中国地质环境监测院
中国地质灾害防治工程行业协会
主办

抗滑桩承载性状全过程三维三重非线性有限元分析

戴自航, 陈启明, 徐丹, 陈忠源. 抗滑桩承载性状全过程三维三重非线性有限元分析[J]. 中国地质灾害与防治学报, 2025, 36(3): 95-107. doi: 10.16031/j.cnki.issn.1003-8035.202407012
引用本文: 戴自航, 陈启明, 徐丹, 陈忠源. 抗滑桩承载性状全过程三维三重非线性有限元分析[J]. 中国地质灾害与防治学报, 2025, 36(3): 95-107. doi: 10.16031/j.cnki.issn.1003-8035.202407012
DAI Zihang, CHEN Qiming, XU Dan, CHEN Zhongyuan. Whole process finite element analysis of the load-bearing behavior of slope-stabilizing piles using three-dimensional triple nonlinearity[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(3): 95-107. doi: 10.16031/j.cnki.issn.1003-8035.202407012
Citation: DAI Zihang, CHEN Qiming, XU Dan, CHEN Zhongyuan. Whole process finite element analysis of the load-bearing behavior of slope-stabilizing piles using three-dimensional triple nonlinearity[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(3): 95-107. doi: 10.16031/j.cnki.issn.1003-8035.202407012

抗滑桩承载性状全过程三维三重非线性有限元分析

  • 基金项目: 福建省自然科学基金项目(2021J01600; 2023J011130);福建省交通运输厅基金项目(202213)
详细信息
    作者简介: 戴自航(1966—),男,湖南长沙人,博士,教授,博士生导师,主要从事滑坡治理、边坡工程、桩基工程方面的教学与研究工作。E-mail:dzhang@fzu.edu.cn
  • 中图分类号: TU473;P642.22

Whole process finite element analysis of the load-bearing behavior of slope-stabilizing piles using three-dimensional triple nonlinearity

  • 边(滑)坡抗滑桩在满足承载力要求的前提下常允许产生较大的水平位移。某现场抗滑桩的推桩试验表明,当推力较小、桩顶位移尚不足10 mm时,滑动面附近桩身混凝土就出现了开裂,桩体呈现非弹性的挠曲变形。然而,迄今,人们在设计计算和数值模拟分析中仍习惯性地将抗滑桩视为弹性体,以致计算和分析结果难免与实际存在一定甚至是很大的偏差。为克服这样的问题,以该试桩为例,采用Diana有限元程序建立按实际配筋的混凝土桩体模型,分别采用程序中的材料非线性模型,如总应变裂缝模型、Von-Mises模型和硬化土模型等真实模拟桩、钢筋和土,并考虑桩-土和土-岩接触相互作用的边界非线性和几何非线性,开展了抗滑桩承载性状的全过程数值分析。分析所得桩顶或桩身位移与实测结果高度或良好吻合;在靠近桩顶和桩底未出现裂缝的桩段桩身弯矩与实测吻合较好;桩身开始出现裂缝的荷载和部位与试验观察结果高度吻合。首次从数值模拟角度揭示随着推力增大抗滑桩前滑体出现双半“倒圆锥”形楔体剪切破坏区,与试验者描述的桩前滑体出现三角形楔体被挤起而破坏的现象相符,土体的剪切破坏导致部分位置土抗力的降低现象也与实测情况相符。以上结果表明,文中方法可显著提升抗滑桩设计计算与分析水平,具有推广应用价值。

  • 加载中
  • 图 1  试验桩示意图(单位:m)

    Figure 1. 

    图 2  试验桩-土体系三维有限元模型

    Figure 2. 

    图 3  混凝土指数型受拉软化曲线

    Figure 3. 

    图 4  混凝土抛物线型受压软化曲线

    Figure 4. 

    图 5  钢筋双折线模型

    Figure 5. 

    图 6  第7级荷载下模型位移等值云

    Figure 6. 

    图 7  各级荷载下桩顶水平位移对比

    Figure 7. 

    图 8  4~6级荷载下桩身水平位移对比

    Figure 8. 

    图 9  6~8级荷载下桩身水平位移对比

    Figure 9. 

    图 10  各级荷载下桩身混凝土和钢筋弯矩计算值

    Figure 10. 

    图 11  不同级荷载下计算与实测桩身弯矩对比

    Figure 11. 

    图 12  任意截面i钢筋弯矩Msi计算图示

    Figure 12. 

    图 13  不同级荷载桩身裂缝宽度等值云

    Figure 13. 

