中国地质环境监测院
中国地质灾害防治工程行业协会
主办

西藏林芝多雄河流域高位雪崩易发性评价

张平平, 李滨, 高浩源, 万佳威. 西藏林芝多雄河流域高位雪崩易发性评价[J]. 中国地质灾害与防治学报, 2024, 35(6): 44-57. doi: 10.16031/j.cnki.issn.1003-8035.202402021
引用本文: 张平平, 李滨, 高浩源, 万佳威. 西藏林芝多雄河流域高位雪崩易发性评价[J]. 中国地质灾害与防治学报, 2024, 35(6): 44-57. doi: 10.16031/j.cnki.issn.1003-8035.202402021
ZHANG Pingping, LI Bin, GAO Haoyuan, WAN Jiawei. Research on high-altitude avalanche susceptibility area zoning based on informativeness modeling in the Duoxiong River Basin, Nyingchi area of Xizang Autonomous Region[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(6): 44-57. doi: 10.16031/j.cnki.issn.1003-8035.202402021
Citation: ZHANG Pingping, LI Bin, GAO Haoyuan, WAN Jiawei. Research on high-altitude avalanche susceptibility area zoning based on informativeness modeling in the Duoxiong River Basin, Nyingchi area of Xizang Autonomous Region[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(6): 44-57. doi: 10.16031/j.cnki.issn.1003-8035.202402021

西藏林芝多雄河流域高位雪崩易发性评价

  • 基金项目: 国家自然科学基金项目(U2244226) ;中国地质调查局地质调查项目(DD20230538)
详细信息
    作者简介: 张平平(2001—),女,江西南昌人,地质工程专业,硕士研究生,主要从事工程地质与地质灾害研究。E-mail:2393211031@qq.com
    通讯作者: 李 滨(1980—) ,男,山东滨州人,地质工程专业,博士,研究员,主要从事地质灾害防灾减灾研究。E-mail:libin1102@163.com
  • 中图分类号: P642.21

Research on high-altitude avalanche susceptibility area zoning based on informativeness modeling in the Duoxiong River Basin, Nyingchi area of Xizang Autonomous Region

More Information
  • 随着全球气候变暖,冰雪融化速率加剧,雪崩灾害事件频发,严重威胁高寒山区的人民生命财产和交通廊道安全。以雅鲁藏布江下游多雄河流域为研究对象,基于遥感解译和野外调查,识别并验证了70个雪崩点,运用皮尔逊相关系数进行共线性分析,综合选取了高程、坡度、坡向、坡面曲率、地表切割深度、地表覆盖类型、植被覆盖度、地形湿度指数、年平均最低气温、归一化差雪指数等10个评价因子构建雪崩易发性评价体系,通过ArcGIS平台使用信息量模型进行雪崩易发性分区,将研究区分为低易发、中易发、高易发区三类,并采用ROC曲线进行了精度检验。结果表明:雪崩易发性评价模型AUC值为0.835,具有较好的预测精度;低易发、中易发、高易发区面积分别为60.61 km2、74.33 km2、96.91 km2,分别占研究区总面积的26.14%、32.06%、41.80%,其中高易发区主要分布在中高及高海拔地区,以多雄拉山、拉格最为典型。最后依据主-被动防御措施相结合提出空−天−地一体化监测预警技术和相应建筑结构。该研究可为多雄河流域防灾减灾提供技术支撑和科学参考。

  • 加载中
  • 图 1  研究区地理位置

    Figure 1. 

    图 2  南迦巴瓦岩群花岗片麻岩

    Figure 2. 

    图 3  多雄河流域雪崩灾害点分布图

    Figure 3. 

    图 4  雪崩评价因子制图

    Figure 4. 

    图 5  雪崩灾害点频率分布图

    Figure 5. 

    图 6  雪崩易发性分区图

    Figure 6. 

    图 7  验证数据集ROC曲线

    Figure 7. 

    图 8  多雄河流域雪崩分区结果

    Figure 8. 

