CHARACTERISTICS OF AUTHIGENIC CARBONATES FROM A MEGA-POCKMARK ON THE EASTERN SIDE OF BAIYUN SAG,SOUTH CHINA SEA AND THEIR GEOLOGICAL SIGNIFICANCE
-
摘要:
探测发现南海白云凹陷东侧存在一个宽1 500 m、深达75 m的巨型麻坑,在麻坑内采集了大量的碳酸盐岩结核。大部分结核中存在新鲜孔洞和流体通道。本文从中选取了5块结核,进行XRD衍射、扫描电镜、碳氧同位素分析。结果表明,5个结核中碳酸盐矿物主要是含铁白云石,其中一个还有少量方解石,碎屑矿物主要是石英和长石。结核的显微结构以纤维状为主,存在裂隙和孔洞。δ13C值为-24.7‰~-10.9‰V-PDB,显示孔隙流体主要以热成因甲烷为主。δ18O值为5.6‰~6.9‰V-PDB,高值主要与天然气水合物分解有关。巨型麻坑海底之下最可能存在天然气水合物埋藏。含铁白云石结核在麻坑表层沉积物之下形成,随后出露海底。碳酸盐岩结核指示巨型麻坑内曾发生的甲烷渗漏活动可能与深部油气泄露有关,浅地层剖面中疑似气体羽和结核表面管状蠕虫活体都显示巨型麻坑仍在发生甲烷渗漏。
Abstract:A mega-pockmark, 1 500 m in diameter and 75 m in depth, is discovered on the east side of the Baiyun Sag, the South China Sea. Many irregular nodules are collected from the mega-pockmark and most of them characterized by fresh holes and seep passages. The mineral composition, microstructures, stable carbon and oxygen isotopes (δ13C and δ18O) of the five authigenic carbonates are used to trace the fluid source and their forming environment. Mineralogical study suggests that the five carbonates are all dominated by ferrous dolomite, followed by a detrital fraction, mainly composed of quartz and feldspar. The δ13C of the five carbonates falls in the range of -24.7‰~-10.9‰, indicating a primary source of 13C-depleted thermogenic methane. The δ18O of five carbonates varies between 5.6‰~6.9‰ V-PDB, indicating that the 18O-rich fluids are derived from the decomposition of gas hydrates and/or dehydration of clay minerals at depth. Gas hydrate may have existed in the sediment of the mega-pockmark. Ferrous dolomites in authigenic carbonates are formed in sediments and subsequently exposed to the seawater, indicating that the old methane seep was related to deep oil and gas seepage in the mega-pockmark. The live tubeworms and gas plumes in the pockmark suggest that methane seep is still active nowadays.
-
-
表 1 5个自生碳酸盐岩的矿物组成
Table 1. Mineral composition of the five authigenic carbonates
样品 碳酸盐矿物 碎屑矿物 黏土矿物 Y8-1 含铁白云石 石英与长石 伊利石 Y8-2 含铁白云石 石英与长石 伊利石 Y8-3 含铁白云石,少量的方解石 石英与长石 伊利石 Y8-4 含铁白云石 石英与长石 伊利石 Y8-5 含铁白云石 石英与长石 伊利石 表 2 5个自生碳酸盐岩的δ13C和δ18O值
Table 2. δ13C and δ18O of the five authigenic carbonates
样品 δ13C/‰ δ18O/‰ Y8-1 -18.8 6.5 Y8-2 -10.9 6 Y8-3 -12.1 5.6 Y8-4 -24.7 6.7 Y8-5 -22.9 6.9 -
[1] 罗敏, 吴庐山, 陈多福. 海底麻坑研究现状及进展[J]. 海洋地质前沿, 2012, 28(5): 33-42. http://hydt.cbpt.cnki.net/WKA/WebPublication/index.aspx?mid=hydt
LUO Min, WU Lushan, CHEN Duofu. Research status and progress of seabed pockmarks[J]. Marine Geology Frontiers, 2012, 28(5): 33-42. http://hydt.cbpt.cnki.net/WKA/WebPublication/index.aspx?mid=hydt
[2] Pilcher R, Argent J. Mega-pockmarks and linear pockmark trains on the West African continental margin[J]. Marine Geology, 2007, 244(1-4): 15-32. doi: 10.1016/j.margeo.2007.05.002
[3] Gay A, Lopez M, Cochonat P, et al. Isolated seafloor pockmarks linked to BSRs, fluid chimneys, polygonal faults and stacked Oligocene-Miocene turbiditic palaeochannels in the Lower Congo Basin[J]. Marine Geology, 2006, 226(1-2): 25-40. doi: 10.1016/j.margeo.2005.09.018
[4] Dondurur D, Çifçi G, Drahor M G, et al. Acoustic evidence of shallow gas accumulations and active pockmarks in the ⅰzmir Gulf, Aegean sea[J]. Marine and Petroleum Geology, 2011, 28(8): 1505-1516. doi: 10.1016/j.marpetgeo.2011.05.001
[5] Reiche S, Hjelstuen B O, Haflidason H. High-resolution seismic stratigraphy, sedimentary processes and the origin of seabed cracks and pockmarks at Nyegga, mid-Norwegian margin[J]. Marine Geology, 2011, 284(1-4): 28-39. doi: 10.1016/j.margeo.2011.03.006
[6] Benjamin U, Huuse M, Hodgetts D. Canyon-confined pockmarks on the western Niger Delta slope[J]. Journal of African Earth Sciences, 2015, 107: 15-27. doi: 10.1016/j.jafrearsci.2015.03.019
[7] Wenau S, Spieβ V, Pape T, et al. Controlling mechanisms of giant deep water pockmarks in the Lower Congo Basin[J]. Marine and Petroleum Geology, 2017, 83: 140-157.
