Application of ultra-high gravity retaining walls in high fill slopes on karst developed foundations
-
摘要:
重庆武隆机场南端西侧岩溶发育、地形陡峻,采用了高路堤与超高衡重式挡墙相结合的高填方边坡方案。挡墙基础发育3处岩溶,面积占挡墙的45%以上,全填充,最大深度超过30 m,属于典型的特殊复杂地基。为了解决岩溶地基不均匀性强、承载力低、边坡及挡墙稳定性问题突出等难题,采用开挖一定深度的岩溶充填物并回填混凝土方案。通过理论计算详细分析了不同换填深度下高边坡及高挡墙的破坏模式、稳定性、应力及变形规律,确定了合理的岩溶换填深度。研究结果表明:采用一定深度的岩溶换填方案可有效改善岩溶地基的不均匀性,降低挡墙应力集中效应,减小挡墙及高填方变形,大幅提高挡墙及边坡稳定性。现场监测表明:高挡墙及高边坡工后水平和竖向位移均小于4 mm,变形曲线收敛,边坡及挡墙稳定性良好。研究成果对于复杂山区高填方工程规划设计及施工具有重要的参考意义。
Abstract:This paper presents a high fill slope solution for the steep and karst-developed terrain at the southern end, west side of Wulong Airport in Chongqing, where a combination of high embankment and ultra-high counterweight retaining wall was adopted. The foundation of the gravity retaining wall includes three karst formations, covering more than 45% of the total area. These karst areas are fully filled and have a maximum depth exceeding 30 m, making them typical examples of special and complex foundations. To address challenges such as strong non-uniformity, low bearing capacity of the karst foundation, and instability of slopes and retaining walls in karstic foundations, a solution involving the excavation of karst infill to a certain depth and backfilling with concrete was adopted. Through theoretical calculations, this paper comprehensively analyzes the failure modes, stability, stress, and deformation of the high slope and retaining wall with varying concrete replacement depths, ultimately determining a suitable replacement depth. The research results show that the adoption of a certain depth of replacement can effectively improve the non-uniformity of the karst foundation, reduce stress concentration effect on the retaining wall, decrease the deformation of the retaining wall and high embankment, and significantly enhance the stability of the retaining wall and slope. Field monitoring indicates that the horizontal and vertical displacements of the high retaining wall and high slope after construction are both less than 4mm, with deformation curves converging, demonstrating good stability of the slope and retaining wall. The research findings have significant reference value for the planning, design, and construction of high-fill slope projects in complex mountainous areas.
-
Key words:
- ultra-high gravity retaining wall /
- karst /
- failure mode /
- high fill slope /
- stability /
- numerical simulation
-
-
表 1 数值模拟计算参数
Table 1. Summary of simulation model parameters
岩土性质 本构模型 容重/(kN·m−3) 黏聚力/kPa 内摩擦角/(°) 弹性模量/MPa 泊松比 填料 摩尔库伦 22.5 50 35 60 0.30 高挡墙 线弹性 24.0 − − 28000 0.20 岩溶充填物 摩尔库伦 18.2 20 13 10 0.32 灰岩 摩尔库伦 26.5 200 40 10000 0.25 灰岩层面 摩尔库伦 − 60 25 − − 节理面 摩尔库伦 − 20 35 − − 挡墙-灰岩接触面 摩尔库伦 − 0 35 − − 挡墙-填料接触面 摩尔库伦 − 0 30 − − 挡墙-岩溶充填物接触面 摩尔库伦 − 0 15 − − 填料-灰岩接触面 摩尔库伦 − 45 35 − − -
[1] 王双,王睿,邱存家,等. 某机场高填方边坡变形机理及支护设计研究[J]. 工程地质学报,2018,26 (增刊1):248 − 253. [WANG Shuang,WANG Rui,QIU Cunjia,et al. Research on deformation mechanism and support design of high fill slope in an airfield[J]. Journal of Engineering Geology,2018,26 (Sup 1):248 − 253. (in Chinese with English abstract)]
WANG Shuang, WANG Rui, QIU Cunjia, et al. Research on deformation mechanism and support design of high fill slope in an airfield[J]. Journal of Engineering Geology, 2018, 26 (Sup 1): 248 − 253. (in Chinese with English abstract)
