中国地质环境监测院
中国地质灾害防治工程行业协会
主办

非滑坡样本选择对滑坡易发性评价的影响研究

龚屿, 刘晓. 非滑坡样本选择对滑坡易发性评价的影响研究——以汶川县、理县和茂县为例[J]. 中国地质灾害与防治学报, 2025, 36(3): 129-139. doi: 10.16031/j.cnki.issn.1003-8035.202401009
引用本文: 龚屿, 刘晓. 非滑坡样本选择对滑坡易发性评价的影响研究——以汶川县、理县和茂县为例[J]. 中国地质灾害与防治学报, 2025, 36(3): 129-139. doi: 10.16031/j.cnki.issn.1003-8035.202401009
GONG Yu, LIU Xiao. Analyzing the influence of non-landslide sample selection on landslide susceptibility: Case studies from Wenchuan, Lixian and Maoxian Counties[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(3): 129-139. doi: 10.16031/j.cnki.issn.1003-8035.202401009
Citation: GONG Yu, LIU Xiao. Analyzing the influence of non-landslide sample selection on landslide susceptibility: Case studies from Wenchuan, Lixian and Maoxian Counties[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(3): 129-139. doi: 10.16031/j.cnki.issn.1003-8035.202401009

非滑坡样本选择对滑坡易发性评价的影响研究

  • 基金项目: 国家自然科学基金面上项目(42072314;41572279);中国博士后科学基金特别资助项目(2014T70758);中国博士后科学基金面上资助项目(2012M521500);中交第二公路勘察设计研究院有限公司科技研发项目(KJFZ-2018-049)
详细信息
    作者简介: 龚 屿(1998—),男,湖北仙桃人,地质工程专业,硕士,主要从事地质工程与地质灾害方面的研究。E-mail:13007133876@163.com
    通讯作者: 刘 晓(1977—),男,湖北武汉人,岩土工程专业,博士,副研究员,主要从事工程地质模拟、滑坡演化机制和控制理论方面的研究。E-mail:liuxiao@china.com
  • 中图分类号: P642.22

Analyzing the influence of non-landslide sample selection on landslide susceptibility: Case studies from Wenchuan, Lixian and Maoxian Counties

More Information
  • 研究探索了机器学习在评估滑坡易发性中的应用,重点关注非滑坡样本的选择问题。以四川省汶川县、理县和茂县为研究区,选取坡度、坡向、高程、距水系距离、距断层距离、岩性和土地利用7个评价因子,从信息量模型(I)、证据权重模型(WOE)、确定性系数模型(CF)、频率比模型(FR)划分的较低和极低易发区以及缓冲区外(B)和全区(G)随机选取非滑坡样本,构建基于不同非滑坡样本选取方法的支持向量机模型(SVM)并展开易发性评价。结果显示:I-SVM、WOE-SVM、CF-SVM、FR-SVM的ROC曲线下AUC值分别为0.98040.97260.93680.8451,优于B-SVM的0.7869和G-SVM的0.7389,说明采用数学统计模型所选取的非滑坡样本准确性更高,信息量模型是选取非滑坡样本的最优方法,为非滑坡样本的选取提供新思路。

  • 加载中
  • 图 1  研究区滑坡分布图

    Figure 1. 

    图 2  技术路线图

    Figure 2. 

    图 3  环境因子分级

    Figure 3. 

    图 4  皮尔逊相关系数

    Figure 4. 

    图 5  信息增益比

    Figure 5. 

    图 6  不同模型的滑坡易发性分区

    Figure 6. 

    图 7  基于SVM模型的滑坡易发性分区

    Figure 7. 

    图 8  不同模型的ROC曲线

    Figure 8. 

    图 9  模型性能评价指标

    Figure 9. 