[8] Luo M, Chen L Y, Wang S H, et al. Pockmark activity inferred from pore water geochemistry in shallow sediments of the pockmark field in southwestern Xisha Uplift, northwestern South China Sea[J]. Marine and Petroleum Geology, 2013, 48: 247-259. doi: 10.1016/j.marpetgeo.2013.08.018
[9] Mazzini A, Svensen H, Hovland M, et al. Comparison and implications from strikingly different authigenic carbonates in a Nyegga complex pockmark, G11, Norwegian Sea[J]. Marine Geology, 2006, 231(1-4): 89-102. doi: 10.1016/j.margeo.2006.05.012
[10] Haas A, Peckmann J, Elvert M, et al. Patterns of carbonate authigenesis at the Kouilou pockmarks on the Congo deep-sea fan[J]. Marine Geology, 2010, 268(1-4): 129-136. doi: 10.1016/j.margeo.2009.10.027
[11] Hovland M, Svensen H. Submarine pingoes: Indicators of shallow gas hydrates in a pockmark at Nyegga, Norwegian Sea[J]. Marine Geology, 2006, 228(1-4): 15-23. doi: 10.1016/j.margeo.2005.12.005
[12] 冯先翠, 王伟, 王文倩, 等. 挪威海Nyegga麻坑区的甲烷成因自生碳酸盐岩[J]. 地球化学, 2015, 44(4): 348-359. doi: 10.3969/j.issn.0379-1726.2015.04.004
FENG Xiancui, WANG Wei, WANG Wenqian, et al. Methane-derived authigenic carbonates in Nyegga pockmarks, offshore Mid-Norway[J]. Geochimica, 2015, 44(4): 348-359. doi: 10.3969/j.issn.0379-1726.2015.04.004
[13] Mazzini A, Svensen H H, Planke S, et al. Pockmarks and methanogenic carbonates above the giant Troll gas field in the Norwegian North Sea[J]. Marine Geology, 2016, 373: 26-38. doi: 10.1016/j.margeo.2015.12.012
[14] Feng D, Chen D F, Peckmann J, et al. Authigenic carbonates from methane seeps of the northern Congo fan: microbial formation mechanism[J]. Marine and Petroleum Geology, 2010, 27(4): 748-756. doi: 10.1016/j.marpetgeo.2009.08.006
[15] Pierre C, Blanc-Valleron M M, Demange J, et al. Authigenic carbonates from active methane seeps offshore southwest Africa[J]. Geo-Marine Letters, 2012, 32(5-6): 501-513. doi: 10.1007/s00367-012-0295-x
[16] Gontharet S, Pierre C, Blanc-Valleron M M, et al. Nature and origin of diagenetic carbonate crusts and concretions from mud volcanoes and pockmarks of the Nile deep-sea fan (eastern Mediterranean Sea)[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2007, 54(11-13): 1292-1311. doi: 10.1016/j.dsr2.2007.04.007
[17] 邸鹏飞, 黄华谷, 黄保家, 等. 莺歌海盆地海底麻坑的形成与泥底辟发育和流体活动的关系[J]. 热带海洋学报, 2012, 31(5): 26-36. doi: 10.3969/j.issn.1009-5470.2012.05.005
DI Pengfei, HUANG Huagu, HUANG Baojia, et al. Seabed pockmark formation associated with mud diapir development and fluid activities in the Yinggehai Basin of the South China Sea[J]. Journal of Tropical Oceanography, 2012, 31(5): 26-36. doi: 10.3969/j.issn.1009-5470.2012.05.005
[18] Sun Q L, Wu S G, Hovland M, et al. The morphologies and genesis of mega-pockmarks near the Xisha Uplift, South China Sea[J]. Marine and Petroleum Geology, 2011, 28(6): 1146-1156. doi: 10.1016/j.marpetgeo.2011.03.003
[19] 关永贤, 罗敏, 陈琳莹, 等. 南海西部海底巨型麻坑活动性示踪研究[J]. 地球化学, 2014, 43(6): 628-639. http://d.old.wanfangdata.com.cn/Periodical/dqhx201406007
GUAN Yongxian, LUO Min, CHEN Linying, et al. Tracing study on the activity of mega-pockmarks in southwestern Xisha Uplift, South China Sea[J]. Geochimica, 2014, 43(6): 628-639. http://d.old.wanfangdata.com.cn/Periodical/dqhx201406007
