Whole process finite element analysis of the load-bearing behavior of slope-stabilizing piles using three-dimensional triple nonlinearity
-
摘要:
边(滑)坡抗滑桩在满足承载力要求的前提下常允许产生较大的水平位移。某现场抗滑桩的推桩试验表明,当推力较小、桩顶位移尚不足10 mm时,滑动面附近桩身混凝土就出现了开裂,桩体呈现非弹性的挠曲变形。然而,迄今,人们在设计计算和数值模拟分析中仍习惯性地将抗滑桩视为弹性体,以致计算和分析结果难免与实际存在一定甚至是很大的偏差。为克服这样的问题,以该试桩为例,采用Diana有限元程序建立按实际配筋的混凝土桩体模型,分别采用程序中的材料非线性模型,如总应变裂缝模型、Von-Mises模型和硬化土模型等真实模拟桩、钢筋和土,并考虑桩-土和土-岩接触相互作用的边界非线性和几何非线性,开展了抗滑桩承载性状的全过程数值分析。分析所得桩顶或桩身位移与实测结果高度或良好吻合;在靠近桩顶和桩底未出现裂缝的桩段桩身弯矩与实测吻合较好;桩身开始出现裂缝的荷载和部位与试验观察结果高度吻合。首次从数值模拟角度揭示随着推力增大抗滑桩前滑体出现双半“倒圆锥”形楔体剪切破坏区,与试验者描述的桩前滑体出现三角形楔体被挤起而破坏的现象相符,土体的剪切破坏导致部分位置土抗力的降低现象也与实测情况相符。以上结果表明,文中方法可显著提升抗滑桩设计计算与分析水平,具有推广应用价值。
Abstract:Slope-stabilizing piles typically are commonly permitted significant horizontal displacement while satisfying the requirement of bearing capacity. The in-situ pile tests of such piles indicate that with a minor thrust and a pile top displacement of less than 10 mm, cracking occurs near the sliding surface of the pile body, leading to non-elastic flexural deformations. Despite this, slope-stabilizing piles are still conventionally treated as elastic in the current design calculations and numerical simulations, resulting in significant discrepancies between expected and actual behaviors. To address such issues, using tested piles as a case study, a concrete pile model with actual reinforcement was established using the Diana finite element program. This model incorporates material nonlinearities such as the total strain crack model, the Von-Mises model, and the hardening soil model to realistically simulate the behavior of the concrete pile, steel bars, and soils, respectively. The analysis further considered the boundary and geometric nonlinearities inherent in pile-soil and soil-rock interactions. Results show high agreement with measured data for displacements at the pile top or along the pile body; the bending moments of the pile body in the pile segments near the top and bottom of the pile, where no cracks appeared, aligned well with measurements. The corresponding load that led to the advent of cracking, and the positions of cracking also highly consistent with experimental observations. For the first time, numerical simulations revealed that as the thrust increases, a double semi- "inverted cone" wedge-shaped shear failure zone forms in front of the pile, consistent with experiment descriptions of triangular wedge deformations and soil shear failures leading to localized reductions in soil resistance. The phenomenon of the decrease of the soil resistances in some places induced by the shear failure of the soil mass was also coincident with the actual situation. The above results demonstrate that the proposed method can evidently enhance the level of the design calculation and analysis of slope-stabilizing piles and demonstrate potential for wider application.