    表 1  评价因子TOLVIF

    Table 1.  Tolerance (TOL) and variance inflation factor (VIF) values of evaluation factors

    因子 容忍度 方差膨胀因子 因子 容忍度 方差膨胀因子
    高程 0.650 1.538 植被覆盖度 0.532 1.880
    坡度 0.127 7.858 地形湿度指数 0.612 1.633
    坡向 0.703 1.422 年平均最低气温 0.732 1.366
    坡面曲率 0.831 1.204
    地表切割深度 0.152 6.597 归一化差雪指数 0.667 1.498
    下载: 导出CSV

    表 2  评价因子分级

    Table 2.  Grading of evaluation factors

    因子类型 雪崩评价因子 分级
    地形因子 高程/ m <35003500380038004100410044004400470047005000、>5000
    坡度/ (°) <20、20~30、30~40、40~50、>50
    坡向 北、东北、东、东南、南、西南、西、西北
    坡面曲率/ m−1 <−7.8、−7.8~−2.3、−2.3~−0、0~6.8、>6.8
    地表切割深度/ m <5.0、5.0~9.6、9.6~15、15~22、>22
    地貌因子 土地覆盖类型 耕地、林地、灌木、水体、裸地、冰雪
    植被覆盖度 <0.025、0.025~0.05、0.05~0.075、0.075~0.1、>0.1
    水文因子 地形湿度指数 <5.1、5.1~6.8、6.8~8.8、8.8~12、>12
    气象因子 年平均最低气温/ °C <−3.4、−3.4~−1.8、−1.8~−0.2、−0.2~1.4、>1.4
    归一化差雪指数 <0.4、0.4~0.5、0.5~0.6、0.6~0.7、>0.7
    下载: 导出CSV

    表 3  雪崩评价因子信息量

    Table 3.  Summary table of avalanche evaluation factors information

    影响因子 分级 所占栅格数 Si/S 雪崩数/个 Ni/N $ \rm{ln}\dfrac{{\mathit{N}}_{\mathit{i}}/\mathit{N}}{{\mathit{S}}_{\mathit{i}}/\mathit{S}} $×104
    高程/ m <3500 773678 0.3327 0 0.0000 10000
    35003800 361921 0.1557 5 0.0714 7790
    38004100 404881 0.1741 23 0.3286 6349
    41004400 342622 0.1474 23 0.3286 8019
    44004700 251617 0.1082 11 0.1571 3730
    47005000 150366 0.0647 7 0.1000 4359
    >5000 40031 0.0172 1 0.0143 −1866
    坡度/ (°) <20 395019 0.1703 7 0.1000 5322
    20~30 433150 0.1867 23 0.3286 5652
    30~40 620720 0.2676 22 0.3143 1610
    40~50 526804 0.2271 13 0.1857 −2011
    >50 344244 0.1484 5 0.0714 7311
    坡向 274973 0.1185 6 0.0857 3241
    东北 380618 0.1641 12 0.1714 439
    374654 0.1615 13 0.1857 1397
    东南 208242 0.0898 6 0.0857 −461
    387634 0.1671 15 0.2143 2488
    西南 394473 0.1700 11 0.1571 −789
    西 203495 0.0877 2 0.0286 11217
    西北 95848 0.0413 5 0.0714 5475
    坡面曲率/ m−1 <−7.8 47568 0.0205 0 0.0000 10000
    −7.8~−2.3 220487 0.0948 5 0.0714 2834
    −2.3~0 911810 0.3922 27 0.3857 −166
    0~6.8 1086647 0.4673 36 0.5143 957
    >6.8 58634 0.0252 2 0.0286 1249
    地表切割深度/m <5.0 464283 0.1989 10 0.1429 3310
    5.0~9.6 813384 0.3485 38 0.5429 4433
    9.6~15 665568 0.2851 16 0.2286 2211
    15~22 314928 0.1349 4 0.0571 8591
    >22 76041 0.0326 2 0.0286 1312
    土地覆盖类型 耕地 2005 0.0009 0 0.0000 10000
    林地 604215 0.2599 1 0.0143 29010
    灌木 399471 0.1718 7 0.1000 5413
    水体 12408 0.0053 0 0.0000 10000
    裸地 1238 0.0005 0 0.0000 10000
    冰雪 1305652 0.5616 62 0.8857 4557
    植被覆盖度 <0.025 1738908 0.7479 44 0.6286 1739
    0.025~0.05 208206 0.0896 25 0.3571 13833
    0.05~0.075 141003 0.0606 1 0.0143 14458
    0.075~0.1 121527 0.0523 0 0.0000 10000
    >0.1 115290 0.0496 0 0.0000 10000
    地形湿度指数 <5.1 624456 0.2692 11 0.1571 5382
    5.1~6.8 864592 0.3727 24 0.3429 −834
    6.8~8.8 601375 0.2592 25 0.3571 3205
    8.8~12 182304 0.0786 10 0.1429 5977
    >12 47210 0.0203 0 0.0000 10000
    年平均最低气温/°C <−3.4 232991 0.1002 9 0.1286 2492
    −3.4~−1.8 163430 0.0703 2 0.0286 9003
    −1.8~−0.2 206279 0.0887 9 0.1286 3710
    −0.2~1.4 512660 0.2205 16 0.2286 359
    >1.4 1209587 0.5203 34 0.4857 −687
    归一化差雪指数 <0.4 609750 0.2623 2 0.0286 22172
    0.4~0.5 212535 0.0914 4 0.0571 4701
    0.5~0.6 386757 0.1664 11 0.1571 −572
    0.6~0.7 857925 0.3691 41 0.5857 4617
    >0.7 257355 0.1107 12 0.1714 4371
    下载: 导出CSV