[20] Sun Q L, Wu S G, Cartwright J, et al. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geology, 2012, 315-318: 1-14. doi: 10.1016/j.margeo.2012.05.003
[21] 拜阳, 宋海斌, 关永贤, 等. 利用反射地震和多波束资料研究南海西北部麻坑的结构特征与成因[J]. 地球物理学报, 2014, 57(7): 2208-2222. doi: 10.6038/cjg20140716
BAI Yang, SONG Haibin, GUAN Yongxian, et al. Structural characteristics and genesis of pockmarks in the northwest of the South China Sea derived from reflective seismic and multibeam data[J]. Chinese Journal of Geophysics, 57(7): 2208-2222. doi: 10.6038/cjg20140716
[22] Chen J X, Song H B, Guan Y X, et al. Morphologies, classification and genesis of pockmarks, mud volcanoes and associated fluid escape features in the northern Zhongjiannan Basin, South China Sea[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2015, 122: 106-117. doi: 10.1016/j.dsr2.2015.11.007
[23] Lu Y T, Luan X W, Lyu F L, et al. Seismic evidence and formation mechanism of gas hydrates in the Zhongjiannan Basin, Western margin of the South China Sea[J]. Marine and Petroleum Geology, 2017, 84: 274-288. doi: 10.1016/j.marpetgeo.2017.04.005
[24] 何家雄, 施小斌, 夏斌, 等. 南海北部边缘盆地油气勘探现状与深水油气资源前景[J]. 地球科学进展, 2007, 22(3): 261-270. doi: 10.3321/j.issn:1001-8166.2007.03.006
HE Jiaxiong, SHI Xiaobin, XIA Bin, et al. The satus of the petroleum exploration in the northern South China sea and the resource potential in the deep-water areas[J]. Advances in earth science, 2007, 22(3): 261-270. doi: 10.3321/j.issn:1001-8166.2007.03.006
[25] 张洪涛, 张海启, 祝有海. 中国天然气水合物调查研究现状及其进展[J]. 中国地质, 2007, 34(6): 953-961. doi: 10.3969/j.issn.1000-3657.2007.06.001
ZHANG Hongtao, ZHANG Haiqi, ZHU Youhai. Gas hydrate investigation and research in China: present status and progress[J]. Geology in China, 2007, 34(6): 953-961. doi: 10.3969/j.issn.1000-3657.2007.06.001
[26] Yan P, Wang Y L, Liu J, et al. Discovery of the southwest Dongsha Island mud volcanoes amid the northern margin of the South China Sea[J]. Marine and Petroleum Geology, 2017, 88: 858-870. doi: 10.1016/j.marpetgeo.2017.09.021
[27] 天工. 我国海域天然气水合物试采成功[J]. 天然气工业, 2017, 37(5): 37. CNKI:SUN:TRQG.0.2017-05-007
TIAN Gong. Gas hydrate in South China Sea was exploited successfully for the first time[J]. Natural Gas Industry, 2017, 37(5): 37. CNKI:SUN:TRQG.0.2017-05-007
[28] 杨少坤, 林鹤鸣, 郝沪军. 珠江口盆地东部中生界海相油气勘探前景[J]. 石油学报, 2002, 23(5): 28-33. doi: 10.3321/j.issn:0253-2697.2002.05.006
YANG Shaokun, LIN Heming, HAO Hujun. Oil and gas exploration prospect of mesozoic in the eastern part of pearl river mouth basin[J]. Acta Petrolei Sinica, 2002, 23(5): 28-33. doi: 10.3321/j.issn:0253-2697.2002.05.006
[29] 阎贫, 王彦林, 郑红波. 南海北部白云凹陷-东沙岛西南海区的浅地层探测与深水沉积特点[J]. 热带海洋学报, 2011, 30(2): 115-122. doi: 10.3969/j.issn.1009-5470.2011.02.017
YAN Pin, WANG Yanlin, ZHENG Hongbo. Characteristics of deep water sedimentation revealed by sub-bottom profiler survey over the Baiyun Sag-Southwest Dongsha Island Waters in the northern South China Sea[J]. Journal of Tropical Oceanography, 2011, 30(2): 115-122. doi: 10.3969/j.issn.1009-5470.2011.02.017
[30] 阎贫, 王彦林, 郑红波, 等. 东沙群岛西南海区泥火山的地球物理特征[J]. 海洋学报, 2014, 36(7): 142-148. doi: 10.3969/j.issn.0253-4193.2014.07.016
