Suspended transportation and flux mechanism of sediment in the Jiaojiang Estuary in spring
-
摘要:
通过分析2016年3月椒江河口两个定点站位的潮周期水文泥沙观测数据,研究了椒江河口春季悬沙输运特征及通量机制。结果表明,河口内侧站位潮流速大于外侧站位值,两站位垂线平均悬沙浓度分别为0.3~5.8kg/m3和0.3~1.0 kg/m3。悬沙通量机制分解表明,内侧站以向海的潮泵输沙效应最显著,对单宽输沙量绝对值贡献率为43.9%,其次是向陆的平流和垂向净环流输沙,综合作用下悬沙向陆净输移0.39kg/(m·s);外侧站位以向海的平流输沙为主导作用,贡献率为72.6%,悬沙向海净输移0.10kg/(m·s)。小波分析和频谱分析表明,含沙量、输沙率及流速三者之间存在不同的响应关系,内侧站输沙率主要受流速的影响,而外侧站位则主要受控于悬沙浓度变化。
Abstract:A detailed study on hydrodynamic characteristics and transportation mechanisms of suspended sediment at two specific sites of the Jiaojiang Estuary were conducted in March, 2017.The data resulted from the observation at anchor stations show that the Jiaojiang Estuary is characterized by a bidirectional field of currents, and the tidal currents at the stations within the river mouth are obviously stronger than that at the sites located outside the river mouth. The depth-mean SSCs at the two stations are 0.3~5.8 kg/m3, and 0.3~1.0 kg/m3, respectively. The results of mechanism decomposition of sediment transport indicate that at the upstream site, the dominant mechanism of transporting suspended sediment is the seaward tidal pumping, which contributes 49.3% of the total absolute sediment flux, followed by the landward advection and the vertical net circulation. As the result, the net suspended sediment transport is 0.39 kg/(m·s) landward. However, the sediments fluxes at the downstream station are dominated by the seaward advection, with 72.6% of contribution, and the net suspended sediment transport is 0.10 kg/(m·s) seaward. The three-layers wavelet analysis and spectral analysis suggest that there are somewhat coupling response relations between the SSC and the sediment transport rate and flow velocity. The sediment transport rate is dominated by the flow velocity at the outer site of the estuary, and SSCs at the site inside.
-
Key words:
- Jiaojiang Estuary /
- mechanism decomposition method /
- tidal pumping /
- advection /
- wavelet analysis
-
-
图 1 椒江河口湾地形及观测站位(改自文献[22])
Figure 1.
图 2 三尺度分解结构形式图(改自吴德安[27])
Figure 2.
表 1 各站位垂线平均流速特征值统计
Table 1. Statistics of depth mean tidal current velocity at each station
站位 涨潮 落潮 平均值(m/s) 最大值(m/s) 流向(°) 历时(h) 平均值(m/s) 最大值(m/s) 流向(°) 历时(h) A 0.452 0.927 281 5.55 0.365 0.596 99 6.6 C 0.235 0.446 283 6.12 0.254 0.444 110 6.4 表 2 各站观测潮周期期间各输沙项对单宽输沙量绝对值的贡献率(%)
Table 2. Contributions of different sediment transport parameters to the magnitude of absolute sediment transport (%)
时间 站位 T1 T2 T3 T4 T5 T6 T7 2016 A -24.5 -2.3 1.2 42.0 -0.7 -26.5 2.8 2016 C 53.9 -18.7 -3.5 8.7 -3.0 9.6 -2.6 注:正值表示向海输运,负值表示向陆输运。 -
[1] De Nijs M A J, Winterwerp J C, Pietrzak J D. On harbour siltation in the fresh-salt water mixing region[J]. Continental Shelf Research, 2009, 29(1): 175-193. doi: 10.1016/j.csr.2008.01.019
[2] deNijs M A J, Winterwerp J C, Pietrzak J D. The effects of the internal flow structure on SPM entrapment in the Rotterdam Waterway[J]. Journal of Physical Oceanography, 2010, 40(11): 2357-2380. doi: 10.1175/2010JPO4233.1
[3] Talke S A, de Swart H E, De Jonge V N. An idealized model and systematic process study of oxygen depletion in highly turbid estuaries[J]. Estuaries and Coasts, 2009, 32(4): 602-620. doi: 10.1007/s12237-009-9171-y
[4] Tu J, Fan D. Flow and turbulence structure in a hypertidal estuary with the world's biggest tidal bore[J]. Journal of Geophysical Research: Oceans, 2017:122:3417-3433. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/2016JC012120
[5] Uncles R J, Stephens J A, Harris C. Runoff and tidal influences on the estuarine turbidity maximum of a highly turbid system: the upper Humber and Ouse Estuary, UK[J]. Marine Geology, 2006, 235(1): 213-228. https://www.sciencedirect.com/science/article/abs/pii/S0025322706002684
[6] Geyer W R. The importance of suppression of turbulence by stratification on the estuarine turbidity maximum[J]. Estuaries and Coasts, 1993, 16(1): 113-125. doi: 10.2307/1352769
[7] Chernetsky A. Trapping of sediment in tidal estuaries[J]. Repository.Tudelf.nl, 2012:17-89.
