西太平洋弧后盆地的热液系统及其岩浆环境研究

曾志刚, 张玉祥, 陈祖兴, 李晓辉, 齐海燕, 王晓媛, 陈帅, 殷学博. 西太平洋弧后盆地的热液系统及其岩浆环境研究[J]. 海洋地质与第四纪地质, 2021, 41(5): 12-24. doi: 10.16562/j.cnki.0256-1492.2021070101
引用本文: 曾志刚, 张玉祥, 陈祖兴, 李晓辉, 齐海燕, 王晓媛, 陈帅, 殷学博. 西太平洋弧后盆地的热液系统及其岩浆环境研究[J]. 海洋地质与第四纪地质, 2021, 41(5): 12-24. doi: 10.16562/j.cnki.0256-1492.2021070101
ZENG Zhigang, ZHANG Yuxiang, CHEN Zuxing, LI Xiaohui, QI Haiyan, WANG Xiaoyuan, CHEN Shuai, YIN Xuebo. Seafloor hydrothermal system and its magmatic setting in the western Pacific back-arc basins[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 12-24. doi: 10.16562/j.cnki.0256-1492.2021070101
Citation: ZENG Zhigang, ZHANG Yuxiang, CHEN Zuxing, LI Xiaohui, QI Haiyan, WANG Xiaoyuan, CHEN Shuai, YIN Xuebo. Seafloor hydrothermal system and its magmatic setting in the western Pacific back-arc basins[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 12-24. doi: 10.16562/j.cnki.0256-1492.2021070101

西太平洋弧后盆地的热液系统及其岩浆环境研究

  • 基金项目: 国家自然科学基金“西太平洋俯冲体系中岩浆活动及其对热液物质供给的制约”(91958213);全球变化与海气相互作用专项课题“菲律宾海板块西边界及东南边界俯冲系统的岩浆构造演化”(GASI-GEOGE-02);中国科学院国际合作局对外合作重点项目“冲绳海槽热液活动成矿机理及其沉积效应”(133137KYSB20170003);大洋“十三五”深海资源潜力评估项目课题“海底多金属硫化物及金属软泥的成矿机理”(DY135-G2-1-02);泰山学者工程专项“特聘专家资助计划项目”(ts201511061);国家重点基础研究发展计划(973计划)项目“典型弧后盆地热液活动及其成矿机理”(2013CB429700)
详细信息
    作者简介: 曾志刚(1968—),男,博士,研究员,从事海底热液活动及成矿研究,E-mail:zgzeng@qdio.ac.cn
  • 中图分类号: P736

Seafloor hydrothermal system and its magmatic setting in the western Pacific back-arc basins

  • 研究海底热液系统及其岩浆环境,可为了解西太平洋流固界面跨圈层物质与热交换过程,揭示板块俯冲过程的岩浆活动和资源环境效应提供研究支撑。为此,研究了冲绳海槽热液活动的岩浆环境、马努斯海盆的热液柱以及弧后盆地和洋中脊背景下的硫化物与玄武岩的同位素组成,对冲绳海槽热液区附近玄武岩、安山岩、粗安岩、英安岩、流纹岩及其基性岩浆包体进行了岩相学、矿物学以及主量元素、微量元素和同位素组成分析,对马努斯海盆PACMANUS和Desmos热液区的热液柱及海水进行了测量,在海底热液区岩浆混合过程及时间尺度、透视冲绳海槽深部岩浆房及岩浆演化过程和岩浆对热液系统物质贡献研究方面获新进展,揭示了俯冲蛇纹岩对琉球构造带南部岩浆活动的影响,论证了熔体包裹体对弧后盆地岩浆演化的指示,获得了冲绳海槽玄武质岩浆来源新证据,揭示了弧后盆地与洋中脊硫化物和玄武岩中铁、铜、锌的来源及其同位素在硫化物形成和岩浆活动过程中的分馏情况,明确了热液柱的物理、化学空间结构与物质组成特征,以及热液柱的扩散受深度和底流流速的影响,且热液柱扩散过程中溶解铁浓度异常比溶解锰的维持时间更长。未来,发展非传统稳定同位素和挥发份测试技术,进一步了解西太平洋板块俯冲环境下热液活动与岩浆作用的关系,将有助于海底热液系统及其成矿过程研究获得新进展。

