Evaluation of freeze-thaw wind erosion and analysis of influencing factors on the Xizang Plateau based on the improved RWEQ
-
摘要:
冻融风蚀是指气温变化导致地表结构发生变化的过程,对地表地貌的形成和土壤的性质产生重要影响。然而,青藏高原地区的特殊性和复杂性使得冻融风蚀研究尚未得到广泛关注。针对青藏高原冻融风蚀定量化分析研究相对较少,文章采用引入冻结N个因子的修正风蚀方程模型,分析2022年青藏高原冻融风蚀量的分布特征,并对青藏高原进行冻融风蚀强度分级。结果表明:(1)青藏高原冻融风蚀模数为8.90×108~4.95×105 t/(km2·a),冻融风蚀总量为2.87×1013 t,冻融风蚀总面积2.41×106 km2;(2)青藏高原轻度以下冻融风蚀占全部冻融风蚀面积的84.26%,说明青藏高原冻融风蚀以轻微和轻度为主;(3)5个因子的显著性检验结果均为显著,对青藏高原冻融风蚀模数影响程度排序为气象因子>土壤结皮因子>土壤可蚀性因子>地表粗糙度因子>植被覆盖度因子。研究不仅为青藏高原地区的环境保护和可持续发展提供了基础资料和实践参考,而且通过模型的应用,还为其他具有类似气候和地理特征的地区在冻融风蚀研究方面提供了多元方法和经验。
Abstract:Freeze-thaw wind erosion refers to the process in which temperature fluctuations cause changes in the surface structure, significantly impacting on the formation of surface landform and soil properties. However, due to the particularity and complexity of the Xizang Plateau, the study of freeze-thaw wind erosion has not received widespread attention. Due to the relative scarcity of quantitative studies on the freeze-thaw wind erosion on the Xizang Plateau, this study utilizes a Revised Wind Erosion Equation (RWEQ) that incorporates a freezing N-factor to analyze the distribution characteristics of freeze-thaw wind erosion on the Xizang Plateau in 2022. The study also categorizes the intensity of freeze-thaw wind erosion across the Xizang Plateau. The results indicate: (1) The freeze-thaw wind erosion modulus on the Qinghai- Xizang Plateau ranges from 8.90×108 to 4.95×105 (t·km−2·a−1), with a total erosion amount of 2.87×1013 t and a total affected area of 2.41×10 km2; (2) Moderate or greater freeze-thaw wind erosion accounts for 84.26% of the total affected area, indicating that light and mild erosion are predominant. (3) The significance tests of the five factors were all significant, and the influence of the freezing-thawing wind erosion modulus on the Qinghai-Xizang Plateau was ranked as meteorological factors > soil crust factors > soil erodibility factors > surface roughness factors>vegetation coverage factors. This study not only provides foundational data and practical references for environmental protection and sustainable development in the Qinghai-Xizang Plateau, but also offers a diverse range of methods and experiences for studying freeze-thaw wind erosion in other regions with similar climatic and geographical characteristics through the application of the model.
-
Key words:
- modified wind erosion model /
- Xizang Plateau /
- freeze-thaw wind erosion /
- freezing factor
-
-
表 1 数据引用来源
Table 1. Data citation sources
数据 数据来源 数据精度 单位 青藏高原矢量边界 中国科学院资源环境科学与数据中心 青藏高原气象站点 中国科学院资源环境科学与数据中心 降雨数据 中国科学院资源环境科学与数据中心 日 mm 风速数据 中国科学院资源环境科学与数据中心 日 m·s-1 蒸散发量数据 时空三极环境大数据平台 月 mm 雪盖数据 中国科学院资源环境科学与数据中心 日 mm 地表温度数据 欧洲中期天气预报中心 日 °C 土壤数据 国家冰川冻土沙漠科学中心 土地利用数据 Zenodo平台 1 km 数字高程模型数据 中国科学院资源环境科学与数据中心 1 km 归一化植被指数 地球资源数据云平台 a 表 2 研究区冻融风蚀强度分级
Table 2. Classification of freeze-thaw wind erosion intensity on the study area
等级 轻微 轻度 中度 强烈 极强烈 剧烈 分级标准
/(t·km−2·a−1)<2 2~25 25~50 50~80 80~150 >150 分布面积/km2 1388638 645200 149399 111901 74017 44472 面积占比/% 57.53 26.73 6.19 4.64 3.07 1.84 表 3 137Cs核素示踪实验值与模型模拟值对比
Table 3. Comparison of experimental values from the 137Cs nuclide tracer and the model simulation values
样点编码 S1 S3 S4 S5 S6 S7 实验值/(t·km−2·a−1) 8414 6943 2262 3068 2020 4759 改进模型计算结果