[8] Fischer H. Mass transport mechanisms in partially stratified estuaries[J]. Journal of fluid mechanics, 1972, 53(04): 671-687. doi: 10.1017/S0022112072000412
[9] Dyer K R. The salt balance in stratified estuaries[J]. Estuarine and coastal marine science, 1974, 2(3): 273-281. doi: 10.1016/0302-3524(74)90017-6
[10] Winterwerp J C. Decomposition of the mass transport in narrow estuaries[J]. Estuarine, Coastal and Shelf Science, 1983, 16(6): 627-638. doi: 10.1016/0272-7714(83)90075-6
[11] Uncles R J, Elliott R C A, Weston S A. Dispersion of salt and suspended sediment in a partly mixed estuary[J]. Estuaries and Coasts, 1985, 8(3): 256-269. doi: 10.2307/1351486
[12] deNijs M A J, Winterwerp J C, Pietrzak J D. The effects of the internal flow structure on SPM entrapment in the Rotterdam Waterway[J]. Journal of Physical Oceanography, 2010, 40(11): 2357-2380. doi: 10.1175/2010JPO4233.1
[13] 沈健, 沈焕庭, 潘定安, 等.长江河口最大浑浊带水沙输运机制分析[J].地理学报, 1995, 50(5):411-420. doi: 10.3321/j.issn:0375-5444.1995.05.004
SHEN Jian, SHEN Huanting, PAN Dingan, et al. Analysis of transport mechanism of water and suspended sediment in the turbidity maximum of the Changjiang Estuary[J]. Acta Geographica Sinica, 1995, 50(5):411-420. doi: 10.3321/j.issn:0375-5444.1995.05.004
[14] Hu G, Wu D, Yan Y. Dynamic Response of the Suspended Sediment Change in the Tidal Channel of Jiangsu Sea Area[C]//Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on. IEEE, 2010: 1-5.
[15] 张钊, 李占海, 张国安, 等.长江口南槽中段枯季水沙输运特征研究[J].长江流域资源与环境, 2016, 25(12):1832-1841. doi: 10.11870/cjlyzyyhj201612006
ZHANG Zhao, LI Zhanhai, ZHANG Guoan, et al. Water and Suspended Sediment transports in the middle reach of the South Passage in the Changjiang Estuary during the dry season[J]. Resources and Environment in the Yangtze Basin, 2016, 25(12):1832-1841. doi: 10.11870/cjlyzyyhj201612006
[16] 陈甫源, 胡金春, 白咸勇, 等.江道采砂对椒江河口的影响分析[J].泥沙研究, 2008(3):46-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nsyj200804009
CHEN Fuyuan, HU Jinchun, BAI Xianyong, et. Effect of evacuating sand on Jiaojiang River estuary[J]. Journal of Sediment Research, 2008(3):46-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nsyj200804009
[17] 夏威夷, 赵晓冬, 张新周.椒江河口径、潮流变化对含沙量时空分布的影响[J].水利水运工程学报, 2016(3):35-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slsykxyj201603005
XIA Weiyi, ZHAO Xiaodong, ZHANG Xinzhou. Influences of variation in runoff and tide on spatial and temporal distribution of sediment concentration in Jiaojiang River estuary[J]. Hydro-Science and Engineering, 2016(3):35-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slsykxyj201603005
[18] 王高阳.台州湾悬沙运动的二维数学模型[D].浙江大学学位论文, 2007.
WANG Gaoyang. A 2D Numerical Simulation of Suspended Sediment in the TaizhouBay[D].Zhejiang University, 2007.
[19] Guan W B, Kot S C, Wolanski E. 3-D fluid-mud dynamics in the Jiaojiang Estuary, China[J]. Estuarine, Coastal and Shelf Science, 2005, 65(4): 747-762. doi: 10.1016/j.ecss.2005.05.017
[20] 郭聪.椒江河口对围海工程的响应[D].浙江大学学位论文, 2016.
GUO Cong. Response of Jiaojiang Estuary to Coastal Reclamation[D]. Zhejiang University, 2016.