  • 加载中
  • [1]

    曾志刚, 陈祖兴, 张玉祥, 等. 海底热液活动的环境与产物[J]. 海洋科学, 2020, 44(7):143-155 doi: 10.11759/hykx20200316001

    ZENG Zhigang, CHEN Zuxing, ZHANG Yuxiang, et al. Seafloor hydrothermal activities and their geological environments and products [J]. Marine Sciences, 2020, 44(7): 143-155. doi: 10.11759/hykx20200316001

    [2]

    Zeng Z G, Chen Z X, Zhang Y X, et al. Geological, physical, and chemical characteristics of seafloor hydrothermal vent fields [J]. Journal of Oceanology and Limnology, 2020, 38(4): 985-1007. doi: 10.1007/s00343-020-0123-5

    [3]

    曾志刚. 东太平洋海隆热液地质[M]. 北京: 科学出版社, 2020.

    ZENG Zhigang. Submarine Hydrothermal Geology of the East Pacific Rise[M]. Beijing: Science Press, 2020.

    [4]

    Bebout G E. Chemical and isotopic cycling in subduction zones[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier Inc. , 2014: 703-747.

    [5]

    Bindeman I N, Eiler J M, Yogodzinski G M, et al. Oxygen isotope evidence for slab melting in modern and ancient subduction zones [J]. Earth and Planetary Science Letters, 2005, 235(3-4): 480-496. doi: 10.1016/j.jpgl.2005.04.014

    [6]

    Duggen S, Portnyagin M, Baker J, et al. Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the Southern Kamchatkan subduction zone: Evidence for the transition from slab surface dehydration to sediment melting [J]. Geochimica et Cosmochimica Acta, 2007, 71(2): 452-480. doi: 10.1016/j.gca.2006.09.018

    [7]

    Harvey J, Garrido C J, Savov I, et al. 11B-rich fluids in subduction zones: The role of antigorite dehydration in subducting slabs and boron isotope heterogeneity in the mantle [J]. Chemical Geology, 2014, 376: 20-30. doi: 10.1016/j.chemgeo.2014.03.015

    [8]

    Kendrick M A, Arculus R J, Danyushevsky L V, et al. Subduction-related halogens (Cl, Br and I) and H2O in magmatic glasses from Southwest Pacific Backarc Basins [J]. Earth and Planetary Science Letters, 2014, 400: 165-176. doi: 10.1016/j.jpgl.2014.05.021

    [9]

    Scambelluri M, Pettke T, Cannaò E. Fluid-related inclusions in Alpine high-pressure peridotite reveal trace element recycling during subduction-zone dehydration of serpentinized mantle (Cima di Gagnone, Swiss Alps) [J]. Earth and Planetary Science Letters, 2015, 429: 45-59. doi: 10.1016/j.jpgl.2015.07.060

    [10]

    Spandler C, Pirard C. Element recycling from subducting slabs to arc crust: A review [J]. Lithos, 2013, 170-171: 208-223. doi: 10.1016/j.lithos.2013.02.016

    [11]

    Ryan J G, Chauvel C. The subduction-zone filter and the impact of recycled materials on the evolution of the mantle[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier Inc. , 2014, 3: 479-508.

    [12]

    Ague J J, Nicolescu S. Carbon dioxide released from subduction zones by fluid-mediated reactions [J]. Nature Geoscience, 2014, 7(5): 355-360. doi: 10.1038/ngeo2143

    [13]

    John T, Gussone N, Podladchikov Y Y, et al. Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs [J]. Nature Geoscience, 2012, 5(7): 489-492. doi: 10.1038/ngeo1482

    [14]

    Pearce J A, Stern R J. Origin of back-arc basin magmas: trace element and isotope perspectives[M]//Christie D M, Fisher C R, Lee S M, et al. Back-Arc Spreading Systems; Geological, Biological, Chemical, and Physical Interactions. Washington: American Geophysical Union, 2006, 166: 63-86.

