Failure mechanism and controlling measures of cut slope instability at Shouling temple, Luhuo County, Sichuan Province
-
摘要:
四川炉霍县寿灵寺因建设未来殿需要,于场地西北侧开挖形成一高21.8 m坡度55°~75°的五级开挖边坡。坡脚出现局部崩塌,开挖工程活动已威胁周边群众生命财产安全。现场勘察及数值模拟分析结果表明,边坡于粉质黏土层内形成圆弧形滑动面,坡脚应力集中,在降雨条件下,土体容重增加,黏聚力与内摩擦角急剧减小,最大水平位移可达3.4 m,边坡失稳形成推动式滑坡。研究区处于高烈度地区,地震及大型机器作业产生的震动荷载将给边坡带来不良影响,在地震工况下边坡形成推动式滑坡,对地基土产生剪切破坏,影响深度约5 m。考虑到边坡所需的抗滑稳定性要求及在地震工况下对地基土的破坏影响,采用抗滑桩加格构锚固对边坡进行加固,并已应用到本工程中,治理效果良好,该分析方法及防治方案可为类似人工开挖边坡工程治理提供参考经验。
Abstract:The Shouling temple in Luhuo County, Sichuan faces an urgent situation due to the construction of the Future Hall. A five-level excavation slope with a height of 21.8 m and a slope angle of 55° to 75° was formed on the northwest side of the site, leading to local damage at the toe of the slope. Field investigation and numerical simulation analysis indicate that the slope formed a circular sliding surface within the silty clay layer, with stress concentration at the toe of the slope. Under rainfall conditions, the bulk density of the soil increases, while the cohesion and internal friction angle decrease sharply. The maximum horizontal displacement can reach 3.4 m, resulting in a pushing-type landslide and slope instability. The study area is located in a high-intensity seismic zone. The vibration loads generated by earthquakes and large-scale machinery operations will have serious adverse effects on the slope. Numerical simulation analysis shows that under seismic conditions, the slope forms a pushing-type landslide, causing shear failure of the foundation soil with an impact depth of approximately 5 m. Considering the stability requirements of the slope and the damage to the foundation soil under seismic conditions, reinforcement measures such as anti-slide piles with grid anchoring were adopted to strengthen the slope, which have been applied to this project with good governance effectiveness. The analysis method and control measures can provide reference experience for the treatment of similar artificial excavation slope projects.
-
-
表 1 不同区域边坡变形特征
Table 1. Deformation characteristics of slopes in different zones
影响区域 边坡发育特征 滑坡发育阶段 Ⅰ区 该区开挖坡长15 m,高14 m,坡度60°,处于稳定状态,以粉质黏土为主,少见后缘拉张裂缝,两侧无明显剪切裂缝,
前缘已设置重力式挡土墙,局部未见坍塌,坡面岩土体易风化剥落的滑落掉块弱变形 Ⅱ区 该区开挖坡长约10 m,高约21 m,坡度约65°,处于稳定状态,少见后缘拉张裂缝,
前缘一级边坡存在局部坍塌现象,坡面岩土体常剥离掉落强变形 Ⅲ区 该区开挖坡长约25 m,坡度约60°,外观上形如三角形,最大高差达18 m,边坡前缘未见明显变化点,
局部未见坍塌,整体较稳定,坡顶部位常发生碎块剥离脱落弱变形 Ⅳ区 划分为三块区域,其中Ⅳ-Ⅰ边坡最大高度约2 m,开挖长度约30 m,其坡度较缓、无明显变形痕迹,其余区域均无明显变化 无 表 2 边坡土体物理力学参数建议值表
Table 2. Suggested values for the physical and mechanical parameters of slope rock and soil
类型 黏聚力/kPa 内摩擦角/(°) 泊松比 重度/(kN∙m-3) 弹性模量/MPa 天然 暴雨 天然 暴雨 天然 暴雨 天然 暴雨 天然 粉质黏土 25.0 23.0 32.0 30.0 0.25 0.2 18.5 19.5 10 碎石土 6.0 4.0 40 35.0 0.17 0.15 20.0 21.0 150 表 3 稳定性计算结果(Bishop法)
Table 3. Calculation results of slope stability (Bishop method)
剖面编号 天然状态
稳定系数暴雨状态
稳定系数地震状态
稳定系数1-1′ 1.423 1.286 1.325 2-2′ 潜在滑面1 1.083 0.979 0.995 潜在滑面2 1.123 1.015 1.049 3-3′ 潜在滑面1 1.084 0.981 0.997 潜在滑面2 1.209 1.090 1.128 4-4′ 潜在滑面1 1.119 1.011 1.044 潜在滑面2 1.199 1.076 1.125 表 4 抗滑桩设计计算结果
Table 4. Analysis results of anti-slide piles
抗滑桩标高/m 桩后剩余水平下滑力/kN 最大弯矩/(kN·m) 最大剪力/kN 计算嵌入深度/m 3216 600 18661.8 6944.5 7.0 -
[1] 顾磊,黄河. 滑坡地质灾害防治研究进展[J]. 地球科学前沿,2021,11(6):786 − 795. [GU Lei,HUANG He. Research progress on prevention and control of landslide geological hazards[J]. Geoscience Frontiers. 2021,11(6):786 − 795. (in Chinese with English abstract)]
