-
摘要:
波浪引起的海底土体内部孔压累积是导致液化发生的主要原因,研究波浪作用下土体内部孔压响应过程对于明确液化机理、预测液化发生具有重要作用。在黄河口使用自行研发的孔压监测设备对海底粉土孔隙水压力进行了有效监测。监测结果显示,海底粉土的孔压变化主要受波浪影响且存在一定的影响范围,超出该范围则波浪对海底粉土的孔压无影响。同时,基于监测过程内的孔压变化对海底粉土进行了液化评判,并对波浪作用效果和液化影响因素进行了探讨。波浪对海底粉土内部孔压影响效果主要有3种:(1)有孔压振荡但不发生累积;(2)有孔压振荡且发生累积;(3)无孔压振荡且不发生累积。
Abstract:Liquefaction under wave action is mainly caused by the pore pressure of seabed sediment. The mechanism of responding process of soil pore pressure to wave action is critical important to the understanding and prediction of liquefaction. The seabed silt pore pressure has been monitored for a long time in the Yellow River delta using the self developed pore pressure monitoring equipment. Monitoring results show that the change in pore water pressure is mainly determined by wave. And wave acts in a certain range, and there is no influence out of the range. Weather liquefaction was judged based on the change in pore water pressure in the monitoring process. Upon the above, the effect of wave action and the influence factors of liquefaction are discussed. There are three kinds of wave effects on pore pressures of seabed silt: a. there is pore pressure oscillation but no accumulation; b. there is pore pressure oscillation as well as accumulation; c. there is no pore pressure oscillation and accumulation.
-
-
表 1 监测站位海底粉土力学参数统计
Table 1. Statics parameter of silt of monitoring location
参数 范围值 平均值 含水量/% 19.8~26.6 23.7 天然重度/(kN/m3) 19.4~20.7 19.8 塑性指数/% 6.2~8.7 7.3 液性指数 0.21~0.85 0.60 黏聚力/kPa 15.3~23.6 19.0 内摩擦角/(°) 22.9~25.2 24.3 中值粒径/mm 0.062~0.065 0.063 表 2 波浪参数统计
Table 2. Parametric statistics of wave
参数 范围值 平均值 最大波高/cm 36~395 201 有效波高/cm 21~227 126 周期/s 2.97~6.44 5.45 -
[1] 刘涛, 冯秀丽, 林霖.海底孔压对波浪响应试验研究及数值模拟[J].海洋学报, 2006, 28(3): 173-176. doi: 10.3321/j.issn:0253-4193.2006.03.023
LIU Tao, FENG Xiuli, LIN Lin. Study of seabed pore water pressure based on in-situ test and numerical simulation[J]. Acta Oceanologica Sinica, 2006, 28(3): 173-176. doi: 10.3321/j.issn:0253-4193.2006.03.023
[2] 李安龙, 李广雪, 林霖, 等.波浪作用下粉土海床中的孔压响应试验研究[J].海洋通报, 2012, 31(1): 15-20. doi: 10.3969/j.issn.1001-6392.2012.01.003
LI Anlong, LI Guangxue, LIN Lin, et al. Experiment study on pore pressure responses to wave action on silt seabed[J]. Marine Science Bulletin, 2012, 31(1): 15-20. doi: 10.3969/j.issn.1001-6392.2012.01.003
[3] Putnam J A. Loss of wave energy due to percolation in a permeable sea bottom[J]. EOS, 1949, 30(3): 349-356. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/TR030i003p00349
[4] Yamamoto T, Koning H L, Sellmeijer H, et al. On the response of a poro-elastic bed to water waves[J]. Journal of Fluid Mechanics, 1978, 87: 193-206. doi: 10.1017/S0022112078003006
[5] Sleath F A. Wave induced pressures in beds of sand[J]. Journal of the Hydraulics Division, 1970, 96(2): 367-378.