[2] 邱存家,胡勇生,王双,等. 孔内深层强夯桩处理软弱地基试验[J]. 公路交通科技(应用技术版),2018,14(12):70 − 73. [QIU Cunjia,HU Yongsheng,WANG Shuang,et al. Test of treating soft foundation with deep dynamic compaction pile in hole[J]. Journal of Highway and Transportation Research and Development:Application Technical Edition,2018,14(12):70 − 73. (in Chinese with English abstract)]
QIU Cunjia, HU Yongsheng, WANG Shuang, et al. Test of treating soft foundation with deep dynamic compaction pile in hole[J]. Journal of Highway and Transportation Research and Development: Application Technical Edition, 2018, 14(12): 70 − 73. (in Chinese with English abstract)
[3] 廖鸿,徐超,杨阳. 某机场飞行区土工格栅加筋高边坡优化设计[J]. 水文地质工程地质,2021,48(6):113 − 121. [LIAO Hong,XU Chao,YANG Yang. Optimal design of the high geogrid-reinforced slope at the airfield of an airport[J]. Hydrogeology & Engineering Geology,2021,48(6):113 − 121. (in Chinese with English abstract)]
LIAO Hong, XU Chao, YANG Yang. Optimal design of the high geogrid-reinforced slope at the airfield of an airport[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 113 − 121. (in Chinese with English abstract)
[4] 刘许锋. 重力式挡土墙设计与计算在公路工程中的应用[J]. 建筑技术开发,2017,44(12):110 − 111. [LIU Xufeng. Application of gravity retaining wall design and calculation in highway engineering[J]. Building Technology Development,2017,44(12):110 − 111. (in Chinese with English abstract)] doi: 10.3969/j.issn.1001-523X.2017.12.076
LIU Xufeng. Application of gravity retaining wall design and calculation in highway engineering[J]. Building Technology Development, 2017, 44(12): 110 − 111. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-523X.2017.12.076
[5] 邵龙潭,刘士乙,李红军. 基于有限元滑面应力法的重力式挡土墙结构抗滑稳定分析[J]. 水利学报,2011,42(5):602 − 608. [SHAO Longtan,LIU Shiyi,LI Hongjun. Analysis of stability against sliding for gravity retaining wall structure based on finite element slip surface stress method[J]. Journal of Hydraulic Engineering,2011,42(5):602 − 608. (in Chinese with English abstract)]
SHAO Longtan, LIU Shiyi, LI Hongjun. Analysis of stability against sliding for gravity retaining wall structure based on finite element slip surface stress method[J]. Journal of Hydraulic Engineering, 2011, 42(5): 602 − 608. (in Chinese with English abstract)
[6] VARGA R,ŽLENDER B,JELUŠIČ P. Multiparametric analysis of a gravity retaining wall[J]. Applied Sciences,2021,11(13):6233. doi: 10.3390/app11136233
[7] 中华人民共和国住房和城乡建设部. 建筑边坡工程技术规范:GB 50330—2013[S]. 北京:中国建筑工业出版社,2014. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical code for building slope engineering:GB 50330—2013[S]. Beijing:China Architecture & Building Press,2014. (in Chinese)]
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical code for building slope engineering: GB 50330—2013[S]. Beijing: China Architecture & Building Press, 2014. (in Chinese)
[8] 张彦伟,宋星光. 贵阳首个超高重力式挡土墙施工技术[J]. 山西建筑,2011,37(35):141 − 143. [ZHANG Yanwei,SONG Xingguang. On construction technique of the first super-high gravity retaining walls in Guiyang[J]. Shanxi Architecture,2011,37(35):141 − 143. (in Chinese with English abstract)] doi: 10.3969/j.issn.1009-6825.2011.35.084
ZHANG Yanwei, SONG Xingguang. On construction technique of the first super-high gravity retaining walls in Guiyang[J]. Shanxi Architecture, 2011, 37(35): 141 − 143. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-6825.2011.35.084
[9] 朱向东. 超高挡土墙结构设计[J]. 建筑结构,2010,40(7):109 − 111. [ZHU Xiangdong. Structure design of a super-high retaining wall[J]. Building Structure,2010,40(7):109 − 111. (in Chinese with English abstract)]