/(t·km−2·a−1)9447 4725 2387 3083 2103 4819 传统模型计算结果
/(t·km−2·a−1)10167 5896 1823 2110 1531 3290 表 4 个变量间的相关性
Table 4. Correlations between variables
$ SL $ $ WF $ $ EF $ $ SCF $ $ {K}' $ $ C $ 冻融风蚀模数 1 −0.027 −0.013 0.020 0.007 0.007 气象因子 −0.027 1 0.007 0.052 0.053 −0.072 土壤可蚀性因子 −0.013 0.007 1 0.188 0.024 −0.033 土壤结皮因子 0.020 0.052 0.188 1 0.045 0 地表粗糙度因子 0.007 0.053 0.024 0.045 1 −0.062 植被覆盖度因子 0.007 −0.072 −0.033 0.000 −0.062 1 表 5 变量的显著性及共线性
Table 5. Significance and collinearity of variables
皮尔逊
相关性显著性 95%置信区间 共线性统计 下限 上限 容差 VIF $ SL-WF $ 0.027 0.001 −0.029 −0.025 0.981 1.019 $ SL-EF $ 0.013 0.001 −0.011 −0.015 0.309 3.233 $ SL-SCF $ 0.020 0.001 0.018 0.022 0.309 3.231 $ SL-K' $ 0.007 0.001 0.005 0.009 0.987 1.014 $ SL-C $ 0.007 0.001 0.005 0.009 0.989 1.011 表 6 回归系数
Table 6. Regression coefficients
模型 未标准化系数 标准化系数 $ t $ 显著性 β 标准误差 β 常量 3.246 0.029 113.648 0.000 $ WF $ −0.012 0.000 −0.028 −28.883 0.001 $ EF $ −0.762 0.043 −0.017 −17.528 0.001 $ SCF $ 0.499 0.020 0.024 24.415 0.001 $ {K}' $ 0.152 0.018 0.008 8.527 0.001 $ C $ 0.094 0.018 0.005 5.120 0.001 -
[1] 杨珍珍,倪万魁,李兰,等. 基于GIS的多因子土壤冻融侵蚀强度分级评价——以长江上游为例[J]. 水利与建筑工程学报,2022,20(6):89 − 95. [YANG Zhenzhen,NI Wankui,LI Lan,et al. Grading evaluation of multi factor soil freeze-thaw erosion intensity based on GIS:A case study of the upper reache of the Yangtze River[J]. Journal of Water Resources and Architectural Engineering,2022,20(6):89 − 95. (in Chinese with English abstract)] doi: 10.3969/j.issn.1672-1144.2022.06.014
YANG Zhenzhen, NI Wankui, LI Lan, et al. Grading evaluation of multi factor soil freeze-thaw erosion intensity based on GIS: A case study of the upper reache of the Yangtze River[J]. Journal of Water Resources and Architectural Engineering, 2022, 20(6): 89 − 95. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-1144.2022.06.014
[2] 魏霞,丁永建,李勋贵. 冻融侵蚀研究的回顾与展望[J]. 水土保持研究,2012,19(2):271 − 275. [WEI Xia,DING Yongjian,LI Xungui. Review and prospect of freeze-thaw-induced erosion research[J]. Research of Soil and Water Conservation,2012,19(2):271 − 275. (in Chinese with English abstract)]
WEI Xia, DING Yongjian, LI Xungui. Review and prospect of freeze-thaw-induced erosion research[J]. Research of Soil and Water Conservation, 2012, 19(2): 271 − 275. (in Chinese with English abstract)
[3] 景国臣. 冻融侵蚀的类型及其特征研究[J]. 中国水土保持,2003(10):17 − 18. [JING Guochen. Study on types of freeze-thaw erosion and its characteristics[J]. Soil and Water Conservation in China,2003(10):17 − 18. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-0941.2003.10.010
JING Guochen. Study on types of freeze-thaw erosion and its characteristics[J]. Soil and Water Conservation in China, 2003(10): 17 − 18. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0941.2003.10.010
[4] 谢胜波,屈建军,韩庆杰. 青藏高原冻融风蚀形成机理的实验研究[J]. 水土保持通报,2012,32(2):64 − 68. [XIE Shengbo,QU Jianjun,HAN Qingjie. Mechanisms of freezing-thawing induced wind erosion in Qinghai-Xizang Plateau[J]. Bulletin of Soil and Water Conservation,2012,32(2):64 − 68. (in Chinese with English abstract)]
XIE Shengbo, QU Jianjun, HAN Qingjie. Mechanisms of freezing-thawing induced wind erosion in Qinghai-Xizang Plateau[J]. Bulletin of Soil and Water Conservation, 2012, 32(2): 64 − 68. (in Chinese with English abstract)
[5] BAGNOLD R A. The physics of blown sand and desert dunes[M]. Dordrecht Springer Netherlands,1971.