[6] Yamada Y, Ishihara K. Undrained deformation characteristics of loose sand under three-dimensional stress conditions[J]. Soils and Foundations, 1981, 21(1): 97-107. doi: 10.3208/sandf1972.21.97
[7] Yasuhara K, Hirao K, Hyde A F. Effects of cyclic loading on undrained strength and compressibility of clay[J]. Soils and Foundations, 1992, 32(1): 100-116. doi: 10.3208/sandf1972.32.100
[8] 郭莹, 栾茂田, 董秀竹, 等.不同应力条件下砂土动模量特性的试验对比研究[J].水利学报, 2003, 34(5): 41-45. doi: 10.3321/j.issn:0559-9350.2003.05.007
GUO Ying, LUAN Maotian, DONG Xiuzhu, et al. Experimental study on dynamic modulus characteristics of sand under different stress conditions[J]. Journal of Hydraulic Engineering, 2003, 34(5): 41-45. doi: 10.3321/j.issn:0559-9350.2003.05.007
[9] Demars K R, Vanover E A. Measurement of wave‐induced pressures and stresses in a sandbed[J]. Marine Geotechnology, 1985, 6(1): 29-59. doi: 10.1080/10641198509388179
[10] Maeno Y, Hasegawa T. Evaluation of wave-induced pore pressure in saturated sand bed: coastal hydrodynamics[C].2011.
[11] Tzang S Y. Water wave-induced soil fluidization in a cohesionless fine-grained seabed[D]. Berkeley: University of California, 1992.
[12] Sumer B M, Hatipoglu F, FredsØe J, et al. The sequence of sediment behaviour during wave-induced liquefaction[J]. Sedimentology, 2006, 53(3): 611-629. doi: 10.1111/j.1365-3091.2006.00763.x
[13] 李安龙, 杨荣民, 林霖, 等.波浪加载下海底土质特性变化的研究[J].青岛海洋大学学报:自然科学版, 2003, 33(1): 101-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qdhydxxb200301012
LI Anlong Yang Rongmin LIN Lin, et al. Study on the geotechnical behavior of seabottom sediments under wave-loading[J]. Journal of Ocean University of Qingdao, 2003, 33(1): 101-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qdhydxxb200301012
[14] Henkel D J. Geology, geomorphology and geotechenics:Geotechnique, V32, N3, Sept 1982, P175-194[J]. International Journal of Rock Mechanics and mining Sciences & Geomechanics Abstracts, 1983, 20(1): A1. https://www.sciencedirect.com/science/article/abs/pii/0148906283916169
[15] Clukey E, Cacchione D A, Nelson C H. Liquifaction potential of the Yukon Prodelta, Bering Sea[C]//Offshore Technology Conference. Houston, Texas: Offshore Technology Conference, 1980.
[16] Zen K, Yamazaki H. Mechanism of wave-induced liquefaction and densification in seabed[J]. Soils and Foundations, 1990, 30(4): 90-104. doi: 10.3208/sandf1972.30.4_90
[17] Okusa S, Nakamura T, Fukue M. Measurements of wave-induced pore pressure and coefficients of permeability of submarine sediments during reversing flow[M]//Denness B. Seabed Mechanics. Netherlands: Springer, 1984: 113-122.
[18] Bennett R H. Pore‐water pressure measurements: Mississippi delta submarine sediments[J]. Marine Geotechnology, 1977, 2(1-4): 177-189. doi: 10.1080/10641197709379778
[19] Okusa S, Uchida A. Pore‐water pressure change in submarine sediments due to waves[J]. Marine Geotechnology, 1980, 4(2): 145-161. doi: 10.1080/10641198009379819
[20] Zen K, Yamazaki H. Field observation and analysis of wave-induced liquefaction in seabed[J]. Soils and Foundations, 1991, 31(4): 161-179. doi: 10.3208/sandf1972.31.4_161
[21] Bjerrum L. Geotechnical problems involved in foundation of structures in the North Sea[J]. Geotechnique, 1973, 23(3): 319-358. doi: 10.1680/geot.1973.23.3.319
[22] Jeng Dongsheng, Seymour B, 高福平, 等.波浪载荷下海床土体孔隙水压的瞬态与累积响应机理[J].中国科学(E辑:技术科学), 2007, 37(1): 91-98. http://d.old.wanfangdata.com.cn/Periodical/zgkx-ce200701012
Jeng DongSheng, Seymour B, GAO Fuping. Transient and cumulative response mechanism of pore pressure in seabed under wave loading[J]. Science in China Series E, 2007, 37(1): 91-98. http://d.old.wanfangdata.com.cn/Periodical/zgkx-ce200701012
[23] 孙永福, 董立峰, 宋玉鹏.黄河水下三角洲粉质土扰动土层特征及成因探析[J].岩土力学, 2008, 29(6): 1494-1499. doi: 10.3969/j.issn.1000-7598.2008.06.012
SUN Yongfu Dong Lifeng, SONG Yupeng. Analysis of characteristics and formation of disturbed soil on subaqueous delta of Yellow River[J]. Rock and Soil Mechanics, 2008, 29(6): 1494-1499. doi: 10.3969/j.issn.1000-7598.2008.06.012
-