ZHU Xiangdong. Structure design of a super-high retaining wall[J]. Building Structure, 2010, 40(7): 109 − 111. (in Chinese with English abstract)
[10] 左莎,吴丙贵. 超高挡土墙结构技术分析与经济比较[J]. 水运工程,2002(11):29 − 31. [ZUO Sha,WU Binggui. Technical analysis and economic comparison of ultra-high retaining wall structures[J]. Port & Waterway Engineering,2002(11):29 − 31. (in Chinese with English abstract)] doi: 10.3969/j.issn.1002-4972.2002.11.009
ZUO Sha, WU Binggui. Technical analysis and economic comparison of ultra-high retaining wall structures[J]. Port & Waterway Engineering, 2002(11): 29 − 31. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-4972.2002.11.009
[11] 王柳江,赵志杰,刘斯宏,等. 宜兴抽水蓄能电站上库主坝重力挡墙位移影响因素分析[J]. 河海大学学报(自然科学版),2021,49(4):358 − 365. [WANG Liujiang,ZHAO Zhijie,LIU Sihong,et al. Analysis of influence factors on gravity retaining wall displacement of main dam for the upper-reservoir of Yixing Pumped-Storage Hydropower Station[J]. Journal of Hohai University (Natural Sciences),2021,49(4):358 − 365. (in Chinese with English abstract)]
WANG Liujiang, ZHAO Zhijie, LIU Sihong, et al. Analysis of influence factors on gravity retaining wall displacement of main dam for the upper-reservoir of Yixing Pumped-Storage Hydropower Station[J]. Journal of Hohai University (Natural Sciences), 2021, 49(4): 358 − 365. (in Chinese with English abstract)
[12] 杨健,刘斯宏,杨建洲. 宜兴抽水蓄能电站高重力挡墙稳定性综合评价[J]. 岩石力学与工程学报,2007,26(增刊2):4439 − 4445. [YANG Jian,LIU Sihong,YANG Jianzhou. Comprehensive evaluation of stability of high gravity retaining wall in Yixing pumped storage power station[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(Sup 2):4439 − 4445. (in Chinese)]
YANG Jian, LIU Sihong, YANG Jianzhou. Comprehensive evaluation of stability of high gravity retaining wall in Yixing pumped storage power station[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(Sup 2): 4439 − 4445. (in Chinese)
[13] 江松笙,康海冬. 宜兴抽水蓄能电站上库主坝高挡墙土压力分析[J]. 岩土力学,2006,27(S2):125 − 131. [JIANG Songsheng,KANG Haidong. Analysis of pressures on high retaining wall earth pressure of main dam of upper reservoir in Yixing pumped storage power station[J]. Rock and Soil Mechanics,2006,27(S2):125 − 131. (in Chinese with English abstract)]
JIANG Songsheng, KANG Haidong. Analysis of pressures on high retaining wall earth pressure of main dam of upper reservoir in Yixing pumped storage power station[J]. Rock and Soil Mechanics, 2006, 27(S2): 125 − 131. (in Chinese with English abstract)
[14] 曹贤发,刘之葵,李海玲. 岩溶区建筑场地桩基平均入岩高程预测[J]. 水文地质工程地质,2019,46(4):119 − 125. [CAO Xianfa,LIU Zhikui,LI Hailing. An analysis of the average entering-rock height of grouped piles at building sites in a Karst terrain[J]. Hydrogeology & Engineering Geology,2019,46(4):119 − 125. (in Chinese with English abstract)]
CAO Xianfa, LIU Zhikui, LI Hailing. An analysis of the average entering-rock height of grouped piles at building sites in a Karst terrain[J]. Hydrogeology & Engineering Geology, 2019, 46(4): 119 − 125. (in Chinese with English abstract)
[15] 肖鸿斌,金耀岷. 深埋串珠状溶洞的超高层基础设计案例分析[J]. 中国岩溶,2023,42(2):382 − 390. [XIAO Hongbin,JIN Yaomin. Case study on super high-rise foundation design of the deep-buried beaded Karst cave[J]. Carsologica Sinica,2023,42(2):382 − 390. (in Chinese with English abstract)] doi: 10.11932/karst20230209
XIAO Hongbin, JIN Yaomin. Case study on super high-rise foundation design of the deep-buried beaded Karst cave[J]. Carsologica Sinica, 2023, 42(2): 382 − 390. (in Chinese with English abstract) doi: 10.11932/karst20230209