    [15]

    Plank T, Langmuir C H. Tracing trace elements from sediment input to volcanic output at subduction zones [J]. Nature, 1993, 362(6422): 739-743. doi: 10.1038/362739a0

    [16]

    Schmidt M W, Jagoutz O. The global systematics of primitive arc melts [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(8): 2817-2854. doi: 10.1002/2016GC006699

    [17]

    Taylor B, Martinez F. Back-arc basin basalt systematics [J]. Earth and Planetary Science Letters, 2003, 210(3-4): 481-497. doi: 10.1016/S0012-821X(03)00167-5

    [18]

    Timm C, Davy B, Haase K, et al. Subduction of the oceanic Hikurangi Plateau and its impact on the Kermadec arc [J]. Nature Communications, 2014, 5: 4923. doi: 10.1038/ncomms5923

    [19]

    Turner S, Caulfield J, Turner M, et al. Recent contribution of sediments and fluids to the mantle’s volatile budget [J]. Nature Geoscience, 2012, 5: 50-54. doi: 10.1038/ngeo1325

    [20]

    Bouvier A S, Manzini M, Rose-Koga E F, et al. Tracing of Cl input into the sub-arc mantle through the combined analysis of B, O and Cl isotopes in melt inclusions [J]. Earth and Planetary Science Letters, 2019, 507: 30-39. doi: 10.1016/j.jpgl.2018.11.036

    [21]

    De Hoog J C M, Savov I P. Boron isotopes as a tracer of subduction zone processes[M]//Marschall H, Foster G. Boron Isotopes. Cham: Springer, 2018: 217-247.

    [22]

    Debret B, Koga K T, Nicollet C, et al. F, Cl and S input via serpentinite in subduction zones: implications for the nature of the fluid released at depth [J]. Terra Nova, 2014, 26(2): 96-101. doi: 10.1111/ter.12074

    [23]

    Hu Y, Teng F Z, Plank T, et al. Magnesium isotopic composition of subducting marine sediments [J]. Chemical Geology, 2017, 466: 15-31. doi: 10.1016/j.chemgeo.2017.06.010

    [24]

    Nielsen S G, Horner T J, Pryer H V, et al. Barium isotope evidence for pervasive sediment recycling in the upper mantle [J]. Science Advances, 2018, 4(7): eaas8675. doi: 10.1126/sciadv.aas8675

    [25]

    Nielsen S G, Yogodzinski G, Prytulak J, et al. Tracking along-arc sediment inputs to the Aleutian arc using thallium isotopes [J]. Geochimica et Cosmochimica Acta, 2016, 181: 217-237. doi: 10.1016/j.gca.2016.03.010

    [26]

    Palmer M R. Boron cycling in subduction zones [J]. Elements, 2017, 13(4): 237-242. doi: 10.2138/gselements.13.4.237

    [27]

    Teng F Z, Hu Y, Chauvel C. Magnesium isotope geochemistry in arc volcanism [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(26): 7082-7087. doi: 10.1073/pnas.1518456113

    [28]

    Behn M D, Kelemen P B, Hirth G, et al. Diapirs as the source of the sediment signature in arc lavas [J]. Nature Geoscience, 2011, 4(9): 641-646. doi: 10.1038/ngeo1214

    [29]

    Marschall H R, Schumacher J C. Arc magmas sourced from mélange diapirs in subduction zones [J]. Nature Geoscience, 2012, 5(12): 862-867. doi: 10.1038/ngeo1634

    [30]

    Nielsen S G, Marschall H R. Geochemical evidence for mélange melting in global arcs [J]. Science Advances, 2017, 3(4): e1602402. doi: 10.1126/sciadv.1602402

    [31]

    Codillo E A, Le Roux V, Marschall H R. Arc-like magmas generated by mélange-peridotite interaction in the mantle wedge [J]. Nature Communications, 2018, 9(1): 2864. doi: 10.1038/s41467-018-05313-2

    [32]

    Cruz-Uribe A M, Gaetani G A, Le Roux V, et al. Generation of alkaline magmas in subduction zones by partial melting of mélange diapirs—An experimental study [J]. Geology, 2018, 46(4): 343-346. doi: 10.1130/G39956.1

    [33]

    Stern R J, Fouch M J, Klemperer S L. An overview of the Izu-Bonin-Mariana Subduction factory[M]//Inside the Subduction Factory. Washington, D C: American Geophysical Union, 2004: 175-222.