YAN Pin, WANG Yanlin, ZHENG Hongbo, et al. Geophysical features of mud volcanoes in the waters southwest of the Dongsha Islands[J]. Acta Oceanologica Sinaca, 2014, 36(7): 142-148. doi: 10.3969/j.issn.0253-4193.2014.07.016
[31] Gregg J M, Bish D L, Kaczmarek S E, et al. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: a review[J]. Sedimentology, 2015, 62(6): 1749-1769. doi: 10.1111/sed.12202
[32] Rongemaille E, Bayon G, Pierre C, et al. Rare earth elements in cold seep carbonates from the Niger delta[J]. Chemical Geology, 2011, 286(3-4): 196-206. doi: 10.1016/j.chemgeo.2011.05.001
[33] Roberts H H, Feng D, Joye S B. Cold-seep carbonates of the middle and lower continental slope, northern Gulf of Mexico[J]. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 2010, 57(21-23): 2040-2054. doi: 10.1016/j.dsr2.2010.09.003
[34] Bian Y Y, Feng D, Roberts H H, et al. Tracing the evolution of seep fluids from authigenic carbonates: Green Canyon, northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2013, 44: 71-81. doi: 10.1016/j.marpetgeo.2013.03.010
[35] Mazzini A, Ivanov M K, Parnell J, et al. Methane-related authigenic carbonates from the Black Sea: geochemical characterisation and relation to seeping fluids[J]. Marine Geology, 2004, 212(1-4): 153-181. doi: 10.1016/j.margeo.2004.08.001
[36] Vanneste H, Kastner M, James R H, et al. Authigenic carbonates from the Darwin Mud Volcano, Gulf of Cadiz: A record of palaeo-seepage of hydrocarbon bearing fluids[J]. Chemical Geology, 2012, 300-301: 24-39. doi: 10.1016/j.chemgeo.2012.01.006
[37] Han X Q, Suess E, Sahling H, et al. Fluid venting activity on the Costa Rica margin: new results from authigenic carbonates[J]. International Journal of Earth Sciences, 2004, 93(4): 596-611. doi: 10.1007/s00531-004-0402-y
[38] Stakes D S, Orange D, Paduan J B, et al. Cold-seeps and authigenic carbonate formation in Monterey Bay, California[J]. Marine Geology, 1999, 159(1-4): 93-109. doi: 10.1016/S0025-3227(98)00200-X
[39] 韩喜球, 杨克红, 黄永样. 南海东沙东北冷泉流体的来源和性质: 来自烟囱状冷泉碳酸盐岩的证据[J]. 科学通报, 2013, 58(19): 1865-1873. http://engine.scichina.com/publisher/scp/journal/CSB/58/19/10.1360/csb2013-58-19-1865?slug=abstract
HAN Xiqiu, YANG Kehong, HUANG Yongyang. Origin and nature of cold seep in northeastern Dongsha area, South China Sea: Evidence from chimney-like seep carbonates[J]. Chinese Science Bulletin, 2013, 58(30): 3689-3697. http://engine.scichina.com/publisher/scp/journal/CSB/58/19/10.1360/csb2013-58-19-1865?slug=abstract
[40] 陈忠, 颜文, 陈木宏, 等. 南海北部大陆坡冷泉碳酸盐结核的发现: 海底天然气渗漏活动的新证据[J]. 科学通报, 2006, 51(9): 1065-1072. doi: 10.3321/j.issn:0023-074X.2006.09.011
CHEN Zhong, YAN Wen, CHEN Muhong, et al. Discovery of seep carbonate nodules as new evidence for gas venting on the northern continental slope of South China Sea[J]. Chinese Science Bulletin, 2006, 51(10): 1228-1237. doi: 10.3321/j.issn:0023-074X.2006.09.011
[41] Wang S H, Magalh es V H, Pinheiro L M, et al. Tracing the composition, fluid source and formation conditions of the methane-derived authigenic carbonates in the Gulf of Cadiz with rare earth elements and stable isotopes[J]. Marine and Petroleum Geology, 2015, 68: 192-205. doi: 10.1016/j.marpetgeo.2015.08.022
