 66. (in Chinese with English abstract)

    [6]

    柯建武,张国沅. 地质灾害治理工程施工中边坡稳定性分析及治理方法探究[J]. 西部资源,2021(6):70 − 72. [KE Jianwu,ZHANG Guoyuan. Slope stability analysis and treatment methods in geological disaster control engineering construction[J]. Western Resources,2021(6):70 − 72. (in Chinese)]

    KE Jianwu, ZHANG Guoyuan. Slope stability analysis and treatment methods in geological disaster control engineering construction[J]. Western Resources, 2021(6): 70 − 72. (in Chinese)

    [7]

    唐晓松,郑颖人,唐辉明. 边坡变形破坏演化特征的数值分析[J]. 重庆大学学报,2013,36(10):101 − 113. [TANG Xiaosong,ZHENG Yingren,TANG Huiming. Numerical analysis on the evolutionary features of deformation and failure modes of slopes[J]. Journal of Chongqing University,2013,36(10):101 − 113. (in Chinese with English abstract)]

    TANG Xiaosong, ZHENG Yingren, TANG Huiming. Numerical analysis on the evolutionary features of deformation and failure modes of slopes[J]. Journal of Chongqing University, 2013, 36(10): 101 − 113. (in Chinese with English abstract)

    [8]

    SUN Shuwei,HU Jjiabing,DENG An,et al. Comparative tests on the failure characteristics and mechanisms of slopes with curved surfaces[J]. Bulletin of Engineering Geology and the Environment,2023,82(9):357. doi: 10.1007/s10064-023-03379-x

    [9]

    王康,畅俊斌,李晓科,等. 基于水文过程和应力应变耦合的陕北黄土滑坡复活机理分析——以延安二庄科滑坡为例[J]. 中国地质灾害与防治学报,2023,34(6):47 − 56. [WANG Kang,CHANG Junbin,LI Xiaoke,et al. Mechanistic analysis of loess landslide reactivation in northern Shaanxi based on coupled numerical modeling of hydrological processes and stress strain evolution:A case study of the Erzhuangke landslide in Yan’an[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6):47 − 56. (in Chinese with English abstract)]

    WANG Kang, CHANG Junbin, LI Xiaoke, et al. Mechanistic analysis of loess landslide reactivation in northern Shaanxi based on coupled numerical modeling of hydrological processes and stress strain evolution: A case study of the Erzhuangke landslide in Yan’an[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 47 − 56. (in Chinese with English abstract)

    [10]

    刘冉,余新晓,蔡强国,等. 黄土丘陵沟壑区黄土坡面侵蚀过程及其影响因素[J]. 应用生态学报,2021,32(8):2886 − 2894. [LIU Ran,YU Xinxiao,CAI Qiangguo,et al. Erosion process of loess slope and influencing factors in the loess hilly-gully region,China[J]. Chinese Journal of Applied Ecology,2021,32(8):2886 − 2894. (in Chinese with English abstract)]

    LIU Ran, YU Xinxiao, CAI Qiangguo, et al. Erosion process of loess slope and influencing factors in the loess hilly-gully region, China[J]. Chinese Journal of Applied Ecology, 2021, 32(8): 2886 − 2894. (in Chinese with English abstract)

    [11]

    夏万云. 银西高铁董志塬地区边坡侵蚀特性分析[J]. 中国地质灾害与防治学报,2022,33(1):99 − 106. [XIA Wanyun. Analysis on characteristic of slope erosion in Dongzhiyuan plateau of Yinchuan-Xi’an high-speed railway[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):99 − 106. (in Chinese with English abstract)]

    XIA Wanyun. Analysis on characteristic of slope erosion in Dongzhiyuan plateau of Yinchuan-Xi’an high-speed railway[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 99 − 106. (in Chinese with English abstract)

    [12]

    ADAJAR M A,CUTORA M,BOLIMA S J,et al. Strength performance of nonwoven coir geotextiles as an alternative material for slope stabilization[J]. Applied Sciences,2023,13(13):7590. doi: 10.3390/app13137590

    [13]

    王银梅,徐鹏飞. 新型高分子材料固化黄土边坡的抗冲刷试验[J]. 中国地质灾害与防治学报,2018,29(6):92 − 96. [WANG Yinmei,XU Pengfei. Experimental stady on erosion resistance of loess slope solidified with new high polymer material[J]. The Chinese Journal of Geological Hazard and Control,2018,29(6):92 − 96. (in Chinese with English abstract)]

    WANG Yinmei, XU Pengfei. Experimental stady on erosion resistance of loess slope solidified with new high polymer material[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(6): 92 − 96. (in Chinese with English abstract)

    [14]

    卢浩,晏长根,杨晓华,等. 麦秆纤维加筋土对黄土边坡抗冲刷的试验研究[J]. 合肥工业大学学报(自然科学版),2016,39(12):1671 − 1675. [LU Hao,YAN Changgen,YANG Xiaohua,et al. Experimental research on anti-eroding effect of reinforced soil with wheat straw in loess slope[J]. Journal of Hefei University of Technology (Natural Science),2016,39(12):1671 − 1675. (in Chinese with English abstract)]