    [34]

    Woodhead J, Stern R J, Pearce J, et al. Hf-Nd isotope variation in Mariana Trough basalts: The importance of "ambient mantle" in the interpretation of subduction zone magmas [J]. Geology, 2012, 40(6): 539-542. doi: 10.1130/G32963.1

    [35]

    Chauvel C, Marini J C, Plank T, et al. Hf-Nd input flux in the Izu-Mariana subduction zone and recycling of subducted material in the mantle [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(1): Q01001.

    [36]

    Tollstrup D L, Gill J B. Hafnium systematics of the Mariana arc: evidence for sediment melt and residual phases [J]. Geology, 2005, 33(9): 737-740. doi: 10.1130/G21639.1

    [37]

    Alt J C, Shanks W C, Jackson M C. Cycling of sulfur in subduction zones: the geochemistry of sulfur in the Mariana Island Arc and back-arc trough [J]. Earth and Planetary Science Letters, 1993, 119(4): 477-494. doi: 10.1016/0012-821X(93)90057-G

    [38]

    Barnes J D, Sharp Z D, Fischer T P. Chlorine isotope variations across the Izu-Bonin-Mariana arc [J]. Geology, 2008, 36(11): 883-886. doi: 10.1130/G25182A.1

    [39]

    Stern R J, Kohut E, Bloomer S H, et al. Subduction factory processes beneath the Guguan cross-chain, Mariana Arc: no role for sediments, are serpentinites important? [J]. Contributions to Mineralogy and Petrology, 2006, 151(2): 202-221. doi: 10.1007/s00410-005-0055-2

    [40]

    Hoang N, Uto K. Upper mantle isotopic components beneath the Ryukyu arc system: Evidence for ‘back-arc’ entrapment of Pacific MORB mantle [J]. Earth and Planetary Science Letters, 2006, 249(3-4): 229-240. doi: 10.1016/j.jpgl.2006.07.021

    [41]

    Yan Q S, Shi X F. Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu Arc: A review [J]. Acta Oceanologica Sinica, 2014, 33(4): 1-12. doi: 10.1007/s13131-014-0400-2

    [42]

    Shinjo R, Chung S L, Kato Y, et al. Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: implications for the evolution of a young, intracontinental back arc basin [J]. Journal of Geophysical Research:Solid Earth, 1999, 104(B5): 10591-10608. doi: 10.1029/1999JB900040

    [43]

    Guo K, Zhai S K, Yu Z H, et al. Geochemical and Sr-Nd-Pb-Li isotopic characteristics of volcanic rocks from the Okinawa Trough: implications for the influence of subduction components and the contamination of crustal materials [J]. Journal of Marine Systems, 2018, 180: 140-151. doi: 10.1016/j.jmarsys.2016.11.009

    [44]

    Zhang Y X, Zeng Z G, Li X H, et al. High-potassium volcanic rocks from the Okinawa Trough: implications for a cryptic potassium-rich and DUPAL-like source [J]. Geological Journal, 2018, 53(5): 1755-1766. doi: 10.1002/gj.3000

    [45]

    Shu Y C, Nielsen S G, Zeng Z G, et al. Tracing subducted sediment inputs to the Ryukyu arc-Okinawa Trough system: evidence from thallium isotopes [J]. Geochimica et Cosmochimica Acta, 2017, 217: 462-491. doi: 10.1016/j.gca.2017.08.035

    [46]

    Kendrick M A, Scambelluri M, Honda M, et al. High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction [J]. Nature Geoscience, 2011, 4(11): 807-812. doi: 10.1038/ngeo1270

    [47]