    图 14  不同级荷载下桩前、后土抗力分布

    Figure 14. 

    图 15  不同深度土的p-y曲线

    Figure 15. 

    图 16  不同级荷载下土中等效塑性应变等值云

    Figure 16. 

    表 1  试验荷载

    Table 1.  Testing loads

    荷载分级 0 1 2 3 4 5 6 7 8 9 10 11
    线荷载集度/(kN·m−1 0 29 54 73 105 127 154 170 192 217 249 278
    等效面荷载集度/kPa 0 36.25 67.5 91.25 131.25 158.75 192.5 212.5 240 271.25 311.25 347.5
    每级面荷载增量/kPa 0 36.25 31.25 24.75 40 27.5 33.75 20 27.5 31.25 40 36.25
    下载: 导出CSV

    表 2  滑体土HS模型参数

    Table 2.  Parameters of the HS model for slip soil

    土的名称 重度
    /(kN·m−3
    参考割线
    模量/MPa
    参考卸载
    模量/MPa
    参考压缩
    模量/MPa
    有效黏
    聚力/kPa
    有效内摩
    擦角/(°)
    剪胀角
    /(°)
    泊松比 静止土压
    力系数
    破坏比 幂指数 参考压力
    /kPa
    成都黏土 19.9 10 35.32 8.33 36 7.47 0 0.3 0.87 0.91 0.8 100
    雅安砾土 22.0 40 121.38 33.33 15 43 13 0.2 0.318 0.78 0.7 100
    下载: 导出CSV

    表 3  泥质页岩M-C模型参数

    Table 3.  Parameters of the M-C model for clayey shale

    参数 重度
    /(kN·m−3
    弹性模量
    /MPa
    泊松比 黏聚力
    /kPa
    内摩擦角
    /(°)
    剪胀角
    /(°)
    取值 20.2 680 0.1 35000 15 0
    下载: 导出CSV

    表 4  C25混凝土TSC模型参数

    Table 4.  Parameters of the TSC model for C25 concrete

    参数 重度
    /(kN·m−3
    弹性
    模量
    /MPa
    泊松比 抗拉
    强度
    /MPa
    抗压
    强度
    /MPa
    拉、压断裂能
    /(N·m−1
    裂缝
    带宽
    /m
    取值 23.8 680 0.17 1.78 16.7 139.2 12000 式(3)
    下载: 导出CSV

    表 5  钢筋Von Mises模型参数

    Table 5.  Parameters of the Von Mises model for steel bars

    钢筋
    型号
    重度
    /(kN·m−3
    弹性模量
    /MPa
    泊松比 抗拉压强度
    /MPa
    弹塑性模量
    /MPa
    HPB300 78.5 2.1×105 0.3 235 2.1×103
    HRB335 78.5 2.0×105 0.3 335 2.0×103
    下载: 导出CSV

    表 6  各接触面摩擦角

    Table 6.  Friction angles of various contact surfaces

    接触面名称 黏土-桩 砾土-桩 页岩-桩 滑动面
    摩擦角/(°) 16.7 30.964 16.7 15.64
    下载: 导出CSV
  • [1]

    中华人民共和国建设部. 建筑桩基技术规范:JGJ 94—2008[S]. 北京:中国建筑工业出版社,2008. [Ministry of Construction of the People’s Republic of China. Technical code for building pile foundations:JGJ 94—2008[S]. Beijing:China Architecture & Building Press,2008. (in Chinese)]

    Ministry of Construction of the People’s Republic of China. Technical code for building pile foundations: JGJ 94—2008[S]. Beijing: China Architecture & Building Press, 2008. (in Chinese)

    [2]

    铁道部第二勘察设计院. 铁路路基支挡结构设计规范:TB 10025—2019[S]. 北京:中国铁道出版社,2019. [The Second Survey and Design Institute of the Ministry of Railways. Code for design of retaining structure of railway earthworks:TB 10025—2019[S]. Beijing:China Railway Publishing House,2019. (in Chinese)]

    The Second Survey and Design Institute of the Ministry of Railways. Code for design of retaining structure of railway earthworks: TB 10025—2019[S]. Beijing: China Railway Publishing House, 2019. (in Chinese)

    [3]

    徐良德. 抗滑桩桩前滑体出现塑性变形时抗力分布的初步探讨[C]. 中国土木工程学会第四届土力学及基础工程学术会议论文选集,1983:448 – 454. [XU Liangde. A preliminary study on the distribution of resistance when the front sliding body of slope-stabilizing pile appears plastic deforma-tion[C]. Selected papers of the 4th Academic Conference of Soil Mechanics and Foundation Engineering of China Civil Engineering Society,1983:448 − 454. (in Chinese)]