-
-
表 1 试验荷载
Table 1. Testing loads
荷载分级 0 1 2 3 4 5 6 7 8 9 10 11 线荷载集度/(kN·m−1) 0 29 54 73 105 127 154 170 192 217 249 278 等效面荷载集度/kPa 0 36.25 67.5 91.25 131.25 158.75 192.5 212.5 240 271.25 311.25 347.5 每级面荷载增量/kPa 0 36.25 31.25 24.75 40 27.5 33.75 20 27.5 31.25 40 36.25 表 2 滑体土HS模型参数
Table 2. Parameters of the HS model for slip soil
土的名称 重度
/(kN·m−3)参考割线
模量/MPa参考卸载
模量/MPa参考压缩
模量/MPa有效黏
聚力/kPa有效内摩
擦角/(°)剪胀角
/(°)泊松比 静止土压
力系数破坏比 幂指数 参考压力
/kPa成都黏土 19.9 10 35.32 8.33 36 7.47 0 0.3 0.87 0.91 0.8 100 雅安砾土 22.0 40 121.38 33.33 15 43 13 0.2 0.318 0.78 0.7 100 表 3 泥质页岩M-C模型参数
Table 3. Parameters of the M-C model for clayey shale
参数 重度
/(kN·m−3)弹性模量
/MPa泊松比 黏聚力
/kPa内摩擦角
/(°)剪胀角
/(°)取值 20.2 680 0.1 35000 15 0 表 4 C25混凝土TSC模型参数
Table 4. Parameters of the TSC model for C25 concrete
参数 重度
/(kN·m−3)弹性
模量
/MPa泊松比 抗拉
强度
/MPa抗压
强度
/MPa拉、压断裂能
/(N·m−1)裂缝
带宽
/m取值 23.8 680 0.17 1.78 16.7 139.2 12000 式(3) 表 5 钢筋Von Mises模型参数
Table 5. Parameters of the Von Mises model for steel bars
钢筋
型号重度
/(kN·m−3)弹性模量
/MPa泊松比 抗拉压强度
/MPa弹塑性模量
/MPaHPB300 78.5 2.1×105 0.3 235 2.1×103 HRB335 78.5 2.0×105 0.3 335 2.0×103 表 6 各接触面摩擦角
Table 6. Friction angles of various contact surfaces
接触面名称 黏土-桩 砾土-桩 页岩-桩 滑动面 摩擦角/(°) 16.7 30.964 16.7 15.64 -
[1] 中华人民共和国建设部. 建筑桩基技术规范:JGJ 94—2008[S]. 北京:中国建筑工业出版社,2008. [Ministry of Construction of the People’s Republic of China. Technical code for building pile foundations:JGJ 94—2008[S]. Beijing:China Architecture & Building Press,2008. (in Chinese)]
Ministry of Construction of the People’s Republic of China. Technical code for building pile foundations: JGJ 94—2008[S]. Beijing: China Architecture & Building Press, 2008. (in Chinese)
[2] 铁道部第二勘察设计院. 铁路路基支挡结构设计规范:TB 10025—2019[S]. 北京:中国铁道出版社,2019. [The Second Survey and Design Institute of the Ministry of Railways. Code for design of retaining structure of railway earthworks:TB 10025—2019[S]. Beijing:China Railway Publishing House,2019. (in Chinese)]
The Second Survey and Design Institute of the Ministry of Railways. Code for design of retaining structure of railway earthworks: TB 10025—2019[S]. Beijing: China Railway Publishing House, 2019. (in Chinese)
[3] 徐良德. 抗滑桩桩前滑体出现塑性变形时抗力分布的初步探讨[C]. 中国土木工程学会第四届土力学及基础工程学术会议论文选集,1983:448 – 454. [XU Liangde. A preliminary study on the distribution of resistance when the front sliding body of slope-stabilizing pile appears plastic deforma-tion[C]. Selected papers of the 4th Academic Conference of Soil Mechanics and Foundation Engineering of China Civil Engineering Society,1983:448 − 454. (in Chinese)]
XU Liangde. A preliminary study on the distribution of resistance when the front sliding body of slope-stabilizing pile appears plastic deforma-tion[C]. Selected papers of the 4th Academic Conference of Soil Mechanics and Foundation Engineering of China Civil Engineering Society, 1983: 448 − 454. (in Chinese)
[4] 李克才,池淑兰. 抗滑试桩空间非线性有限元分析及设计参数的研究[C]. 滑坡文集,北京:铁道出版社,1997,12:18 − 29. [LI Kecai,CHI Shulan. Spatial nonlinear finite element analysis of slope-stabilizing pile and study on design parame-ters[C]. Landslide Collection,Beijing:China Rail-way Publishing House,1997,12:18 − 29. (in Chinese with English abstract)]
LI Kecai, CHI Shulan. Spatial nonlinear finite element analysis of slope-stabilizing pile and study on design parame-ters[C]. Landslide Collection, Beijing: China Rail-way Publishing House, 1997, 12: 18 − 29. (in Chinese with English abstract)