    表 4  雪崩分区结果

    Table 4.  Avalanche zoning results

    易发性 面积/km2 面积占比/% 雪崩点数量/个 雪崩点占比/%
    低易发区 60.61 26.14 0 0
    中易发区 74.33 32.06 10 14.29
    高易发区 96.91 41.80 60 85.71
    下载: 导出CSV
  • [1]

    NASERY S,KALKAN K. Snow avalanche risk mapping using GIS-based multi-criteria decision analysis:The case of Van,Turkey[J]. Arabian Journal of Geosciences,2021,14(9):782. doi: 10.1007/s12517-021-07112-4

    [2]

    舒晓燕,巫锡勇,文洪,等. 新疆天山伊阿铁路区域雪崩易发性与潜在释放区识别对比研究[J]. 工程地质学报,2023,31(4):1200 − 1212. [SHU Xiaoyan,WU Xiyong,WEN Hong,et al. Comparison of snow avalanche susceptibility assessment and potential snow avalanche release areas identification along Yining-Aksu railway,Xinjiang Tianshan Mountains[J]. Journal of Engineering Geology,2023,31(4):1200 − 1212. (in Chinese with English abstract)]

    SHU Xiaoyan, WU Xiyong, WEN Hong, et al. Comparison of snow avalanche susceptibility assessment and potential snow avalanche release areas identification along Yining-Aksu railway, Xinjiang Tianshan Mountains[J]. Journal of Engineering Geology, 2023, 31(4): 1200 − 1212. (in Chinese with English abstract)

    [3]

    张根,孙春卫,杨成业,等. 帕隆藏布流域沟槽型雪崩发育特征及分布规律研究[J]. 高原科学研究,2021,5(1):35 − 43. [ZHANG Gen,SUN Chunwei,YANG Chengye,et al. Study on the developmental characteristics and distribution pattern of grooved avalanche in Palongzangbu River Basin[J]. Plateau Science Research,2021,5(1):35 − 43. (in Chinese with English abstract)]

    ZHANG Gen, SUN Chunwei, YANG Chengye, et al. Study on the developmental characteristics and distribution pattern of grooved avalanche in Palongzangbu River Basin[J]. Plateau Science Research, 2021, 5(1): 35 − 43. (in Chinese with English abstract)

    [4]

    KUMAR S,SRIVASTAVA P K,SNEHMANI,et al. Geospatial probabilistic modelling for release area mapping of snow avalanches[J]. Cold Regions Science and Technology,2019,165:102813. doi: 10.1016/j.coldregions.2019.102813

    [5]

    KUMAR S,SRIVASTAVA P K,GORE A,et al. Fuzzy–frequency ratio model for avalanche susceptibility mapping[J]. International Journal of Digital Earth,2016,9(12):1168 − 1184. doi: 10.1080/17538947.2016.1197328

    [6]

    KUMAR S,SRIVASTAVA P K,SNEHMANI. Geospatial modelling and mapping of snow avalanche susceptibility[J]. Journal of the Indian Society of Remote Sensing,2018,46(1):109 − 119. doi: 10.1007/s12524-017-0672-z

    [7]

    AKBAR M,BHAT M S,CHANDA A,et al. Integrating traditional knowledge with GIS for snow avalanche susceptibility mapping in Kargil-Ladakh Region of trans-himalayan India[J]. Spatial Information Research,2022,30(6):773 − 789. doi: 10.1007/s41324-022-00471-4

    [8]