    Métrich N, Schiano P, Clocchiatti R, et al. Transfer of sulfur in subduction settings: an example from Batan Island (Luzon volcanic arc, Philippines) [J]. Earth and Planetary Science Letters, 1999, 167(1-2): 1-14. doi: 10.1016/S0012-821X(99)00009-6

    [48]

    Straub S M, Layne G D. The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: Implications for volatile recycling in subduction zones [J]. Geochimica et Cosmochimica Acta, 2003, 67(21): 4179-4203. doi: 10.1016/S0016-7037(03)00307-7

    [49]

    Wallace P J, Edmonds M. The sulfur budget in magmas: evidence from melt inclusions, submarine glasses, and volcanic gas emissions [J]. Reviews in Mineralogy and Geochemistry, 2011, 73(1): 215-246. doi: 10.2138/rmg.2011.73.8

    [50]

    Kelley K A, Plank T, Grove T L, et al. Mantle melting as a function of water content beneath back-arc basins [J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B9): B09208.

    [51]

    Sun W D, Binns R A, Fan A C, et al. Chlorine in submarine volcanic glasses from the eastern manus basin [J]. Geochimica et Cosmochimica Acta, 2007, 71(6): 1542-1552. doi: 10.1016/j.gca.2006.12.003

    [52]

    Holland G, Ballentine C J. Seawater subduction controls the heavy noble gas composition of the mantle [J]. Nature, 2006, 441(7090): 186-191. doi: 10.1038/nature04761

    [53]

    Kendrick M A, Hémond C, Kamenetsky V S, et al. Seawater cycled throughout Earth’s mantle in partially serpentinized lithosphere [J]. Nature Geoscience, 2017, 10(3): 222-228. doi: 10.1038/ngeo2902

    [54]

    Barnes J D, Manning C E, Scambelluri M, et al. The behavior of halogens during subduction-zone processes[M]//Harlov D, Aranovich L. The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle. Cham: Springer, 2018: 545-590.

    [55]

    Chavrit D, Burgess R, Sumino H, et al. The contribution of hydrothermally altered ocean crust to the mantle halogen and noble gas cycles [J]. Geochimica et Cosmochimica Acta, 2016, 183: 106-124. doi: 10.1016/j.gca.2016.03.014

    [56]

    Kobayashi M, Sumino H, Nagao K, et al. Slab-derived halogens and noble gases illuminate closed system processes controlling volatile element transport into the mantle wedge [J]. Earth and Planetary Science Letters, 2017, 457: 106-116. doi: 10.1016/j.jpgl.2016.10.012

    [57]

    Sumino H, Burgess R, Mizukami T, et al. Seawater-derived noble gases and halogens preserved in exhumed mantle wedge peridotite [J]. Earth and Planetary Science Letters, 2010, 294(1-2): 163-172. doi: 10.1016/j.jpgl.2010.03.029

    [58]

    Alt J C, Shanks W C. Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: sulfur geochemistry and reaction modeling [J]. Geochimica et Cosmochimica Acta, 2003, 67(4): 641-653. doi: 10.1016/S0016-7037(02)01142-0

    [59]

    Orberger B, Mosbah M, Mevel C, et al. Nuclear microprobe analysis of serpentine from the mid-Atlantic ridge [J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1999, 158(1-4): 575-581. doi: 10.1016/S0168-583X(99)00342-0

    [60]

    Alt J C, Garrido C J, Shanks W C, et al. Recycling of water, carbon, and sulfur during subduction of serpentinites: a stable isotope study of Cerro del Almirez, Spain [J]. Earth and Planetary Science Letters, 2012, 327-328: 50-60. doi: 10.1016/j.jpgl.2012.01.029

    [61]

    Kendrick M A, Burgess R, Pattrick R A D, et al. Fluid inclusion noble gas and halogen evidence on the origin of Cu-Porphyry mineralising fluids [J]. Geochimica et Cosmochimica Acta, 2001, 65(16): 2651-2668. doi: 10.1016/S0016-7037(01)00618-4

    [62]