[6] CHEPIL W S,Milne R A. Comparative study of soil drifting in the field and in a wind tunnel[J]. Scientific Agriculture,1939,19(5):249 − 257.
[7] CHEPIL W S. Measurement of wind erosiveness of soils by dry sieving procedure[J]. Scientific Agriculture,1942,23(3):154 − 160.
[8] CHEPIL W S. Factors that influence clod structure and erodibility of soil by wind[J]. Soil Science,1953,75(6):473 − 484.
[9] CHEPIL W S. Influence of moisture on erodibility of soil by wind[J]. Soil Science Society of America Journal,1956,20(2):288 − 292.
[10] 江凌,肖燚,欧阳志云,等. 基于RWEQ模型的青海省土壤风蚀模数估算[J]. 水土保持研究,2015,22(1):21 − 25. [JIANG Ling,XIAO Yi,OUYANG Zhiyun,et al. Estimate of the wind erosion modules in Qinghai Province based on RWEQ model[J]. Research of Soil and Water Conservation,2015,22(1):21 − 25. (in Chinese with English abstract)]
JIANG Ling, XIAO Yi, OUYANG Zhiyun, et al. Estimate of the wind erosion modules in Qinghai Province based on RWEQ model[J]. Research of Soil and Water Conservation, 2015, 22(1): 21 − 25. (in Chinese with English abstract)
[11] 殷海军. RWEQ模型的改进及其在风沙区的应用研究[D]. 北京:中国农业大学,2007. [YIN Haijun. Research on improvement and application of revised wind erosion model in the windy and sandy regions [D]. Beijing:China Agricultural University,2007. (in Chinese with English abstract)]
YIN Haijun. Research on improvement and application of revised wind erosion model in the windy and sandy regions [D]. Beijing: China Agricultural University, 2007. (in Chinese with English abstract)
[12] GREGORY J M,BORRELLI J,FEDLER C B. TEAM:Texas erosion analysis model[J]. American Society of Agricultural Engineers (Microfiche collection)(USA),1988.
[13] SHAO Y P,RAUPACH M R,LEYS J F. A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region[J]. Soil Research,1996,34(3):309.