    VAROL N. Avalanche susceptibility mapping with the use of frequency ratio,fuzzy and classical analytical hierarchy process for Uzungol Area,Turkey[J]. Cold Regions Science and Technology,2022,194:103439. doi: 10.1016/j.coldregions.2021.103439

    [9]

    YARIYAN P,OMIDVAR E,MINAEI F,et al. An optimization on machine learning algorithms for mapping snow avalanche susceptibility[J]. Natural Hazards,2022,111(1):79 − 114. doi: 10.1007/s11069-021-05045-5

    [10]

    YANG Jinming,HE Qing,LIU Yang. Winter–spring prediction of snow avalanche susceptibility using optimisation multi-source heterogeneous factors in the western Tianshan Mountains,China[J]. Remote Sensing,2022,14(6):1340. doi: 10.3390/rs14061340

    [11]

    CHOUBIN B, BORJI M, MOSAVI A, et al. Snow avalanche hazard prediction using machine learning methods[J]. Journal of Hydrology,2019,577:123929.

    [12]

    BIAN Rui,HUANG Kaiyang,LIAO Xin,et al. Snow avalanche susceptibility assessment based on ensemble machine learning model in the central Shaluli Mountain[J]. Frontiers in Earth Science,2022,10:880711. doi: 10.3389/feart.2022.880711

    [13]

    LIU Yang,CHEN Xi,YANG Jinming,et al. Snow avalanche susceptibility mapping from tree-based machine learning approaches in ungauged or poorly-gauged regions[J]. Catena,2023,224:106997. doi: 10.1016/j.catena.2023.106997

    [14]

    文洪,王栋,王生仁,等. 藏东南帕隆藏布流域雪崩关键影响因素与易发性区划研究[J]. 工程地质学报,2021,29(2):404 − 415. [WEN Hong,WANG Dong,WANG Shengren,et al. Key predisposing factors and susceptibility mapping of snow avalanche in Parlung-Tsangpo catchment,southeast Tibetan Plateau[J]. Journal of Engineering Geology,2021,29(2):404 − 415. (in Chinese with English abstract)]

    WEN Hong, WANG Dong, WANG Shengren, et al. Key predisposing factors and susceptibility mapping of snow avalanche in Parlung-Tsangpo catchment, southeast Tibetan Plateau[J]. Journal of Engineering Geology, 2021, 29(2): 404 − 415. (in Chinese with English abstract)

    [15]

    文洪,巫锡勇,赵思远,等. 基于机器学习法的青藏高原沙鲁里山系中段雪崩易发性评价研究[J]. 冰川冻土,2022,44(6):1694 − 1706. [WEN Hong,WU Xiyong,ZHAO Siyuan,et al. Snow avalanche susceptibility evaluation in the central Shaluli Mountains of Tibetan Plateau based on machine learning method[J]. Journal of Glaciology and Geocryology,2022,44(6):1694 − 1706. (in Chinese with English abstract)]

    WEN Hong, WU Xiyong, ZHAO Siyuan, et al. Snow avalanche susceptibility evaluation in the central Shaluli Mountains of Tibetan Plateau based on machine learning method[J]. Journal of Glaciology and Geocryology, 2022, 44(6): 1694 − 1706. (in Chinese with English abstract)

    [16]

    LIU Yinhe,ZHONG Yanfei,MA Ailong,et al. Cross-resolution national-scale land-cover mapping based on noisy label learning:A case study of China[J]. International Journal of Applied Earth Observation and Geoinformation,2023,118:103265. doi: 10.1016/j.jag.2023.103265

    [17]

    杨得虎,朱杰勇,刘帅,等. 基于信息量、加权信息量与逻辑回归耦合模型的云南罗平县崩滑灾害易发性评价对比分析[J]. 中国地质灾害与防治学报,2023,34(5):43 − 53. [YANG Dehu,ZHU Jieyong,LIU Shuai,et al. Comparative analyses of susceptibility assessment for landslide disasters based on information value,weighted information value and logistic regression coupled model in Luoping County,Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5):43 − 53. (in Chinese with English abstract)]

    YANG Dehu, ZHU Jieyong, LIU Shuai, et al. Comparative analyses of susceptibility assessment for landslide disasters based on information value, weighted information value and logistic regression coupled model in Luoping County, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(5): 43 − 53. (in Chinese with English abstract)

    [18]