    XU Liangde. A preliminary study on the distribution of resistance when the front sliding body of slope-stabilizing pile appears plastic deforma-tion[C]. Selected papers of the 4th Academic Conference of Soil Mechanics and Foundation Engineering of China Civil Engineering Society, 1983: 448 − 454. (in Chinese)

    [4]

    李克才,池淑兰. 抗滑试桩空间非线性有限元分析及设计参数的研究[C]. 滑坡文集,北京:铁道出版社,1997,12:18 − 29. [LI Kecai,CHI Shulan. Spatial nonlinear finite element analysis of slope-stabilizing pile and study on design parame-ters[C]. Landslide Collection,Beijing:China Rail-way Publishing House,1997,12:18 − 29. (in Chinese with English abstract)]

    LI Kecai, CHI Shulan. Spatial nonlinear finite element analysis of slope-stabilizing pile and study on design parame-ters[C]. Landslide Collection, Beijing: China Rail-way Publishing House, 1997, 12: 18 − 29. (in Chinese with English abstract)

    [5]

    戴自航. 抗滑桩滑坡推力和桩前滑体抗力分布规律的研究[J]. 岩石力学与工程学报,2002,21(4):517 − 521. [DAI Zihang. Study on distribution laws of landslide-thrust and resistance of sliding mass acting on antislide piles[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(4):517 − 521. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-6915.2002.04.013

    DAI Zihang. Study on distribution laws of landslide-thrust and resistance of sliding mass acting on antislide piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(4): 517 − 521. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2002.04.013

    [6]

    李寻昌,高凡凡,冉雨童,等. 基于差分法的双排抗滑桩结构内力计算[J]. 水文地质工程地质,2024,51(5):95 − 104. [LI Xunchang,GAO Fanfan,RAN Yutong,et al. Internal force calculation of double row anti-slide pile structure based on finite difference method[J]. Hydrogeology & Engineering Geology,2024,51(5):95 − 104. (in Chinese with English abstract)]

    LI Xunchang, GAO Fanfan, RAN Yutong, et al. Internal force calculation of double row anti-slide pile structure based on finite difference method[J]. Hydrogeology & Engineering Geology, 2024, 51(5): 95 − 104. (in Chinese with English abstract)

    [7]

    付正道,蒋关鲁,刘琪,等. 含倾斜夹层滑坡内抗滑桩和桥基耦合作用的试验与数值模拟[J]. 岩石力学与工程学报,2018,37(9):2152 − 2161. [FU Zhengdao,JIANG Guanlu,LIU Qi,et al. Experiment and numerical simulation on interaction between piled bridge foundation and stabilizing piles in the slope with intercalated layer[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(9):2152 − 2161. (in Chinese with English abstract)]

    FU Zhengdao, JIANG Guanlu, LIU Qi, et al. Experiment and numerical simulation on interaction between piled bridge foundation and stabilizing piles in the slope with intercalated layer[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 2152 − 2161. (in Chinese with English abstract)

    [8]

    朱彦鹏,施多邦,段新国,等. 某砂岩顺层挖方高边坡治理工程施工期变形特征与工程效果评价[J]. 中国地质灾害与防治学报,2023,34(2):111 − 119. [ZHU Yanpeng,SHI Duobang,DUAN Xinguo,et al. Deformation characteristics and engineering effect evaluation of a sandstone bedding excavation high slope treatment project during construction[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2):111 − 119. (in Chinese with English abstract)]

    ZHU Yanpeng, SHI Duobang, DUAN Xinguo, et al. Deformation characteristics and engineering effect evaluation of a sandstone bedding excavation high slope treatment project during construction[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(2): 111 − 119. (in Chinese with English abstract)

    [9]

    DAI Zihang,YANG Jianhui,DAI Rui,et al. Three-dimensional and threefold nonlinear numerical modeling for slope-stabilizing pile[J]. KSCE Journal of Civil Engineering,2022,26(11):4390 − 4406. doi: 10.1007/s12205-022-1474-6

    [10]

    戴自航,张晓咏,邹盛堂,等. 现场模拟水平分布式滑坡推力的抗滑桩试验研究[J]. 岩土工程学报,2010,32(10):1513 − 1518. [DAI Zihang,ZHANG Xiaoyong,ZOU Shengtang,et al. Field modeling of laterally distributed landslide thrusts over anti-slide piles[J]. Chinese Journal of Geotechnical Engineering,2010,32(10):1513 − 1518. (in Chinese with English abstract)]