[14] 董治宝. 建立小流域风蚀量统计模型初探[J]. 水土保持通报,1998,18(5):55 − 62. [DONG Zhibao. Establishing statistic model of wind erosion on small watershed basis[J]. Bulletin of Soil and Water Conservation,1998,18(5):55 − 62. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-288X.1998.05.013
DONG Zhibao. Establishing statistic model of wind erosion on small watershed basis[J]. Bulletin of Soil and Water Conservation, 1998, 18(5): 55 − 62. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-288X.1998.05.013
[15] 严平,董光荣,张信宝,等. 137Cs 法测定青藏高原土壤风 蚀 的 初 步 结 果[J]. 科 学 通 报,2000,45(2):199 − 204. [YAN Ping,DONG Guangrong,ZHANG Xinbao,et al. Preliminary results of soil wind erosion on the Qinghai-Xizang Plateau measured by 137Cs method[J]. Chinese Science Bulletin,2000,45(2):199 − 204.(in Chinese with English abstract)]
YAN Ping, DONG Guangrong, ZHANG Xinbao, et al. Preliminary results of soil wind erosion on the Qinghai-Xizang Plateau measured by 137Cs method[J]. Chinese Science Bulletin, 2000, 45(2): 199 − 204.(in Chinese with English abstract)
[16] 张国平. 基于遥感和 GIS 的中国土壤风力侵蚀研究[D]. 中国科学院研究生院(遥感应用研究所),2002. [ZHANG Guoping. Remote sensing and GIS based study on the soil wind erosion in China[D]. Graduate University of Chinese Academy of Sciences (Institute of Remote Sensing Digital Earth),2002. (in Chinese with English abstract)]
ZHANG Guoping. Remote sensing and GIS based study on the soil wind erosion in China[D]. Graduate University of Chinese Academy of Sciences (Institute of Remote Sensing Digital Earth), 2002. (in Chinese with English abstract)
[17] 程江浩. 1990—2020年青藏高原生态系统调节服务时空变化及其驱动力研究[D]. 大理大学,2023. [CHENG Jianghao. Spatial and temporal changes in typical ecosystem services and the driving forces,Xizang Plateau,1990−2020[D]. Dali University,2023. (in Chinese with English abstract)]
CHENG Jianghao. Spatial and temporal changes in typical ecosystem services and the driving forces, Xizang Plateau, 1990−2020[D]. Dali University, 2023. (in Chinese with English abstract)
[18] 赖锋,乔占明,熊增连. 青海省风蚀量及防风固沙量时空特征分析[J]. 测绘学,2023,48(1):148 − 156. [LAI Feng,QIAO Zhanming,XIONG Zenglian. Spatiotemporal characteristics of wind erosion and wind prevention and sand fixation in Qinghai Province[J]. Science of Surveying and Mapping,2023,48(1):148 − 156. (in Chinese with English abstract)]
LAI Feng, QIAO Zhanming, XIONG Zenglian. Spatiotemporal characteristics of wind erosion and wind prevention and sand fixation in Qinghai Province[J]. Science of Surveying and Mapping, 2023, 48(1): 148 − 156. (in Chinese with English abstract)
[19] 巩俐,王发科,李积芳,等. 五道梁地区土壤风蚀变化特征及气象影响因子分析[J]. 青海草业,2020,29(3):59 − 63. [GONG Li,WANG Fake,LI Jifang,et al. Characteristics of soil wind erosion and analysis of meteorological influencing factors in Wudaoliang area[J]. Qinghai Prataculture,2020,29(3):59 − 63. (in Chinese with English abstract)] doi: 10.3969/j.issn.1008-1445.2020.03.015
GONG Li, WANG Fake, LI Jifang, et al. Characteristics of soil wind erosion and analysis of meteorological influencing factors in Wudaoliang area[J]. Qinghai Prataculture, 2020, 29(3): 59 − 63. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-1445.2020.03.015
[20] 杨栋,王全成,姜昭群. 季节性冻土区滑坡防治工程的冻融效应分析[J]. 中国地质灾害与防治学报,2021,32(6):82 − 89. [YANG Dong,WANG Quancheng,JIANG Zhaoqun. Analysis on the effect of freeze-thaw on landslide prevention projects in seasonal frozen soil area[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):82 − 89. (in Chinese with English abstract)]
YANG Dong, WANG Quancheng, JIANG Zhaoqun. Analysis on the effect of freeze-thaw on landslide prevention projects in seasonal frozen soil area[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 82 − 89. (in Chinese with English abstract)
[21] 沈凌铠,周保,魏刚,等. 气温变化对多年冻土斜坡稳定性的影响——以青海省浅层冻土滑坡为例[J]. 中国地质灾害与防治学报,2023,34(1):8 − 16. [SHEN Lingkai,ZHOU Bao,WEI Gang,et al. Influence of air temperature change on stability of permafrost slope:A case study of shallow permafrost landslide in Qinghai Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):8 − 16. (in Chinese with English abstract)]
SHEN Lingkai, ZHOU Bao, WEI Gang, et al. Influence of air temperature change on stability of permafrost slope: A case study of shallow permafrost landslide in Qinghai Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 8 − 16. (in Chinese with English abstract)
[22] ZHAO Dongsheng,WU Shaohong. Projected changes in permafrost active layer thickness over the Qinghai-Xizang Plateau under climate change[J]. Water Resources Research,2019,55(9):7860 − 7875.
[23] PANG Qiangqiang,ZHAO Lin,LI Shuxun,et al. Active layer thickness variations on the Qinghai–Xizang Plateau under the scenarios of climate change[J]. Environmental Earth Sciences,2012,66(3):849 − 857.