[16] 姜巽,曹聪,刘智,等. 歌乐山地区隧道工程诱发的岩溶塌陷发育规律与形成条件[J]. 水文地质工程地质,2023,50(5):181 − 191. [JIANG Xun,CAO Cong,LIU Zhi,et al. Development and formation conditions of Karst collapse induced by tunnel engineering in the Gele Mountain Area[J]. Hydrogeology & Engineering Geology,2023,50(5):181 − 191. (in Chinese with English abstract)]
JIANG Xun, CAO Cong, LIU Zhi, et al. Development and formation conditions of Karst collapse induced by tunnel engineering in the Gele Mountain Area[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 181 − 191. (in Chinese with English abstract)
[17] 王忠忠,庄卓涵,胡飞跃,等. 广州北部丘陵区岩溶塌陷形成条件与易发性评价[J]. 中国地质灾害与防治学报,2024,35(4):163 − 172. [WANG Zhongzhong,ZHUANG Zhuohan,HU Feiyue,et al. Formation conditions and susceptibility assessment of Karst collapses in the northern hilly area of Guangzhou City[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4):163 − 172. (in Chinese with English abstract)]
WANG Zhongzhong, ZHUANG Zhuohan, HU Feiyue, et al. Formation conditions and susceptibility assessment of Karst collapses in the northern hilly area of Guangzhou City[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(4): 163 − 172. (in Chinese with English abstract)
[18] 刘自强,马洪生,牟云娟. 节理裂隙发育岩溶地基数值模拟稳定性分析[J]. 中国岩溶,2022,41(1):100 − 110. [LIU Ziqiang,MA Hongsheng,MOU Yunjuan. Numerical simulation analysis and evaluation of stability of the Karst foundation with developed joints and fissures[J]. Carsologica Sinica,2022,41(1):100 − 110. (in Chinese with English abstract)] doi: 10.11932/karst20220105
LIU Ziqiang, MA Hongsheng, MOU Yunjuan. Numerical simulation analysis and evaluation of stability of the Karst foundation with developed joints and fissures[J]. Carsologica Sinica, 2022, 41(1): 100 − 110. (in Chinese with English abstract) doi: 10.11932/karst20220105
[19] 钟祖良,王南云,李滨,等. 采动作用下上硬下软型缓倾岩质高边坡变形机理试验研究[J]. 中国岩溶,2020,39(4):509 − 517. [ZHONG Zuliang,WANG Nanyun,LI Bin,et al. Experimental study on the deformation mechanism of upper-hard and lower-soft gently dipping rock on high slopes under the mining effect[J]. Carsologica Sinica,2020,39(4):509 − 517. (in Chinese with English abstract)]
ZHONG Zuliang, WANG Nanyun, LI Bin, et al. Experimental study on the deformation mechanism of upper-hard and lower-soft gently dipping rock on high slopes under the mining effect[J]. Carsologica Sinica, 2020, 39(4): 509 − 517. (in Chinese with English abstract)
[20] 马昊,黄达,肖衡林,等. 江北机场高填方夯后碎块石土剪切力学性质研究[J]. 水文地质工程地质,2019,46(3):88 − 94. [MA Hao,HUANG Da,XIAO Henglin,et al. A study of the shear mechanical properties of high-filled gravel-block soil after dynamic compaction near the Jiangbei Airport[J]. Hydrogeology & Engineering Geology,2019,46(3):88 − 94. (in Chinese with English abstract)]
MA Hao, HUANG Da, XIAO Henglin, et al. A study of the shear mechanical properties of high-filled gravel-block soil after dynamic compaction near the Jiangbei Airport[J]. Hydrogeology & Engineering Geology, 2019, 46(3): 88 − 94. (in Chinese with English abstract)
[21] 马翔,赖国泉. 某山区机场高填方滑坡变形特征分析[J]. 中国地质灾害与防治学报,2019,30(4):16 − 23. [MA Xiang,LAI Guoquan. Analysis on deformation monitoring of a high fill landslide in a mountain airport[J]. The Chinese Journal of Geological Hazard and Control,2019,30(4):16 − 23. (in Chinese with English abstract)]
MA Xiang, LAI Guoquan. Analysis on deformation monitoring of a high fill landslide in a mountain airport[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(4): 16 − 23. (in Chinese with English abstract)
