波浪作用下海底粉土孔隙水压力响应过程监测研究

宋玉鹏, 孙永福, 杜星, 曹成林, 李淑玲. 波浪作用下海底粉土孔隙水压力响应过程监测研究[J]. 海洋地质与第四纪地质, 2018, 38(2): 208-214. doi: 10.16562/j.cnki.0256-1492.2018.02.021
引用本文: 宋玉鹏, 孙永福, 杜星, 曹成林, 李淑玲. 波浪作用下海底粉土孔隙水压力响应过程监测研究[J]. 海洋地质与第四纪地质, 2018, 38(2): 208-214. doi: 10.16562/j.cnki.0256-1492.2018.02.021
SONG Yupeng, SUN Yongfu, DU Xing, CAO Chenglin, LI Shuling. Monitoring of silt pore pressure responding process to wave action[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 208-214. doi: 10.16562/j.cnki.0256-1492.2018.02.021
Citation: SONG Yupeng, SUN Yongfu, DU Xing, CAO Chenglin, LI Shuling. Monitoring of silt pore pressure responding process to wave action[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 208-214. doi: 10.16562/j.cnki.0256-1492.2018.02.021

波浪作用下海底粉土孔隙水压力响应过程监测研究

  • 基金项目:
    国家海洋公益性行业科研专项“近海海底地质灾害预测评价及防控关键技术研究”(201005005);青岛海洋科学与技术国家实验室鳌山科技创新计划项目“亚洲大陆边缘地质过程与资源环境效应”(2015ASKJ03);山东省自然科学基金“细粒土侵蚀强度与冲刷深度量化研究”(ZR2014DP002)
详细信息
    作者简介: 宋玉鹏(1979—),男,博士生,主要从事海洋工程地质及灾害地质研究,E-mail:songyupeng@fio.org.cn
    通讯作者: 孙永福,研究员,E-mail:sunyongfu@fio.org.cn
  • 中图分类号: P714

  • 文凤英编辑

Monitoring of silt pore pressure responding process to wave action

More Information
  • 波浪引起的海底土体内部孔压累积是导致液化发生的主要原因,研究波浪作用下土体内部孔压响应过程对于明确液化机理、预测液化发生具有重要作用。在黄河口使用自行研发的孔压监测设备对海底粉土孔隙水压力进行了有效监测。监测结果显示,海底粉土的孔压变化主要受波浪影响且存在一定的影响范围,超出该范围则波浪对海底粉土的孔压无影响。同时,基于监测过程内的孔压变化对海底粉土进行了液化评判,并对波浪作用效果和液化影响因素进行了探讨。波浪对海底粉土内部孔压影响效果主要有3种:(1)有孔压振荡但不发生累积;(2)有孔压振荡且发生累积;(3)无孔压振荡且不发生累积。

  • 加载中
  • 图 1  监测站位图

    Figure 1. 

    图 2  波高随时间变化

    Figure 2. 

    图 3  潮位随时间变化

    Figure 3. 

    图 4  总孔压随时间变化

    Figure 4. 

    图 5  总孔压随时间变化(剔除潮位影响)

    Figure 5. 

    图 6  超孔压时程曲线及瞬时液化判别(虚线为0.5m深度土层上覆有效自重应力3.36lkPa)

    Figure 6. 

    图 7  波致孔压作用效果

    Figure 7. 

    表 1  监测站位海底粉土力学参数统计

    Table 1.  Statics parameter of silt of monitoring location

    参数范围值平均值
    含水量/%19.8~26.623.7
    天然重度/(kN/m3)19.4~20.719.8
    塑性指数/%6.2~8.77.3
    液性指数0.21~0.850.60
    黏聚力/kPa15.3~23.619.0
    内摩擦角/(°)22.9~25.224.3
    中值粒径/mm0.062~0.0650.063
    下载: 导出CSV

    表 2  波浪参数统计

    Table 2.  Parametric statistics of wave

    参数范围值平均值
    最大波高/cm36~395201
    有效波高/cm21~227126
    周期/s2.97~6.445.45
    下载: 导出CSV
  • [1]

    刘涛, 冯秀丽, 林霖.海底孔压对波浪响应试验研究及数值模拟[J].海洋学报, 2006, 28(3): 173-176. doi: 10.3321/j.issn:0253-4193.2006.03.023

    LIU Tao, FENG Xiuli, LIN Lin. Study of seabed pore water pressure based on in-situ test and numerical simulation[J]. Acta Oceanologica Sinica, 2006, 28(3): 173-176. doi: 10.3321/j.issn:0253-4193.2006.03.023

    [2]

    李安龙, 李广雪, 林霖, 等.波浪作用下粉土海床中的孔压响应试验研究[J].海洋通报, 2012, 31(1): 15-20. doi: 10.3969/j.issn.1001-6392.2012.01.003

    LI Anlong, LI Guangxue, LIN Lin, et al. Experiment study on pore pressure responses to wave action on silt seabed[J]. Marine Science Bulletin, 2012, 31(1): 15-20. doi: 10.3969/j.issn.1001-6392.2012.01.003

    [3]

    Putnam J A. Loss of wave energy due to percolation in a permeable sea bottom[J]. EOS, 1949, 30(3): 349-356. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/TR030i003p00349

    [4]

    Yamamoto T, Koning H L, Sellmeijer H, et al. On the response of a poro-elastic bed to water waves[J]. Journal of Fluid Mechanics, 1978, 87: 193-206. doi: 10.1017/S0022112078003006

    [5]

    Sleath F A. Wave induced pressures in beds of sand[J]. Journal of the Hydraulics Division, 1970, 96(2): 367-378.