GU Lei, HUANG He. Research progress on prevention and control of landslide geological hazards[J]. Geoscience Frontiers. 2021, 11(6): 786 − 795. (in Chinese with English abstract)
[2] 王元战,袁永强,吴林键. 降雨入渗条件下内河航道岸坡稳定性分析[J]. 防灾减灾工程学报,2019,39(3):403 − 411. [WANG Yuanzhan,YUAN Yongqiang,WU Linjian. Stability analysis of inland waterway bank slope under rainfall infiltration[J]. Journal of Disaster Prevention and Mitigation Engineering,2019,39(3):403 − 411. (in Chinese with English abstract)]
WANG Yuanzhan, YUAN Yongqiang, WU Linjian. Stability analysis of inland waterway bank slope under rainfall infiltration[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(3): 403 − 411. (in Chinese with English abstract)
[3] 周洪福,方甜,韦玉婷. 国内外地震滑坡研究:现状、问题与展望[J]. 沉积与特提斯地质,2023,43(3):615 − 628. [ZHOU Hongfu,FANG Tian,WEI Yuting. Research situations and suggestions on earthquake-induced landslides[J]. Sedimentary Geology and Tethyan Geology,2023,43(3):615 − 628. (in Chinese with English abstract)]
ZHOU Hongfu, FANG Tian, WEI Yuting. Research situations and suggestions on earthquake-induced landslides[J]. Sedimentary Geology and Tethyan Geology, 2023, 43(3): 615 − 628. (in Chinese with English abstract)
[4] 穆启超,王万迁,王琦,等. 贵州松桃长冲组滑坡形成机理分析[J]. 中国地质灾害与防治学报,2023,34(3):40 − 47. [MU Qichao,WANG Wanqian,WANG Qi,et al. Analysis of the formation mechanism of landslide in Changchong Group,Songtao,Guizhou[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3):40 − 47. (in Chinese with English abstract)]
MU Qichao, WANG Wanqian, WANG Qi, et al. Analysis of the formation mechanism of landslide in Changchong Group, Songtao, Guizhou[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 40 − 47. (in Chinese with English abstract)
[5] 徐伟,孙巍锋,蒋亮亮,等. 边坡边界范围对FLAC3D数值模拟稳定性计算影响探讨[J]. 公路交通科技(应用技术版),2019,15(3):8 − 9. [XU Wei,SUN Weifeng,JIANG Liangliang,et al. Discussion on the influence of slope boundary range on FLAC3D numerical simulation stability calculation[J]. Journal of highway and transportation research and development,2019,15(3):8 − 9. (in Chinese)]
XU Wei, SUN Weifeng, JIANG Liangliang, et al. Discussion on the influence of slope boundary range on FLAC3D numerical simulation stability calculation[J]. Journal of highway and transportation research and development, 2019, 15(3): 8 − 9. (in Chinese)
[6] 徐文刚,余旭荣,年廷凯,等. 基于FLAC3D的三维边坡稳定性强度折减法计算效率改进算法及其应用[J]. 吉林大学学报(地球科学版),2021,51(5):1347 − 1355. [XU Wengang,YU Xurong,NIAN Tingkai,et al. Optimization and application of FLAC3D strength-reduction computation in three-dimension slope stability analysis[J]. Journal of Jilin University (Earth Science Edition),2021,51(5):1347 − 1355. (in Chinese with English abstract)]
XU Wengang, YU Xurong, NIAN Tingkai, et al. Optimization and application of FLAC3D strength-reduction computation in three-dimension slope stability analysis[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(5): 1347 − 1355. (in Chinese with English abstract)
[7] 卢乾,朱瑞晨,姜宏军,等. 西部某水电站左岸坝肩边坡稳定分析及处理措施[J]. 人民长江,2019,50(增刊1):120 − 122. [LU Qian,ZHU Ruichen,JIANG Hongjun,et al. Stability analysis and treatment measures of left bank abutment slope of a hydropower station in western China[J]. Yangtze River,2019,50(Sup 1):120 − 122. (in Chinese)]
LU Qian, ZHU Ruichen, JIANG Hongjun, et al. Stability analysis and treatment measures of left bank abutment slope of a hydropower station in western China[J]. Yangtze River, 2019, 50(Sup 1): 120 − 122. (in Chinese)