    DAI Zihang, ZHANG Xiaoyong, ZOU Shengtang, et al. Field modeling of laterally distributed landslide thrusts over anti-slide piles[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10): 1513 − 1518. (in Chinese with English abstract)

    [11]

    RASHID Y R. Ultimate strength analysis of prestressed concrete pressure vessels[J]. Nuclear Engineering and Design,1968,7(4):334 − 344. doi: 10.1016/0029-5493(68)90066-6

    [12]

    朱万成,唐春安,赵启林,等. 混凝土断裂过程的力学模型与数值模拟[J]. 力学进展,2002,32(4):579 − 598. [ZHU Wancheng,TANG Chun’an,ZHAO Qilin,et al. Mechanical model and numerical simulation of fractur eprocess of concrete[J]. Advances in Mechanics,2002,32(4):579 − 598. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-0992.2002.04.012

    ZHU Wancheng, TANG Chun’an, ZHAO Qilin, et al. Mechanical model and numerical simulation of fractur eprocess of concrete[J]. Advances in Mechanics, 2002, 32(4): 579 − 598. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-0992.2002.04.012

    [13]

    SCHANZ T,VERMEER P A,BONNIER P G. The hardening soil model:Formulation and verification[M]//Beyond 2000 in Computational Geotechnics. London:Routledge,2019:281-296.

    [14]

    DUNCAN J M,CHANG C Y. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division,1970,96(5):1629 − 1653. doi: 10.1061/JSFEAQ.0001458

    [15]

    《工程地质手册》编委会. 工程地质手册[M]. 5版. 北京:中国建筑工业出版社,2018. [Editorial Committee of Engineering Geology Hand-book. Geological engineering handbook[M]. 5th ed. Beijing:China Architecture & Building Press,2018. (in Chinese)]

    Editorial Committee of Engineering Geology Hand-book. Geological engineering handbook[M]. 5th ed. Beijing: China Architecture & Building Press, 2018. (in Chinese)

    [16]

    中华人民共和国住房和城乡建设部. 混凝土结构设计规范:GB 50010—2010[S]. 北京:中国建筑工业出版社,2011. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing:China Architecture & Building Press, 2011. (in Chinese)]

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2011. (in Chinese)

    [17]

    Rots J G. Computational Modeling of Concrete Fracture[D]. Delft:Delft University of Technology,1988.

    [18]

    张东,刘娟淯,陈兵,等. 关于三点弯曲法确定混凝土断裂能的分析[J]. 建筑材料学报,1999,2(3):206 − 211. [ZHANG Dong,LIU Juanyu,CHEN Bing,et al. Analysis of the determination of fracture energy of concrete using three point bending method[J]. Journal of Building Materials,1999,2(3):206 − 211. (in Chinese with English abstract)]

    ZHANG Dong, LIU Juanyu, CHEN Bing, et al. Analysis of the determination of fracture energy of concrete using three point bending method[J]. Journal of Building Materials, 1999, 2(3): 206 − 211. (in Chinese with English abstract)

    [19]

    Feenstra P H. Computational Aspects of Biaxial Stress in Plain and Reinforced Concrete[D]. Delft University of Technology,1993.

    [20]

    吴恒立. 计算推力桩的综合刚度原理和双参数法[M]. 2版. 北京:人民交通出版社,2000. [WU Hengli. Comprehensive stiffness principle and two-parameter method for calculating thrust pile[M]. 2nd ed. Beijing:China Communications Press,2000. (in Chinese)]

    WU Hengli. Comprehensive stiffness principle and two-parameter method for calculating thrust pile[M]. 2nd ed. Beijing: China Communications Press, 2000. (in Chinese)

    [21]

    中华人民共和国交通运输部. 公路工程混凝土结构耐久性设计规范:JTG/T 3310—2019[S]. 北京:人民交通出版社. [Ministry of Transport of the People’s Republic of China‌. Code for durability design of concrete structures in highway engineering:JTG/T 3310—2019[S]. Beijing:China Communications Press. (in Chinese)]

    Ministry of Transport of the People’s Republic of China‌. Code for durability design of concrete structures in highway engineering: JTG/T 3310—2019[S]. Beijing: China Communications Press. (in Chinese)

  • 加载中

(16)

(6)

计量
  • 文章访问数:  13
  • PDF下载数:  1
  • 施引文献:  0
出版历程
收稿日期:  2024-07-11
修回日期:  2024-09-09
录用日期:  2025-03-04
刊出日期:  2025-06-25

目录