    Zeng Z G, Niedermann S, Chen S, et al. Noble gases in sulfide deposits of modern deep-sea hydrothermal systems: implications for heat fluxes and hydrothermal fluid processes [J]. Chemical Geology, 2015, 409: 1-11. doi: 10.1016/j.chemgeo.2015.05.007

    [63]

    Hou Z Q, Zaw K, Li Y H, et al. Contribution of magmatic fluid to the active hydrothermal system in the JADE Field, Okinawa trough: evidence from fluid inclusions, oxygen and helium isotopes [J]. International Geology Review, 2005, 47(4): 420-437. doi: 10.2747/0020-6814.47.4.420

    [64]

    Lüders V, Pracejus B, Halbach P. Fluid inclusion and sulfur isotope studies in probable modern analogue Kuroko-type ores from the JADE hydrothermal field (Central Okinawa Trough, Japan) [J]. Chemical Geology, 2001, 173(1-3): 45-58. doi: 10.1016/S0009-2541(00)00267-9

    [65]

    曾志刚, 秦蕴珊, 翟世奎. 冲绳海槽Jade热液区块状硫化物中流体包裹体的氦、氖、氩同位素组成[J]. 海洋学报, 2004, 23(4):655-661

    ZENG Zhigang, QIN Yunshan, ZHAI Shikui. Helium, neon and argon isotope compositions of fluid inclusions in massive sulfides from the Jade hydrothermal field, Okinawa Trough [J]. Acta Oceanologica Sinica, 2004, 23(4): 655-661.

    [66]

    Lüders V, Niedermann S. Helium isotope composition of fluid inclusions hosted in massive sulfides from modern submarine hydrothermal systems [J]. Economic Geology, 2010, 105(2): 443-449. doi: 10.2113/gsecongeo.105.2.443

    [67]

    Webber A P, Roberts S, Burgess R, et al. Fluid mixing and thermal regimes beneath the PACMANUS hydrothermal field, Papua New Guinea: helium and oxygen isotope data [J]. Earth and Planetary Science Letters, 2011, 304(1-2): 93-102. doi: 10.1016/j.jpgl.2011.01.020

    [68]

    Lee J Y, Marti K, Severinghaus J P, et al. A redetermination of the isotopic abundances of atmospheric Ar [J]. Geochimica et Cosmochimica Acta, 2006, 70(17): 4507-4512. doi: 10.1016/j.gca.2006.06.1563

    [69]

    Mark D F, Stuart F M, De Podesta M. New high-precision measurements of the isotopic composition of atmospheric argon [J]. Geochimica et Cosmochimica Acta, 2011, 75(23): 7494-7501. doi: 10.1016/j.gca.2011.09.042

    [70]

    Elliott T, Plank T, Zindler A, et al. Element transport from slab to volcanic front at the Mariana arc [J]. Journal of Geophysical Research:Solid Earth, 1997, 102(B7): 14991-15019. doi: 10.1029/97JB00788

    [71]

    Guo K, Zeng Z G, Chen S, et al. The influence of a subduction component on magmatism in the Okinawa Trough: Evidence from thorium and related trace element ratios [J]. Journal of Asian Earth Sciences, 2017, 145: 205-216. doi: 10.1016/j.jseaes.2017.05.033

    [72]

    Ribeiro J M, Stern R J, Kelley K A, et al. Nature and distribution of slab-derived fluids and mantle sources beneath the Southeast Mariana forearc rift [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(10): 4585-4607. doi: 10.1002/ggge.20244

    [73]

    Chen Z X, Zeng Z G, Yin X B, et al. Petrogenesis of highly fractionated rhyolites in the southwestern Okinawa Trough: constraints from whole-rock geochemistry data and Sr-Nd-Pb-O isotopes [J]. Geological Journal, 2019, 54(1): 316-332. doi: 10.1002/gj.3179

    [74]

    Zhang Y X, Zeng Z G, Yin X B, et al. Petrology and mineralogy of pumice from the Iheya North Knoll, Okinawa Trough: Implications for the differentiation of crystal-poor and volatile-rich melts in the magma chamber [J]. Geological Journal, 2018, 53(6): 2732-2745. doi: 10.1002/gj.3106

    [75]

    Sun W D, Arculus R J, Kamenetsky V S, et al. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization [J]. Nature, 2004, 431(7011): 975-978. doi: 10.1038/nature02972

    [76]

    Sun W D, Arculus R J, Kamenetsky V S, et al. Metals and chlorine in the evolution of convergent margin magmas [J]. Geochimica et Cosmochimica Acta, 2006, 70(18): A629.