[8] 王壮,苏雷,时伟,等. 地震作用下不同支护结构对滑坡加固效果研究[J]. 工程地质学报,2023,31(1):176 − 187. [WANG Zhuang,SU Lei,SHI Wei,et al. Reinforcement effect of different support structures against landslide under earthquake[J]. Journal of Engineering Geology,2023,31(1):176 − 187. (in Chinese with English abstract)]
WANG Zhuang, SU Lei, SHI Wei, et al. Reinforcement effect of different support structures against landslide under earthquake[J]. Journal of Engineering Geology, 2023, 31(1): 176 − 187. (in Chinese with English abstract)
[9] 张卫雄,翟向华,丁保艳,等. 甘肃舟曲江顶崖滑坡成因分析与综合治理措施[J]. 中国地质灾害与防治学报,2020,31(5):7 − 14. [ZHANG Weixiong,ZHAI Xianghua,DING Baoyan,et al. Causative analysis and comprehensive treatment of the Jiangdingya landslide in Zhouqu County of Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2020,31(5):7 − 14. (in Chinese with English abstract)]
ZHANG Weixiong, ZHAI Xianghua, DING Baoyan, et al. Causative analysis and comprehensive treatment of the Jiangdingya landslide in Zhouqu County of Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(5): 7 − 14. (in Chinese with English abstract)
[10] 李怀鑫,晏长根,王瑞,等. 路堑边坡浅层塌滑的控制因素与生态防治措施[J]. 中国地质灾害与防治学报,2023,35(3):70 − 79. [LI Huaixin,YAN Changgen,WANG Rui,et al. Analysis on factors controlling shallow failures of the cut slopes and itsprevention by bio-engineering measures:A case study of the cut slopesalong the highway from Shuangcheng to Dajiali[J]. The Chinese Journal of Geological Hazard and Control,2023,35(3):70 − 79. (in Chinese with English abstract)]
LI Huaixin, YAN Changgen, WANG Rui, et al. Analysis on factors controlling shallow failures of the cut slopes and itsprevention by bio-engineering measures: A case study of the cut slopesalong the highway from Shuangcheng to Dajiali[J]. The Chinese Journal of Geological Hazard and Control, 2023, 35(3): 70 − 79. (in Chinese with English abstract)
[11] 丁戈媛. 考虑监测离群值朱家店滑坡位移预测研究[J]. 工程地质学报,2020,28(1):132 − 140. [DING Geyuan. Displacement prediction of the Zhujiadian landslide with outliers[J]. Journal of Engineering Geology,2020,28(1):132 − 140. (in Chinese with English abstract)]
DING Geyuan. Displacement prediction of the Zhujiadian landslide with outliers[J]. Journal of Engineering Geology, 2020, 28(1): 132 − 140. (in Chinese with English abstract)
[12] 刘传正. 累积变形曲线类型与滑坡预测预报[J]. 工程地质学报,2021,29(1):86 − 95. [LIU Chuanzheng. Three types of displacement-time curves and early warning of landslides[J]. Journal of Engineering Geology,2021,29(1):86 − 95. (in Chinese with English abstract)]
LIU Chuanzheng. Three types of displacement-time curves and early warning of landslides[J]. Journal of Engineering Geology, 2021, 29(1): 86 − 95. (in Chinese with English abstract)
[13] SUN Haiqing,LI Weiyue,SCAIONI M,et al. Influence of spatial heterogeneity on landslide susceptibility in the transboundary area of the Himalayas[J]. Geomorphology,2023,433:108723. doi: 10.1016/j.geomorph.2023.108723
[14] 薛廉,唐侨,郑杰,等. 基于实时地质灾害监测数据的预警预报动态阈值分析方法[J]. 中国地质灾害与防治学报,2023,34(4):11 − 21. [XUE Lian,TANG Qiao,ZHENG Jie,et al. Dynamic threshold analysis method of early warning and forecast based on real-time geo-hazards monitoring data[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4):11 − 21. (in Chinese with English abstract)]