    表 1  基于不同非滑坡样本选取方法的SVM模型

    Table 1.  SVM model based on different non-landslide sample selection methods

    模型名称 非滑坡样本选取方法:基于数学统计模型(4种) 非滑坡样本选取方法:常规(2种)
    I-SVM WOE-SVM CF-SVM FR-SVM B-SVM G-SVM
    模型编号 1 2 3 4 5 6
    命名规则 前面字母代表着选取非滑坡样本的方法,后面字母代表着所使用的SVM模型
    非滑坡样本
    选取区域
    信息量模型划分的
    较低、极低易发区
    证据权模型划分的
    较低、极低易发区
    确定性系数模型划分的
    较低、极低易发区
    频率比模型划分的
    较低、极低易发区
    将距滑坡点1 km以内地区设为
    缓冲区,从缓冲区外随机选取
    整个
    研究区
    下载: 导出CSV

    表 2  不同模型的最优参数

    Table 2.  Optimal parameters for different models

    参数 I-SVM WOE-SVM CF-SVM FR-SVM B-SVM G-SVM
    Gamma 0.01 0.01 0.02 0.1 0.01 0.02
    C 160 180 8 2 40 1
    下载: 导出CSV

    表 3  易发性分级面积及滑坡面积占比

    Table 3.  Classification area of susceptibility and proportion of landslide area

    易发性分级 极低 较低 中等 较高 极高
    易发性
    分级面积/km2
    I-SVM2696.752244.362006.252189.493120.79
    WOE-SVM3058.402250.931869.581984.893093.82
    CF-SVM3190.051975.341817.332060.213214.70
    FR-SVM2780.172293.442265.992454.952463.09
    B-SVM2647.253111.233095.242299.571104.34
    G-SVM1381.983186.953089.522652.011947.17
    滑坡面积
    占比/%
    I-SVM0.110.594.0613.1582.10
    WOE-SVM1.031.194.9820.7872.01
    CF-SVM0.105.414.7519.5570.19
    FR-SVM0.212.5615.6610.9470.64
    B-SVM1.585.8518.1442.9831.45
    G-SVM3.3111.4625.8213.9745.44
    下载: 导出CSV
  • [1]

    XIA Ding,TANG Huiming,SUN Sixuan,et al. Landslide susceptibility mapping based on the germinal center optimization algorithm and support vector classification[J]. Remote Sensing,2022,14(11):2707. doi: 10.3390/rs14112707

    [2]

    郭飞,王秀娟,陈玺,等. 基于不同模型的赣南地区小型削方滑坡易发性评价对比分析[J]. 中国地质灾害与防治学报,2022,33(6):125 − 133. [GUO Fei,WANG Xiujuan,CHEN Xi,et al. Comparative analyses on susceptibility of cutting slope landslides in southern Jiangxi using different models[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):125 − 133. (in Chinese with English abstract)]

    GUO Fei, WANG Xiujuan, CHEN Xi, et al. Comparative analyses on susceptibility of cutting slope landslides in southern Jiangxi using different models[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 125 − 133. (in Chinese with English abstract)

    [3]

    DENG Hui,WU Xiantan,ZHANG Wenjiang,et al. Slope-unit scale landslide susceptibility mapping based on the random forest model in deep valley areas[J]. Remote Sensing,2022,14(17):4245. doi: 10.3390/rs14174245

    [4]

    QUAN Hechun,JIN Guangri,DESTECH PUBLICAT I. Landslide susceptibility mapping in Changbai Mountain Area using GIS and artificial neural network(ANN); proceedings of the international conference on GIS and resource management (ICGRM),Guangzhou,PEOPLES R CHINA,F Jan 03-05,2014[C]. 2014.

    [5]

    KAVZOGLU T,SAHIN E K,COLKESEN I. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis,support vector machines,and logistic regression[J]. Landslides,2014,11(3):425 − 439. doi: 10.1007/s10346-013-0391-7

    [6]

    DOU Jie,YUNUS A P,BUI D T,et al. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island,Japan[J]. The Science of the Total Environment,2019,662:332 − 346. doi: 10.1016/j.scitotenv.2019.01.221

    [7]

    陈飞,蔡超,李小双,等. 基于信息量与神经网络模型的滑坡易发性评价[J]. 岩石力学与工程学报,2020,39(增刊1):2859 − 2870. [CHEN Fei,CAI Chao,LI Xiaoshuang,et al. Evaluation of landslide susceptibility based on information quantity and neural network model[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(Sup 1):2859 − 2870. (in Chinese)]

    CHEN Fei, CAI Chao, LI Xiaoshuang, et al. Evaluation of landslide susceptibility based on information quantity and neural network model[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Sup 1): 2859 − 2870. (in Chinese)