    [77]

    孙卫东, 胡艳华, 丁兴, 等. 汇聚板块边缘岩浆中金属和氯的地球化学性质研究[J]. 地学前缘, 2007, 14(2):139-148 doi: 10.3321/j.issn:1005-2321.2007.02.011

    SUN Weidong, HU Yanhua, DING Xing, et al. The geochemical behaviors of some metals and chlorine during the evolution of convergent margin magmas [J]. Earth Science Frontiers, 2007, 14(2): 139-148. doi: 10.3321/j.issn:1005-2321.2007.02.011

    [78]

    Jenner F E, O’Neill H S T C, Arculus R J, et al. The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag and Cu [J]. Journal of Petrology, 2010, 51(12): 2445-2464. doi: 10.1093/petrology/egq063

    [79]

    Li Z G, Chu F Y, Dong Y H, et al. Origin of selective enrichment of Cu and Au in sulfide deposits formed at immature back-arc ridges: Examples from the Lau and Manus basins [J]. Ore Geology Reviews, 2016, 74: 52-62. doi: 10.1016/j.oregeorev.2015.11.010

    [80]

    Sun W, Bennett V C, Eggins S M, et al. Rhenium systematics in submarine MORB and back-arc basin glasses: laser ablation ICP-MS results [J]. Chemical Geology, 2003, 196(1-4): 259-281. doi: 10.1016/S0009-2541(02)00416-3

    [81]

    Sun W D, Bennett V C, Kamenetsky V S. The mechanism of Re enrichment in arc magmas: evidence from Lau Basin basaltic glasses and primitive melt inclusions [J]. Earth and Planetary Science Letters, 2004, 222(1): 101-114. doi: 10.1016/j.jpgl.2004.02.011

    [82]

    Alt J C. Subseafloor processes in mid‐ocean ridge hydrothennal systems[M]//Humphris S E, Zierenberg R A, Mullineaux L S, et al. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington D C: American Geophysical Union, 1995: 85-114.

    [83]

    Mottl M J, Holland H D. Chemical exchange during hydrothermal alteration of basalt by seawater—I. Experimental results for major and minor components of seawater [J]. Geochimica et Cosmochimica Acta, 1978, 42(8): 1103-1115. doi: 10.1016/0016-7037(78)90107-2

    [84]

    Humphris S E, Klein F. Progress in deciphering the controls on the geochemistry of fluids in seafloor hydrothermal systems [J]. Annual Review of Marine Science, 2018, 10(1): 315-343. doi: 10.1146/annurev-marine-121916-063233

    [85]

    Yang K H, Scott S D. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system [J]. Nature, 1996, 383(6599): 420-423. doi: 10.1038/383420a0

    [86]

    Marques A F A, Scott S D, Guillong M. Magmatic degassing of ore-metals at the Menez Gwen: Input from the Azores plume into an active Mid-Atlantic Ridge seafloor hydrothermal system [J]. Earth and Planetary Science Letters, 2011, 310(1-2): 145-160. doi: 10.1016/j.jpgl.2011.07.021

    [87]

    Craddock P R, Bach W. Insights to magmatic–hydrothermal processes in the Manus back-arc basin as recorded by anhydrite [J]. Geochimica et Cosmochimica Acta, 2010, 74(19): 5514-5536. doi: 10.1016/j.gca.2010.07.004

    [88]

    王淑杰, 翟世奎, 于增慧, 等. 关于现代海底热液活动系统模式的思考[J]. 地球科学, 2018, 43(3):835-850

    WANG Shujie, ZHAI Shikui, YU Zenghui, et al. Reflections on model of modern seafloor hydrothermal system [J]. Earth Science, 2018, 43(3): 835-850.