[5] 戴自航. 抗滑桩滑坡推力和桩前滑体抗力分布规律的研究[J]. 岩石力学与工程学报,2002,21(4):517 − 521. [DAI Zihang. Study on distribution laws of landslide-thrust and resistance of sliding mass acting on antislide piles[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(4):517 − 521. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-6915.2002.04.013
DAI Zihang. Study on distribution laws of landslide-thrust and resistance of sliding mass acting on antislide piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(4): 517 − 521. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2002.04.013
[6] 李寻昌,高凡凡,冉雨童,等. 基于差分法的双排抗滑桩结构内力计算[J]. 水文地质工程地质,2024,51(5):95 − 104. [LI Xunchang,GAO Fanfan,RAN Yutong,et al. Internal force calculation of double row anti-slide pile structure based on finite difference method[J]. Hydrogeology & Engineering Geology,2024,51(5):95 − 104. (in Chinese with English abstract)]
LI Xunchang, GAO Fanfan, RAN Yutong, et al. Internal force calculation of double row anti-slide pile structure based on finite difference method[J]. Hydrogeology & Engineering Geology, 2024, 51(5): 95 − 104. (in Chinese with English abstract)
[7] 付正道,蒋关鲁,刘琪,等. 含倾斜夹层滑坡内抗滑桩和桥基耦合作用的试验与数值模拟[J]. 岩石力学与工程学报,2018,37(9):2152 − 2161. [FU Zhengdao,JIANG Guanlu,LIU Qi,et al. Experiment and numerical simulation on interaction between piled bridge foundation and stabilizing piles in the slope with intercalated layer[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(9):2152 − 2161. (in Chinese with English abstract)]
FU Zhengdao, JIANG Guanlu, LIU Qi, et al. Experiment and numerical simulation on interaction between piled bridge foundation and stabilizing piles in the slope with intercalated layer[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 2152 − 2161. (in Chinese with English abstract)
[8] 朱彦鹏,施多邦,段新国,等. 某砂岩顺层挖方高边坡治理工程施工期变形特征与工程效果评价[J]. 中国地质灾害与防治学报,2023,34(2):111 − 119. [ZHU Yanpeng,SHI Duobang,DUAN Xinguo,et al. Deformation characteristics and engineering effect evaluation of a sandstone bedding excavation high slope treatment project during construction[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2):111 − 119. (in Chinese with English abstract)]
ZHU Yanpeng, SHI Duobang, DUAN Xinguo, et al. Deformation characteristics and engineering effect evaluation of a sandstone bedding excavation high slope treatment project during construction[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(2): 111 − 119. (in Chinese with English abstract)
[9] DAI Zihang,YANG Jianhui,DAI Rui,et al. Three-dimensional and threefold nonlinear numerical modeling for slope-stabilizing pile[J]. KSCE Journal of Civil Engineering,2022,26(11):4390 − 4406. doi: 10.1007/s12205-022-1474-6
[10] 戴自航,张晓咏,邹盛堂,等. 现场模拟水平分布式滑坡推力的抗滑桩试验研究[J]. 岩土工程学报,2010,32(10):1513 − 1518. [DAI Zihang,ZHANG Xiaoyong,ZOU Shengtang,et al. Field modeling of laterally distributed landslide thrusts over anti-slide piles[J]. Chinese Journal of Geotechnical Engineering,2010,32(10):1513 − 1518. (in Chinese with English abstract)]
DAI Zihang, ZHANG Xiaoyong, ZOU Shengtang, et al. Field modeling of laterally distributed landslide thrusts over anti-slide piles[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10): 1513 − 1518. (in Chinese with English abstract)