    [8]

    周晓亭,黄发明,吴伟成,等. 基于耦合信息量法选择负样本的区域滑坡易发性预测[J]. 工程科学与技术,2022,54(3):25 − 35. [ZHOU Xiaoting,HUANG Faming,WU Weicheng,et al. Regional landslide susceptibility prediction based on negative sample selected by coupling information value method[J]. Advanced Engineering Sciences,2022,54(3):25 − 35. (in Chinese with English abstract)]

    ZHOU Xiaoting, HUANG Faming, WU Weicheng, et al. Regional landslide susceptibility prediction based on negative sample selected by coupling information value method[J]. Advanced Engineering Sciences, 2022, 54(3): 25 − 35. (in Chinese with English abstract)

    [9]

    陈芯宇,师芸,温永啸,等. 基于确定性系数与支持向量机的滑坡易发性评价[J]. 科学技术与工程,2023,23(2):518 − 527. [CHEN Xinyu,SHI Yun,WEN Yongxiao,et al. Landslide susceptibility evaluation based on certainty factor and support vector machines[J]. Science Technology and Engineering,2023,23(2):518 − 527. (in Chinese with English abstract)] doi: 10.3969/j.issn.1671-1815.2023.02.012

    CHEN Xinyu, SHI Yun, WEN Yongxiao, et al. Landslide susceptibility evaluation based on certainty factor and support vector machines[J]. Science Technology and Engineering, 2023, 23(2): 518 − 527. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2023.02.012

    [10]

    LIU Jiping,LIN Rongfu,XU Shenghua,et al. Landslide susceptibility evaluation based on optimized support vector machine[J]. Proceedings of the ICA,2021,4:1 − 4.

    [11]

    周天伦,曾超,范晨,等. 基于快速聚类-信息量模型的汶川及周边两县滑坡易发性评价[J]. 中国地质灾害与防治学报,2021,32(5):137 − 150. [ZHOU Tianlun,ZENG Chao,FAN Chen,et al. Landslide susceptibility assessment based on K-means cluster information model in Wenchuan and two neighboring counties,China[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):137 − 150. (in Chinese with English abstract)]

    ZHOU Tianlun, ZENG Chao, FAN Chen, et al. Landslide susceptibility assessment based on K-means cluster information model in Wenchuan and two neighboring counties, China[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 137 − 150. (in Chinese with English abstract)

    [12]

    熊小辉,汪长林,白永健,等. 基于不同耦合模型的县域滑坡易发性评价对比分析——以四川普格县为例[J]. 中国地质灾害与防治学报,2022,33(4):114 − 124. [XIONG Xiaohui,WANG Changlin,BAI Yongjian,et al. Comparison of landslide susceptibility assessment based on multiple hybrid models at county level:A case study for Puge County,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):114 − 124. (in Chinese with English abstract)]

    XIONG Xiaohui, WANG Changlin, BAI Yongjian, et al. Comparison of landslide susceptibility assessment based on multiple hybrid models at county level: A case study for Puge County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 114 − 124. (in Chinese with English abstract)

    [13]

    NEUHÄUSER B,DAMM B,TERHORST B. GIS-based assessment of landslide susceptibility on the base of the Weights-of-Evidence model[J]. Landslides,2012,9(4):511 − 528. doi: 10.1007/s10346-011-0305-5

    [14]

    陈建国,钟连祥. 基于CF-AHP耦合模型的高速公路沿线崩塌地质灾害易发性评价——以蓉遵高速公路土城——旺隆段为例[J]. 中国地质灾害与防治学报,2023,34(6):105 − 115. [CHEN Jianguo,ZHONG Lianxiang. Assessment of rockfall susceptibility along the expressway based on the CF-AHP coupling model:A case study of the Tucheng-Wanglong section of the Rongzun expressway[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6):105 − 115. (in Chinese with English abstract)]

    CHEN Jianguo, ZHONG Lianxiang. Assessment of rockfall susceptibility along the expressway based on the CF-AHP coupling model: A case study of the Tucheng-Wanglong section of the Rongzun expressway[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 105 − 115. (in Chinese with English abstract)

    [15]