[24] 庞强强,李述训,吴通华,等. 青藏高原冻土区活动层厚度分布模拟[J]. 冰川冻土,2006,28(3):390 − 395. [PANG Qiangqiang,LI Shuxun,WU Tonghua,et al. Simulated distribution of active layer depths in the frozen ground regions of Xizang Plateau[J]. Journal of Glaciology and Geocryology,2006,28(3):390 − 395. (in Chinese with English abstract)]
PANG Qiangqiang, LI Shuxun, WU Tonghua, et al. Simulated distribution of active layer depths in the frozen ground regions of Xizang Plateau[J]. Journal of Glaciology and Geocryology, 2006, 28(3): 390 − 395. (in Chinese with English abstract)
[25] 徐晓明,吴青柏,张中琼. 青藏高原多年冻土活动层厚度对气候变化的响应[J]. 冰川冻土,2017,39(1):1 − 8. [XU Xiaoming,WU Qingbai,ZHANG Zhongqiong. Responses of active layer thickness on the Qinghai-Xizang Plateau to climate change[J]. Journal of Glaciology and Geocryology,2017,39(1):1 − 8. (in Chinese with English abstract)]
XU Xiaoming, WU Qingbai, ZHANG Zhongqiong. Responses of active layer thickness on the Qinghai-Xizang Plateau to climate change[J]. Journal of Glaciology and Geocryology, 2017, 39(1): 1 − 8. (in Chinese with English abstract)
[26] 徐晓明,吴青柏. 三江源多年冻土活动层厚度变化特征研究[J]. 冰川冻土,2024,46(5):1579 − 1593. [XU Xiaoming,WU Qingbai. Research on the variation characteristics of active layer thickness of permafrost in the Three River Source Region[J]. Glacial Permafrost,2024,46(5):1579 − 1593. (in Chinese with English abstract)]
XU Xiaoming, WU Qingbai. Research on the variation characteristics of active layer thickness of permafrost in the Three River Source Region[J]. Glacial Permafrost, 2024,46(5): 1579 − 1593. (in Chinese with English abstract)
[27] 张中琼,吴青柏. 气候变化情景下青藏高原多年冻土活动层厚度变化预测[J]. 冰川冻土,2012,34(3):505 − 511. [ZHANG Zhongqiong,WU Qingbai. Predicting changes of active layer thickness on the Qinghai-Xizang Plateau as climate warming[J]. Journal of Glaciology and Geocryology,2012,34(3):505 − 511. (in Chinese with English abstract)]
ZHANG Zhongqiong, WU Qingbai. Predicting changes of active layer thickness on the Qinghai-Xizang Plateau as climate warming[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 505 − 511. (in Chinese with English abstract)
[28] 刘文惠,谢昌卫,刘海瑞,等. Stefan方程在土壤冻融过程模拟中的应用[J]. 冰川冻土,2022,44(1):327 − 339. [LIU Wenhui,XIE Changwei,LIU Hairui,et al. Application of Stefan equation on simulating freezing-thawing process of permafrost[J]. Journal of Glaciology and Geocryology,2022,44(1):327 − 339. (in Chinese with English abstract)]
LIU Wenhui, XIE Changwei, LIU Hairui, et al. Application of Stefan equation on simulating freezing-thawing process of permafrost[J]. Journal of Glaciology and Geocryology, 2022, 44(1): 327 − 339. (in Chinese with English abstract)
[29] 张云霞. 2000—2020年青藏高原生态质量时空变化及其影响因素[D]. 兰州:兰州大学,2023. [ZHANG Yunxia. Spatiotemporal changes of ecological quality and itsinfluencing factors of the Qinghai-Xizang Plateau from 2000 to 2020 [D]. Lanzhou:Lanzhou University,2023. (in Chinese with English abstract)]
ZHANG Yunxia. Spatiotemporal changes of ecological quality and itsinfluencing factors of the Qinghai-Xizang Plateau from 2000 to 2020 [D]. Lanzhou: Lanzhou University, 2023. (in Chinese with English abstract)
[30] NI Jie,WU Tonghua,ZHU Xiaofan,et al. Simulation of the present and future projection of permafrost on the Qinghai-Xizang Plateau with statistical and machine learning models[J]. Journal of Geophysical Research:Atmospheres,2021,126(2):e2020jd033402.