[22] 陶小虎,叶明,龚建师,等. 基于LBM-DEM细观数值模拟的水力诱导覆盖型岩溶地面塌陷发育过程分析[J]. 中国地质灾害与防治学报,2024,35(1):124 − 131. [TAO Xiaohu,YE Ming,GONG Jianshi,et al. Analysis of the formation process of the covered Karst ground collapse induced by groundwater changes based on the coupled LBM-DEM numerical simulation at micro scale[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1):124 − 131. (in Chinese with English abstract)]
TAO Xiaohu, YE Ming, GONG Jianshi, et al. Analysis of the formation process of the covered Karst ground collapse induced by groundwater changes based on the coupled LBM-DEM numerical simulation at micro scale[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 124 − 131. (in Chinese with English abstract)
[23] ZHOU Hang,LIU Hanlong,LI Xueyuan,et al. Plasticity solution for the limit vertical pressure of a single rigid pile with a pile cap in soft soil[J]. Computers and Geotechnics,2020,117:103260. doi: 10.1016/j.compgeo.2019.103260
[24] LI Shiqi,YANG Zhongping,TIAN Xin,et al. Influencing factors of scale effects in large-scale direct shear tests of soil-rock mixtures based on particle breakage[J]. Transportation Geotechnics,2021,31:100677. doi: 10.1016/j.trgeo.2021.100677
[25] YANG Zhongping,LI Shiqi,JIANG Yuanwen,et al. Shear mechanical properties of the interphase between soil–rock mixtures and benched bedrock slope surfaces[J]. International Journal of Geomechanics,2022,22(5):04022047. doi: 10.1061/(ASCE)GM.1943-5622.0002342
[26] 中华人民共和国住房和城乡建设部. 工程岩体分级标准:GB/T 50218—2014[S]. 北京:中国计划出版社,2015. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for engineering classification of rock mass:GB/T 50218—2014[S]. Beijing:China Planning Press,2015. (in Chinese)]
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for engineering classification of rock mass: GB/T 50218—2014[S]. Beijing: China Planning Press, 2015. (in Chinese)
[27] 汪小刚,林兴超. 基于刚性块体离散的边坡稳定极限分析法[J]. 岩土工程学报,2022,44(9):1587 − 1597. [WANG Xiaogang,LIN Xingchao. Limit analysis method for slope stability based on discretization of rigid blocks[J]. Chinese Journal of Geotechnical Engineering,2022,44(9):1587 − 1597. (in Chinese with English abstract)] doi: 10.11779/CJGE202209003
WANG Xiaogang, LIN Xingchao. Limit analysis method for slope stability based on discretization of rigid blocks[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1587 − 1597. (in Chinese with English abstract) doi: 10.11779/CJGE202209003
[28] 李志浩,肖世国. 地震条件下悬臂式挡墙主动土压力的极限分析方法[J]. 中国地质灾害与防治学报,2020,31(5):79 − 87. [LI Zhihao,XIAO Shiguo. Limit analysis method of active earth pressure on cantilever retaining wall subjected to earthquake[J]. The Chinese Journal of Geological Hazard and Control,2020,31(5):79 − 87. (in Chinese with English abstract)]
LI Zhihao, XIAO Shiguo. Limit analysis method of active earth pressure on cantilever retaining wall subjected to earthquake[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(5): 79 − 87. (in Chinese with English abstract)
[29] 中国民用航空局. 民用机场岩土工程设计规范:MH/T 5027—2013[S]. 北京:中国民航出版社,2013. [Civil Aviation Administration of China. Design code for civil airport geotechnical engineering:MH/T 5027-2013[S]. Beijing:Civil Aviation Press of China,2013. Self service filling. (in Chinese )]
Civil Aviation Administration of China. Design code for civil airport geotechnical engineering: MH/T 5027-2013[S]. Beijing: Civil Aviation Press of China, 2013. Self service filling. (in Chinese )
-