    BERHANE G,KEBEDE M,ALFARAH N,et al. Landslide susceptibility zonation mapping using GIS-based frequency ratio model with multi-class spatial data-sets in the Adwa-Adigrat Mountain chains,northern Ethiopia[J]. Journal of African Earth Sciences,2020,164:103795. doi: 10.1016/j.jafrearsci.2020.103795

    [16]

    周萍,邓辉,张文江,等. 基于信息量模型和机器学习方法的滑坡易发性评价研究——以四川理县为例[J]. 地理科学,2022,42(9):1665 − 1675. [ZHOU Ping,DENG Hui,ZHANG Wenjiang,et al. Landslide susceptibility evaluation based on information value model and machine learning method:A case study of Lixian County,Sichuan Province[J]. Scientia Geographica Sinica,2022,42(9):1665 − 1675. (in Chinese with English abstract)]

    ZHOU Ping, DENG Hui, ZHANG Wenjiang, et al. Landslide susceptibility evaluation based on information value model and machine learning method: A case study of Lixian County, Sichuan Province[J]. Scientia Geographica Sinica, 2022, 42(9): 1665 − 1675. (in Chinese with English abstract)

    [17]

    付智勇,李典庆,王顺,等. 基于多时空滑坡编录和TrAdaBoost迁移学习的滑坡易发性评价[J]. 地球科学,2023,48(5):1935 − 1947. [FU Zhiyong,LI Dianqing,WANG Shun,et al. Landslide susceptibility assessment based on multitemporal landslide inventories and TrAdaBoost transfer learning[J]. Earth Science,2023,48(5):1935 − 1947. (in Chinese with English abstract)]

    FU Zhiyong, LI Dianqing, WANG Shun, et al. Landslide susceptibility assessment based on multitemporal landslide inventories and TrAdaBoost transfer learning[J]. Earth Science, 2023, 48(5): 1935 − 1947. (in Chinese with English abstract)

    [18]

    WANG Xiao,LI Shaoda,LIU Hanhu,et al. Landslide susceptibility assessment in Wenchuan County after the 5•12 magnitude earthquake[J]. Bulletin of Engineering Geology and the Environment,2021,80(7):5369 − 5390. doi: 10.1007/s10064-021-02280-9

    [19]

    贾雨霏,魏文豪,陈稳,等. 基于SOM-I-SVM耦合模型的滑坡易发性评价[J]. 水文地质工程地质,2023,50(3):125 − 137. [JIA Yufei,WEI Wenhao,CHEN Wen,et al. Landslide susceptibility assessment based on the SOM-I-SVM model[J]. Hydrogeology & Engineering Geology,2023,50(3):125 − 137. (in Chinese with English abstract)]

    JIA Yufei, WEI Wenhao, CHEN Wen, et al. Landslide susceptibility assessment based on the SOM-I-SVM model[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 125 − 137. (in Chinese with English abstract)

    [20]

    姚皖路,赵俊三,李坤. 基于信息增益比-支持向量机的泥石流易发性评价[J]. 城市勘测,2023(5):181 − 186. [YAO Wanlu,ZHAO Junsan,LI Kun. Assessment of debris flow susceptibility based on information gain ratio-support vector machine[J]. Urban Geotechnical Investigation & Surveying,2023(5):181 − 186. (in Chinese with English abstract)] doi: 10.3969/j.issn.1672-8262.2023.05.040

    YAO Wanlu, ZHAO Junsan, LI Kun. Assessment of debris flow susceptibility based on information gain ratio-support vector machine[J]. Urban Geotechnical Investigation & Surveying, 2023(5): 181 − 186. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-8262.2023.05.040

    [21]

    HUANG Wubiao,DING Mingtao,LI Zhenhong,et al. An efficient user-friendly integration tool for landslide susceptibility mapping based on support vector machines:SVM-LSM toolbox[J]. Remote Sensing,2022,14(14):3408. doi: 10.3390/rs14143408

  • 加载中

(9)

(3)

计量
  • 文章访问数:  11
  • PDF下载数:  1
  • 施引文献:  0
出版历程
收稿日期:  2024-01-04
修回日期:  2024-03-05
录用日期:  2024-05-23
刊出日期:  2025-06-25

目录