[21] Li B G, Eisma D, Xie Q C, et al. Concentration, clay mineral composition and Coulter counter size distribution of suspended sediment in the turbidity maximum of the Jiaojiang river estuary, Zhejiang, China[J]. Journal of Sea Research, 1999, 42(2): 105-116. doi: 10.1016/S1385-1101(99)00023-4
[22] 谢钦春, 李伯根.椒江河口悬沙浓度垂向分布和泥跃层发育[J].海洋学报, 1998, 20(6):58-69. http://www.cnki.com.cn/Article/CJFDTotal-SEAC199806007.htm
XIE Qinchun, LI Bogen. Vertical distributions of suspended matter and lutoclines in the Jiaojiang Estuary[J]. Acta Oceanologica Sinica, 1998, 20(6):58-69. http://www.cnki.com.cn/Article/CJFDTotal-SEAC199806007.htm
[23] 符宁平, 毕敖洪.椒江悬沙运动若干问题的探讨[J].泥沙研究, 1989 (3): 51-57. doi: 10.3321/j.issn:0468-155X.1989.03.002
FU Ningping, BI Aohong. Research on some problems of suspended sediment transport in the Jiaojiang[J]. Journal of Sediment Research, 1989(3):51-57. doi: 10.3321/j.issn:0468-155X.1989.03.002
[24] Dong L, Wolanski E, Li Y. Field and modeling studies of fine sediment dynamics in the extremely turbid Jiaojiang River estuary, China[J]. Journal of Coastal Research, 1997: 995-1003. https://www.jstor.org/stable/4298710
[25] Guan W B, Wolanski E, Dong L X. Cohesive sediment transport in the Jiaojiang River estuary, China[J]. Estuarine, Coastal and Shelf Science, 1998, 46(6): 861-871. doi: 10.1006/ecss.1998.0336
[26] Dyer K R. Estuaries—A Physical Introduction[M].John Wiley, Chichester, UK, 1997:195.
[27] 吴德安.江苏辐射沙洲水道潮流及悬沙动力研究[D].南京师范大学学位论文, 2004.
WU Dean. Hydrodynamic studies to the tidal current and suspended sediments in the channels of Jiangsu Radial Sand Ridges[D].Nanjing Normal University, 2004.
[28] Yu Q, Wang Y, Gao J, et al. Turbidity maximum formation in a well-mixed macrotidal estuary: The role of tidal pumping[J]. Journal of Geophysical Research: Oceans, 2014, 119(11): 7705-7724. doi: 10.1002/2014JC010228
[29] Jay D A, Musiak J D. Internal tidal asymmetry in channel flows: Origins and consequences[C]//Mixing in estuaries and coastal seas, Coastal Estuarine Studies, edited by C.Pattiaratchi. 1996: 211-249.
https://www.researchgate.net/publication/278640106_Internal_tidal_asymmetry_in_channel_flows_Origins_and_consequences [30] de Nijs M A J, Pietrzak J D, Winterwerp J C. Advection of the salt wedge and evolution of the internal flow structure in the Rotterdam Waterway[J]. Journal of Physical Oceanography, 2011, 41(1): 3-27. doi: 10.1175/2010JPO4228.1
[31] 陈景东, 汪亚平, 史本伟, 等.长江口北港口门海域悬沙输运机制分析[J].海洋工程, 2014, 32(3):45-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hygc201403007
CHEN Jingdong, WANG Yaping, SHI Benwei, et al. Mechanisms on the suspended sediment transport in the mouth of North Channel of Yangtze River estuary[J]. The Ocean Engineering, 2014, 32(3):45-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hygc201403007
[32] 时钟, 陈伟民.长江口北槽最大浑浊带泥沙过程[J].泥沙研究, 2000(1):28-39. doi: 10.3321/j.issn:0468-155X.2000.01.005
SHI Zhong, CHEN Weimin. Fine sediment transport in Turbidity Maximum at the North Passage of the Changjiang Estuary[J]. Journal of Sediment Research, 2000(1):28-39. doi: 10.3321/j.issn:0468-155X.2000.01.005
[33] Geyer W R. The importance of suppression of turbulence by stratification on the estuarine turbidity maximum[J]. Estuaries and Coasts, 1993, 16(1): 113-125. doi: 10.2307/1352769
[34] Winterwerp J C. On the flocculation and settling velocity of estuarine mud[J]. Continental Shelf Research, 2002, 22(9): 1339-1360. doi: 10.1016/S0278-4343(02)00010-9
[35] Winterwerp J C. Fine sediment transport by tidal asymmetry in the high-concentrated Ems River: indications for a regime shift in response to channel deepening[J]. Ocean Dynamics, 2011, 61(2-3): 203-215. doi: 10.1007/s10236-010-0332-0
[36] Becherer J, Flöser G, Umlauf L, et al. Estuarine circulation versus tidal pumping: Sediment transport in a well-mixed tidal inlet[J]. Journal of Geophysical Research: Oceans, 2016, 121(8): 6251-6270 doi: 10.1002/2016JC011640
[37] Fischer H B, List E J, Koh R C Y, et al. Mixing in inland and coastal waters Academic Press[J]. New York, 1979: 229-242
-