[31] 高荣,韦志刚,董文杰. 青藏高原土壤冻结始日和终日的年际变化[J]. 冰川冻土,2003,25(1):49 − 54. [GAO Rong,WEI Zhigang,DONG Wenjie. Interannual variation of the beginning date and the ending date of soil freezing in the Xizang Plateau[J]. Journal of Glaciology and Geocryology,2003,25(1):49 − 54. (in Chinese with English abstract)]
GAO Rong, WEI Zhigang, DONG Wenjie. Interannual variation of the beginning date and the ending date of soil freezing in the Xizang Plateau[J]. Journal of Glaciology and Geocryology, 2003, 25(1): 49 − 54. (in Chinese with English abstract)
[32] 王一菲,郑粉莉,张加琼,等. 冻融作用对典型黑土土壤风蚀的影响[J]. 水土保持学报,2020,34(5):34 − 41. [WANG Yifei,ZHENG Fenli,ZHANG Jiaqiong,et al. Effects of freeze-thaw on wind erosion in the typical mollisol region[J]. Journal of Soil and Water Conservation,2020,34(5):34 − 41. (in Chinese with English abstract)]
WANG Yifei, ZHENG Fenli, ZHANG Jiaqiong, et al. Effects of freeze-thaw on wind erosion in the typical mollisol region[J]. Journal of Soil and Water Conservation, 2020, 34(5): 34 − 41. (in Chinese with English abstract)
[33] 董瑞琨,许兆义,杨成永. 青藏高原冻融侵蚀动力特征研究[J]. 水土保持学报,2000,14(4):12 − 16. [DONG Ruikun,XU Zhaoyi,YANG Chengyong. Dynamic and characteristic of freezing thawing erosion on Qinghai Xizang Plateau[J]. Journal of Soil Water Conservation,2000,14(4):12 − 16. (in Chinese with English abstract)] doi: 10.3321/j.issn:1009-2242.2000.04.003
DONG Ruikun, XU Zhaoyi, YANG Chengyong. Dynamic and characteristic of freezing thawing erosion on Qinghai Xizang Plateau[J]. Journal of Soil Water Conservation, 2000, 14(4): 12 − 16. (in Chinese with English abstract) doi: 10.3321/j.issn:1009-2242.2000.04.003
[34] 吴雅琼,刘国华,傅伯杰,等. 青藏高原土壤有机碳密度垂直分布研究[J]. 环境科学学报,2008,28(2):362 − 367. [WU Yaqiong,LIU Guohua,FU Bojie,et al. Study on the vertical distribution of soil organic carbon density in the Xizang Plateau[J]. Acta Scientiae Circumstantiae,2008,28(2):362 − 367. (in Chinese with English abstract)]
WU Yaqiong, LIU Guohua, FU Bojie, et al. Study on the vertical distribution of soil organic carbon density in the Xizang Plateau[J]. Acta Scientiae Circumstantiae, 2008, 28(2): 362 − 367. (in Chinese with English abstract)
[35] 刘勇,魏良帅,黄安邦,等. 气候变化下长江源土壤水时空演化及其环境响应[J]. 水文地质工程地质,2023,50(5):39 − 52. [LIU Yong,WEI Liangshuai,HUANG Anbang,et al. Spatial and temporal evolution of soil water and its response to the environment in the Yangtze River source area under climate change[J]. Hydrogeology & Engineering Geology,2023,50(5):39 − 52. (in Chinese with English abstract)]
LIU Yong, WEI Liangshuai, HUANG Anbang, et al. Spatial and temporal evolution of soil water and its response to the environment in the Yangtze River source area under climate change[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 39 − 52. (in Chinese with English abstract)
[36] 支泽民,刘峰贵,周强,等. 基于流域单元的地质灾害易发性评价——以西藏昌都市为例[J]. 中国地质灾害与防治学报,2023,34(1):139 − 150. [ZHI Zemin,LIU Fenggui,ZHOU Qiang,et al. Evaluation of geological hazards susceptibility based on watershed units:A case study of the Changdu City,Xizang[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):139 − 150. (in Chinese with English abstract)]
ZHI Zemin, LIU Fenggui, ZHOU Qiang, et al. Evaluation of geological hazards susceptibility based on watershed units: A case study of the Changdu City, Xizang[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 139 − 150. (in Chinese with English abstract)
-