[42] Vasconcelos C, McKenzie J A, Warthmann R, et al. Calibration of the δ18O paleothermometer for dolomite precipitated in microbial cultures and natural environments[J]. Geology, 2005, 33(4): 317-320. doi: 10.1130/G20992.1
[43] Magalh es V H, Pinheiro L M, Ivanov M K, et al. Formation processes of methane-derived authigenic carbonates from the Gulf of Cadiz[J]. Sedimentary Geology, 2012, 243-244: 155-168. doi: 10.1016/j.sedgeo.2011.10.013
[44] Riboulot V, Sultan N, Imbert P, et al. Initiation of gas-hydrate pockmark in deep-water Nigeria: Geo-mechanical analysis and modelling[J]. Earth and Planetary Science Letters, 2016, 434: 252-263. doi: 10.1016/j.epsl.2015.11.047
[45] Greinert J, Bohrmann G, Suess E. Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge: classification, distribution, and origin of authigenic lithologies[M]//Paull C K, Dillon W P. Natural Gas Hydrates: Occurrence, Distribution, and Dynamics. Washington D C: American Geophysical Union, 2001: 99-113.
[46] Viola I, MagalhĀes V, Pinheiro L M, et al. Mineralogy and geochemistry of authigenic carbonates from the Gulf of Cadiz[J]. Journal of Sea Research, 2014, 93: 12-22. doi: 10.1016/j.seares.2014.04.007
[47] 卞友艳, 陈多福. 海底冷泉环境中的白云石(岩)研究现状[J]. 矿物岩石地球化学通报, 2014, 33(2): 238-246. doi: 10.3969/j.issn.1007-2802.2014.02.012
BIAN Youyan, CHEN Duofu. Research progress of dolomite in seep carbonates[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(2): 238-246. doi: 10.3969/j.issn.1007-2802.2014.02.012
[48] Zhang F F, Yan C, Teng H H, et al. In situ AFM observations of Ca-Mg carbonate crystallization catalyzed by dissolved sulfide: Implications for sedimentary dolomite formation[J]. Geochimica et Cosmochimica Acta, 2013, 105: 44-55. doi: 10.1016/j.gca.2012.11.010
[49] Jørgensen N O. Holocene methane-derived, dolomite-cemented sandstone pillars from the Kattegat, Denmark[J]. Marine Geology, 1989, 88(1-2): 71-81. doi: 10.1016/0025-3227(89)90005-4
[50] Takeuchi R, Matsumoto R, Ogihara S, et al. Methane-induced dolomite “chimneys” on the Kuroshima Knoll, Ryukyu islands, Japan[J]. Journal of Geochemical Exploration, 2007, 95(1-3): 16-28. doi: 10.1016/j.gexplo.2007.05.008
[51] 陈忠, 杨华平, 黄奇瑜, 等. 南海东沙西南海域冷泉碳酸盐岩特征及其意义[J]. 现代地质, 2008, 22(3): 382-389. doi: 10.3969/j.issn.1000-8527.2008.03.006
CHEN Zhong, YANG Huaping, HUANG Qiyu, et al. Diagenetic environment and implication of seep carbonate precipitations from the southwestern Dongsha area, South China Sea[J]. Geoscience, 2008, 22(3): 382-389. doi: 10.3969/j.issn.1000-8527.2008.03.006
[52] Hovland M, Svensen H, Forsberg C F, et al. Complex pockmarks with carbonate-ridges off mid-Norway: Products of sediment degassing[J]. Marine Geology, 2005, 218(1-4): 191-206. doi: 10.1016/j.margeo.2005.04.005
[53] Sahling H, Bohrmann G, Spiess V, et al. Pockmarks in the Northern Congo Fan area, SW Africa: Complex seafloor features shaped by fluid flow[J]. Marine Geology, 2008, 249(3-4): 206-225. doi: 10.1016/j.margeo.2007.11.010
[54] Macdonald I R, Neilly J F, Guinasso N L, et al. Chemosynthetic mussels at a brine-filled pockmark in the northern gulf of Mexico[J]. Science, 1990, 248(4959): 1096-1099. doi: 10.1126/science.248.4959.1096
-