XUE Lian, TANG Qiao, ZHENG Jie, et al. Dynamic threshold analysis method of early warning and forecast based on real-time geo-hazards monitoring data[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 11 − 21. (in Chinese with English abstract)
[15] 朱真,江思义,刘小明,等. 基于广播RTK边缘计算的北斗高精度地质灾害监测系统及应用分析[J]. 水文地质工程地质,2021,48(5):176 − 183. [ZHU Zhen,JIANG Siyi,LIU Xiaoming,et al. The Beidou high precision geological disaster monitoring system based on RTK edge calculation and its application analysis[J]. Hydrogeology & Engineering Geology,2021,48(5):176 − 183. (in Chinese with English abstract)]
ZHU Zhen, JIANG Siyi, LIU Xiaoming, et al. The Beidou high precision geological disaster monitoring system based on RTK edge calculation and its application analysis[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 176 − 183. (in Chinese with English abstract)
[16] 陈林万,裴向军,张晓超,等. 不同压实度下黄土填方边坡失稳的模型试验研究[J]. 水文地质工程地质,2022,49(2):137 − 147. [CHEN Linwan,PEI Xiangjun,ZHANG Xiaochao,et al. A model test study of the instability of loess fill slope under different compactness[J]. Hydrogeology & Engineering Geology,2022,49(2):137 − 147. (in Chinese with English abstract)]
CHEN Linwan, PEI Xiangjun, ZHANG Xiaochao, et al. A model test study of the instability of loess fill slope under different compactness[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 137 − 147. (in Chinese with English abstract)
[17] 余岱金,黄强兵,康孝森,等. 黄土填方边坡界面渗流破坏机制模型试验研究[J]. 水文地质工程地质,2022,49(5):119 − 128. [YU Daijin,HUANG Qiangbing,KANG Xiaosen,et al. A model test study of the interface seepage and failure mechanism of loess-filled slope[J]. Hydrogeology & Engineering Geology,2022,49(5):119 − 128. (in Chinese with English abstract)]
YU Daijin, HUANG Qiangbing, KANG Xiaosen, et al. A model test study of the interface seepage and failure mechanism of loess-filled slope[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 119 − 128. (in Chinese with English abstract)
[18] 杨志华,吴瑞安,郭长宝,等. 融合斜坡形变特征的复杂山区区域滑坡评价研究现状与展望[J/OL]. 中国地质,2023:1 − 13. (2023-10-10). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=DIZI20230930007&dbname=CJFD&dbcode=CJFQ. [YANG Zhihua,WU Ruian,GUO Changbao,et al. Research status and prospect of regional landslide assessment integrating slope deformation characteristics in the complex mountainous area[J/OL]. Geology in China,2023:1 − 13. (2023-10-10). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=DIZI20230930007&dbname=CJFD&dbcode=CJFQ. (in Chinese with English abstract)]
YANG Zhihua, WU Ruian, GUO Changbao, et al. Research status and prospect of regional landslide assessment integrating slope deformation characteristics in the complex mountainous area[J/OL]. Geology in China, 2023: 1 − 13. (2023-10-10). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=DIZI20230930007&dbname=CJFD&dbcode=CJFQ. (in Chinese with English abstract)
[19] 薛强,张茂省,高波. 斜坡单元支持下基于土体含水率的陕西省清涧县城区黄土滑坡危险性评价[J]. 中国地质,2020,47(6):1904 − 1914. [XUE Qiang,ZHANG Maosheng,GAO Bo. Hazard assessment of loess landslide based on soil moisture content and supported by slope unit in Qingjian City, Shaanxi Province[J]. Geology in China,2020,47(6):1904 − 1914. (in Chinese with English abstract)]
XUE Qiang, ZHANG Maosheng, GAO Bo. Hazard assessment of loess landslide based on soil moisture content and supported by slope unit in Qingjian City, Shaanxi Province[J]. Geology in China, 2020, 47(6): 1904 − 1914. (in Chinese with English abstract)
-