    孙小勇, 魏龙, 唐华, 等. 基于GIS的崩滑地质灾害孕灾地质条件分析——以西藏嘉黎县为例[J]. 中国地质调查,2024,11(4):92 − 100. [SUN Xiaoyong, WEI Long, TANG Hua, et al. Analysis of the disaster-pregnancy geological conditions of collapse and landslide based on GIS: A case study of Jiali County in Tibet[J]. Geological Survey of China,2024,11(4):92 − 100. (in Chinese with English abstract)]

    SUN Xiaoyong, WEI Long, TANG Hua, et al. Analysis of the disaster-pregnancy geological conditions of collapse and landslide based on GIS: A case study of Jiali County in Tibet[J]. Geological Survey of China, 2024, 11(4): 92 − 100. (in Chinese with English abstract)

    [19]

    李信,薛桂澄,柳长柱,等. 基于信息量模型和信息量-逻辑回归模型的海南岛中部山区地质灾害易发性研究[J]. 地质力学学报,2022,28(2):294 − 305. [LI Xin,XUE Guicheng,LIU Changzhu,et al. Evaluation of geohazard susceptibility based on information value model and information value-logistic regression model:A case study of the central mountainous area of Hainan Island[J]. Journal of Geomechanics,2022,28(2):294 − 305. (in Chinese with English abstract)]

    LI Xin, XUE Guicheng, LIU Changzhu, et al. Evaluation of geohazard susceptibility based on information value model and information value-logistic regression model: A case study of the central mountainous area of Hainan Island[J]. Journal of Geomechanics, 2022, 28(2): 294 − 305. (in Chinese with English abstract)

    [20]

    樊芷吟,苟晓峰,秦明月,等. 基于信息量模型与Logistic回归模型耦合的地质灾害易发性评价[J]. 工程地质学报,2018,26(2):340 − 347. [FAN Zhiyin,GOU Xiaofeng,QIN Mingyue,et al. Information and logistic regression models based coupling analysis for susceptibility of geological hazards[J]. Journal of Engineering Geology,2018,26(2):340 − 347. (in Chinese with English abstract)]

    FAN Zhiyin, GOU Xiaofeng, QIN Mingyue, et al. Information and logistic regression models based coupling analysis for susceptibility of geological hazards[J]. Journal of Engineering Geology, 2018, 26(2): 340 − 347. (in Chinese with English abstract)

    [21]

    杜国梁,杨志华,袁颖,等. 基于逻辑回归–信息量的川藏交通廊道滑坡易发性评价[J]. 水文地质工程地质,2021,48(5):102 − 111. [DU Guoliang,YANG Zhihua,YUAN Ying,et al. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression-information value method[J]. Hydrogeology & Engineering Geology,2021,48(5):102 − 111. (in Chinese with English abstract)]

    DU Guoliang, YANG Zhihua, YUAN Ying, et al. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression-information value method[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 102 − 111. (in Chinese with English abstract)

    [22]

    孙滨,祝传兵,康晓波,等. 基于信息量模型的云南东川泥石流易发性评价[J]. 中国地质灾害与防治学报,2022,33(5):119 − 127. [SUN Bin,ZHU Chuanbing,KANG Xiaobo,et al. Susceptibility assessment of debris flows based on information model in Dongchuan,Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(5):119 − 127. (in Chinese with English abstract)]

    SUN Bin, ZHU Chuanbing, KANG Xiaobo, et al. Susceptibility assessment of debris flows based on information model in Dongchuan, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 119 − 127. (in Chinese with English abstract)

    [23]

    陈晓利,周本刚,冉洪流,等. 汶川地震中擂鼓镇地区的滑坡崩塌规律及预测[J]. 吉林大学学报(地球科学版),2010,40(6):1371 − 1379. [CHEN Xiaoli,ZHOU Bengang,RAN Hongliu,et al. Analysis and prediction of the spatial distribution of landslides triggered by Wenchuan earthquakes in leiguzhen region[J]. Journal of Jilin University (Earth Science Edition),2010,40(6):1371 − 1379. (in Chinese with English abstract)]

    CHEN Xiaoli, ZHOU Bengang, RAN Hongliu, et al. Analysis and prediction of the spatial distribution of landslides triggered by Wenchuan earthquakes in leiguzhen region[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(6): 1371 − 1379. (in Chinese with English abstract)

    [24]

    张清全. 帕隆藏布干流沟槽型雪崩空间分异特征及易发性评价研究[D]. 成都:西南交通大学,2021. [ZHANG Qingquan. Spatial differentiation characteristics and susceptibility assessment of channeled snow avalanche in Parlung-Tsangpo main stream[D]. Chengdu:Southwest Jiaotong University,2021. (in Chinese with English abstract)]

    ZHANG Qingquan. Spatial differentiation characteristics and susceptibility assessment of channeled snow avalanche in Parlung-Tsangpo main stream[D]. Chengdu: Southwest Jiaotong University, 2021. (in Chinese with English abstract)

    [25]

    PARSHAD R,SRIVASTVA P K,SNEHMANI,et al. Snow avalanche susceptibility mapping using remote sensing and GIS in Nubra-Shyok Basin,Himalaya,India[J]. Indian Journal of Science and Technology,2017,10(31):1 − 12.