    LU Hao, YAN Changgen, YANG Xiaohua, et al. Experimental research on anti-eroding effect of reinforced soil with wheat straw in loess slope[J]. Journal of Hefei University of Technology (Natural Science), 2016, 39(12): 1671 − 1675. (in Chinese with English abstract)

    [15]

    徐岗,裴向军,袁进科,等. 改性纳米硅材料加固松散砂土的工程特性研究[J]. 水文地质工程地质,2019,46(4):142 − 149. [XU Gang,PEI Xiangjun,YUAN Jinke,et al. A study of the engineering characteristics of reinforced loose sand by modified nano-Si materials[J]. Hydrogeology & Engineering Geology,2019,46(4):142 − 149. (in Chinese with English abstract)]

    XU Gang, PEI Xiangjun, YUAN Jinke, et al. A study of the engineering characteristics of reinforced loose sand by modified nano-Si materials[J]. Hydrogeology & Engineering Geology, 2019, 46(4): 142 − 149. (in Chinese with English abstract)

    [16]

    马少坤,马敏,韦榕宽,等. 基于新型防渗护壁材料的膨胀土边坡抗入渗及抗冲刷特性[J]. 中南大学学报(自然科学版),2022,53(1):335 − 349. [MA Shaokun,MA Min,WEI Rongkuan,et al. Anti-infiltration and anti-scour characteristics of expansive soil slopes based on rubber polymer waterproof coating[J]. Journal of Central South University (Science and Technology),2022,53(1):335 − 349. (in Chinese with English abstract)]

    MA Shaokun, MA Min, WEI Rongkuan, et al. Anti-infiltration and anti-scour characteristics of expansive soil slopes based on rubber polymer waterproof coating[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 335 − 349. (in Chinese with English abstract)

    [17]

    樊恒辉, 吴普特, 高建恩, 等. 水泥基土壤固化剂固化土的微观结构特征[J]. 建筑材料学报,2010,13(5):669 − 674. [FAN Henghui, WU Pute, GAO Jianen, et al. Microstructure characteristics of soil stabilized with cement-based soil stabilizer[J]. Journal of Building Materials,2010,13(5):669 − 674. (in Chinese with English abstract)]

    FAN Henghui, WU Pute, GAO Jianen, et al. Microstructure characteristics of soil stabilized with cement-based soil stabilizer[J]. Journal of Building Materials, 2010, 13(5): 669 − 674. (in Chinese with English abstract)

    [18]

    王逢睿,王旭东,王捷,等. 偏高岭土复合加固剂改性生土材料的结构及性能研究[J]. 兰州大学学报(自然科学版),2020,56(3):341 − 348. [WANG Fengrui,WANG Xudong,WANG Jie,et al. The structure and properties of soil materials modified by the metakaolin composite reinforcer[J]. Journal of Lanzhou University (Natural Sciences),2020,56(3):341 − 348. (in Chinese with English abstract)]

    WANG Fengrui, WANG Xudong, WANG Jie, et al. The structure and properties of soil materials modified by the metakaolin composite reinforcer[J]. Journal of Lanzhou University (Natural Sciences), 2020, 56(3): 341 − 348. (in Chinese with English abstract)

    [19]

    李岩,凌贤长,杨英姿,等. 静力荷载作用下纤维材料增强路基性能的试验研究[J]. 防灾减灾工程学报,2018,38(6):996 − 1002. [LI Yan,LING Xianchang,YANG Yingzi,et al. Research on the behavior of subgrade improved by the material of fibers under static loadings[J]. Journal of Disaster Prevention and Mitigation Engineering,2018,38(6):996 − 1002. (in Chinese with English abstract)]

    LI Yan, LING Xianchang, YANG Yingzi, et al. Research on the behavior of subgrade improved by the material of fibers under static loadings[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(6): 996 − 1002. (in Chinese with English abstract)

    [20]

    李长雨,马桂霞,郝光,等. 季节冻土地区路基冷阻层温度场效应[J]. 吉林大学学报(地球科学版),2018,48(4):1174 − 1181. [LI Changyu,MA Guixia,HAO Guang,et al. Effect on temperature field of subgrade cold resistive layer in seasonal frost region[J]. Journal of Jilin University (Earth Science Edition),2018,48(4):1174 − 1181. (in Chinese with English abstract)]

    LI Changyu, MA Guixia, HAO Guang, et al. Effect on temperature field of subgrade cold resistive layer in seasonal frost region[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(4): 1174 − 1181. (in Chinese with English abstract)

    [21]

    TIWARI N,SATYAM N. An experimental study on strength improvement of expansive subgrades by polypropylene fibers and geogrid reinforcement[J]. Scientific Reports,2022,12(1):6685. doi: 10.1038/s41598-022-10773-0

    [22]

    SINGH K,PATEL M,KUMAR S. Soil performance evaluation on mixing polypropylene fiber,fly ash in different layers of subgrade[J]. Materials Today:Proceedings,2021,47:6317 − 6324.

  • 加载中

(10)

(3)

计量
  • 文章访问数:  75
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2023-09-05
修回日期:  2024-01-04
录用日期:  2024-12-31
刊出日期:  2025-02-25

目录