[11] RASHID Y R. Ultimate strength analysis of prestressed concrete pressure vessels[J]. Nuclear Engineering and Design,1968,7(4):334 − 344. doi: 10.1016/0029-5493(68)90066-6
[12] 朱万成,唐春安,赵启林,等. 混凝土断裂过程的力学模型与数值模拟[J]. 力学进展,2002,32(4):579 − 598. [ZHU Wancheng,TANG Chun’an,ZHAO Qilin,et al. Mechanical model and numerical simulation of fractur eprocess of concrete[J]. Advances in Mechanics,2002,32(4):579 − 598. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-0992.2002.04.012
ZHU Wancheng, TANG Chun’an, ZHAO Qilin, et al. Mechanical model and numerical simulation of fractur eprocess of concrete[J]. Advances in Mechanics, 2002, 32(4): 579 − 598. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-0992.2002.04.012
[13] SCHANZ T,VERMEER P A,BONNIER P G. The hardening soil model:Formulation and verification[M]//Beyond 2000 in Computational Geotechnics. London:Routledge,2019:281-296.
[14] DUNCAN J M,CHANG C Y. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division,1970,96(5):1629 − 1653. doi: 10.1061/JSFEAQ.0001458
[15] 《工程地质手册》编委会. 工程地质手册[M]. 5版. 北京:中国建筑工业出版社,2018. [Editorial Committee of Engineering Geology Hand-book. Geological engineering handbook[M]. 5th ed. Beijing:China Architecture & Building Press,2018. (in Chinese)]
Editorial Committee of Engineering Geology Hand-book. Geological engineering handbook[M]. 5th ed. Beijing: China Architecture & Building Press, 2018. (in Chinese)
[16] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范:GB 50010—2010[S]. 北京:中国建筑工业出版社,2011. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing:China Architecture & Building Press, 2011. (in Chinese)]
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2011. (in Chinese)
[17] Rots J G. Computational Modeling of Concrete Fracture[D]. Delft:Delft University of Technology,1988.
[18] 张东,刘娟淯,陈兵,等. 关于三点弯曲法确定混凝土断裂能的分析[J]. 建筑材料学报,1999,2(3):206 − 211. [ZHANG Dong,LIU Juanyu,CHEN Bing,et al. Analysis of the determination of fracture energy of concrete using three point bending method[J]. Journal of Building Materials,1999,2(3):206 − 211. (in Chinese with English abstract)]
ZHANG Dong, LIU Juanyu, CHEN Bing, et al. Analysis of the determination of fracture energy of concrete using three point bending method[J]. Journal of Building Materials, 1999, 2(3): 206 − 211. (in Chinese with English abstract)
[19] Feenstra P H. Computational Aspects of Biaxial Stress in Plain and Reinforced Concrete[D]. Delft University of Technology,1993.
[20] 吴恒立. 计算推力桩的综合刚度原理和双参数法[M]. 2版. 北京:人民交通出版社,2000. [WU Hengli. Comprehensive stiffness principle and two-parameter method for calculating thrust pile[M]. 2nd ed. Beijing:China Communications Press,2000. (in Chinese)]
WU Hengli. Comprehensive stiffness principle and two-parameter method for calculating thrust pile[M]. 2nd ed. Beijing: China Communications Press, 2000. (in Chinese)
[21] 中华人民共和国交通运输部. 公路工程混凝土结构耐久性设计规范:JTG/T 3310—2019[S]. 北京:人民交通出版社. [Ministry of Transport of the People’s Republic of China. Code for durability design of concrete structures in highway engineering:JTG/T 3310—2019[S]. Beijing:China Communications Press. (in Chinese)]
Ministry of Transport of the People’s Republic of China. Code for durability design of concrete structures in highway engineering: JTG/T 3310—2019[S]. Beijing: China Communications Press. (in Chinese)
-