    [26]

    SCHWEIZER J,BRUCE JAMIESON J,SCHNEEBELI M. Snow avalanche formation[J]. Reviews of Geophysics,2003,41(4):1016.

    [27]

    TAMURA R,KOBAYASHI K,TAKANO Y,et al. Mixed integer quadratic optimization formulations for eliminating multicollinearity based on variance inflation factor[J]. Journal of Global Optimization,2019,73(2):431 − 446. doi: 10.1007/s10898-018-0713-3

    [28]

    SCHWEIZER J,JAMIESON J B. Snow cover properties for skier triggering of avalanches[J]. Cold Regions Science and Technology,2001,33(2/3):207 − 221.

    [29]

    王世金,任贾文. 国内外雪崩灾害研究综述[J]. 地理科学进展,2012,31(11):1529 − 1536. [WANG Shijin,REN Jiawen. A review of the progresses of avalanche hazards research[J]. Progress in Geography,2012,31(11):1529 − 1536. (in Chinese with English abstract)]

    WANG Shijin, REN Jiawen. A review of the progresses of avalanche hazards research[J]. Progress in Geography, 2012, 31(11): 1529 − 1536. (in Chinese with English abstract)

    [30]

    边瑞. 基于集成机器学习模型的沙鲁里山系中段雪崩易发性评价研究[D]. 成都:西南交通大学,2021. [BIAN Rui. Snow avalanche susceptibility assessment based on ensemble machine learning model in the central Shaluli Mountain[D]. Chengdu:Southwest Jiaotong University,2021. (in Chinese with English abstract)]

    BIAN Rui. Snow avalanche susceptibility assessment based on ensemble machine learning model in the central Shaluli Mountain[D]. Chengdu: Southwest Jiaotong University, 2021. (in Chinese with English abstract)

    [31]

    陈联君. 基于多源数据的雪崩危险性评价——以北疆地区为例[D]. 武汉:中国地质大学,2021. [CHEN Lianjun. Avalanche hazard assessment based on Multi-Source data[D]. Wuhan:China University of Geosciences,2021. (in Chinese with English abstract)]

    CHEN Lianjun. Avalanche hazard assessment based on Multi-Source data[D]. Wuhan: China University of Geosciences, 2021. (in Chinese with English abstract)

    [32]

    XI Ning,MEI Gang. Avalanche susceptibility mapping by investigating spatiotemporal characteristics of snow cover based on remote sensing imagery along the pemo highway:A critical transportation road in Tibet,China[J]. Water,2023,15(15):2743. doi: 10.3390/w15152743

    [33]

    江琪,季民. 淮北市植被覆盖度提取及时空变化分析研究[J]. 测绘与空间地理信息,2023,46(10):85 − 88. [JIANG Qi,JI Min. Extraction of vegetation cover and analysis of spatial and temporal changes in Huaibei City[J]. Geomatics & Spatial Information Technology,2023,46(10):85 − 88. (in Chinese with English abstract)]

    JIANG Qi, JI Min. Extraction of vegetation cover and analysis of spatial and temporal changes in Huaibei City[J]. Geomatics & Spatial Information Technology, 2023, 46(10): 85 − 88. (in Chinese with English abstract)

    [34]

    HEYWOOD L. Rain on snow avalanche events-some observations[C]//Proceedings of the 1988 international snow science workshop. 1988:135 − 136.

    [35]

    RUDOLF-MIKLAU F,SAUERMOSER S,MEARS A I. The technical avalanche protection handbook[M].2014.

  • 加载中

(8)

(4)

计量
  • 文章访问数:  251
  • PDF下载数:  28
  • 施引文献:  0
出版历程
收稿日期:  2024-02-28
修回日期:  2024-04-28
录用日期:  2024-06-12
刊出日期:  2024-12-25

目录