    [6]

    Yamada Y, Ishihara K. Undrained deformation characteristics of loose sand under three-dimensional stress conditions[J]. Soils and Foundations, 1981, 21(1): 97-107. doi: 10.3208/sandf1972.21.97

    [7]

    Yasuhara K, Hirao K, Hyde A F. Effects of cyclic loading on undrained strength and compressibility of clay[J]. Soils and Foundations, 1992, 32(1): 100-116. doi: 10.3208/sandf1972.32.100

    [8]

    郭莹, 栾茂田, 董秀竹, 等.不同应力条件下砂土动模量特性的试验对比研究[J].水利学报, 2003, 34(5): 41-45. doi: 10.3321/j.issn:0559-9350.2003.05.007

    GUO Ying, LUAN Maotian, DONG Xiuzhu, et al. Experimental study on dynamic modulus characteristics of sand under different stress conditions[J]. Journal of Hydraulic Engineering, 2003, 34(5): 41-45. doi: 10.3321/j.issn:0559-9350.2003.05.007

    [9]

    Demars K R, Vanover E A. Measurement of wave‐induced pressures and stresses in a sandbed[J]. Marine Geotechnology, 1985, 6(1): 29-59. doi: 10.1080/10641198509388179

    [10]

    Maeno Y, Hasegawa T. Evaluation of wave-induced pore pressure in saturated sand bed: coastal hydrodynamics[C].2011.

    [11]

    Tzang S Y. Water wave-induced soil fluidization in a cohesionless fine-grained seabed[D]. Berkeley: University of California, 1992.

    [12]

    Sumer B M, Hatipoglu F, FredsØe J, et al. The sequence of sediment behaviour during wave-induced liquefaction[J]. Sedimentology, 2006, 53(3): 611-629. doi: 10.1111/j.1365-3091.2006.00763.x

    [13]

    李安龙, 杨荣民, 林霖, 等.波浪加载下海底土质特性变化的研究[J].青岛海洋大学学报:自然科学版, 2003, 33(1): 101-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qdhydxxb200301012

    LI Anlong Yang Rongmin LIN Lin, et al. Study on the geotechnical behavior of seabottom sediments under wave-loading[J]. Journal of Ocean University of Qingdao, 2003, 33(1): 101-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qdhydxxb200301012

    [14]

    Henkel D J. Geology, geomorphology and geotechenics:Geotechnique, V32, N3, Sept 1982, P175-194[J]. International Journal of Rock Mechanics and mining Sciences & Geomechanics Abstracts, 1983, 20(1): A1. https://www.sciencedirect.com/science/article/abs/pii/0148906283916169

    [15]

    Clukey E, Cacchione D A, Nelson C H. Liquifaction potential of the Yukon Prodelta, Bering Sea[C]//Offshore Technology Conference. Houston, Texas: Offshore Technology Conference, 1980.

    [16]

    Zen K, Yamazaki H. Mechanism of wave-induced liquefaction and densification in seabed[J]. Soils and Foundations, 1990, 30(4): 90-104. doi: 10.3208/sandf1972.30.4_90

    [17]

    Okusa S, Nakamura T, Fukue M. Measurements of wave-induced pore pressure and coefficients of permeability of submarine sediments during reversing flow[M]//Denness B. Seabed Mechanics. Netherlands: Springer, 1984: 113-122.

    [18]

    Bennett R H. Pore‐water pressure measurements: Mississippi delta submarine sediments[J]. Marine Geotechnology, 1977, 2(1-4): 177-189. doi: 10.1080/10641197709379778

    [19]

    Okusa S, Uchida A. Pore‐water pressure change in submarine sediments due to waves[J]. Marine Geotechnology, 1980, 4(2): 145-161. doi: 10.1080/10641198009379819

    [20]

    Zen K, Yamazaki H. Field observation and analysis of wave-induced liquefaction in seabed[J]. Soils and Foundations, 1991, 31(4): 161-179. doi: 10.3208/sandf1972.31.4_161

    [21]

    Bjerrum L. Geotechnical problems involved in foundation of structures in the North Sea[J]. Geotechnique, 1973, 23(3): 319-358. doi: 10.1680/geot.1973.23.3.319

    [22]

    Jeng Dongsheng, Seymour B, 高福平, 等.波浪载荷下海床土体孔隙水压的瞬态与累积响应机理[J].中国科学(E辑:技术科学), 2007, 37(1): 91-98. http://d.old.wanfangdata.com.cn/Periodical/zgkx-ce200701012

    Jeng DongSheng, Seymour B, GAO Fuping. Transient and cumulative response mechanism of pore pressure in seabed under wave loading[J]. Science in China Series E, 2007, 37(1): 91-98. http://d.old.wanfangdata.com.cn/Periodical/zgkx-ce200701012

    [23]

    孙永福, 董立峰, 宋玉鹏.黄河水下三角洲粉质土扰动土层特征及成因探析[J].岩土力学, 2008, 29(6): 1494-1499. doi: 10.3969/j.issn.1000-7598.2008.06.012

    SUN Yongfu Dong Lifeng, SONG Yupeng. Analysis of characteristics and formation of disturbed soil on subaqueous delta of Yellow River[J]. Rock and Soil Mechanics, 2008, 29(6): 1494-1499. doi: 10.3969/j.issn.1000-7598.2008.06.012

  • 加载中

(7)

(2)

计量
  • 文章访问数:  2013
  • PDF下载数:  50
  • 施引文献:  0
出版历程
收稿日期:  2016-04-21
修回日期:  2016-07-11
刊出日期:  2018-04-28

目录