    [89]

    Ikehata K, Suzuki R, Shimada K, et al. Mineralogical and geochemical characteristics of hydrothermal minerals collected from hydrothermal vent fields in the southern Mariana spreading center[M]//Ishibashi J, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems. Tokyo: Springer, 2015: 275-287.

    [90]

    Kakegawa T, Utsumi M, Marumo K. Geochemistry of sulfide chimneys and basement pillow lavas at the southern Mariana trough (12.55°N–12.58°N) [J]. Resource Geology, 2008, 58(3): 249-266. doi: 10.1111/j.1751-3928.2008.00060.x

    [91]

    Ishibashi J I, Tsunogai U, Toki T, et al. Chemical composition of hydrothermal fluids in the central and southern Mariana Trough backarc basin[J] Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 121: 126-136.

    [92]

    Halbach P, Hansmann W, Köppel V, et al. Whole-rock and sulfide lead-isotope data from the hydrothermal JADE field in the Okinawa back-arc trough [J]. Mineralium Deposita, 1997, 32(1): 70-78. doi: 10.1007/s001260050073

    [93]

    Hongo Y, Nozaki Y. Rare earth element geochemistry of hydrothermal deposits and Calyptogena shell from the Iheya Ridge vent field, Okinawa Trough [J]. Geochemical Journal, 2001, 35(5): 347-354. doi: 10.2343/geochemj.35.347

    [94]

    Zeng Z G, Ma Y, Chen S, et al. Sulfur and lead isotopic compositions of massive sulfides from deep-sea hydrothermal systems: Implications for ore genesis and fluid circulation [J]. Ore Geology Reviews, 2017, 87: 155-171. doi: 10.1016/j.oregeorev.2016.10.014

    [95]

    曾志刚, 翟世奎, 杜安道. 冲绳海槽Jade热液区海底块状硫化物的Os同位素组成[J]. 海洋与湖沼, 2003, 34(4):407-413 doi: 10.3321/j.issn:0029-814X.2003.04.007

    ZENG Zhigang, ZHAI Shikui, DU Andao. Os isotopic compositions of seafloor massive sulfides from the Jade hydrothermal field in the Okinawa Trough [J]. Oceanologia et Limnologia Sinica, 2003, 34(4): 407-413. doi: 10.3321/j.issn:0029-814X.2003.04.007

    [96]

    曾志刚, 蒋富清, 秦蕴珊, 等. 冲绳海槽中部Jade热液活动区中块状硫化物的稀土元素地球化学特征[J]. 地质学报, 2001, 75(2):244-249 doi: 10.3321/j.issn:0001-5717.2001.02.014

    ZENG Zhigang, JIANG Fuqing, QIN Yunshan, et al. Rare earth element geochemistry of massive sulphides from the Jade hydrothermal field in the Central Okinawa Trough [J]. Acta Geologica Sinica, 2001, 75(2): 244-249. doi: 10.3321/j.issn:0001-5717.2001.02.014

    [97]

    曾志刚, 蒋富清, 翟世奎, 等. 冲绳海槽Jade热浪活动区块状硫化物的铅同位素组成及其地质意义[J]. 地球化学, 2000, 29(3):239-245 doi: 10.3321/j.issn:0379-1726.2000.03.005

    ZENG Zhigang, JIANG Fuqing, ZHAI Shikui, et al. Lead isotopic compositions of massive sulfides from the Jade hydrothermal field in the Okinawa Trough and its geological implications [J]. Geochimica, 2000, 29(3): 239-245. doi: 10.3321/j.issn:0379-1726.2000.03.005

    [98]

    侯增谦, 李延河, 艾永德, 等. 冲绳海槽活动热水成矿系统的氦同位素组成: 幔源氦证据[J]. 中国科学(D辑), 1999, 29(2):155-162 doi: 10.3969/j.issn.1674-7240.1999.02.008

    HOU Zengqian, LI Yanhe, AI Yongde, et al. The helium isotopic compositions of activity hydrothermal system in the Okinawa Trough: mantle-derived helium evidence [J]. Science in China Series D-Earth Sciences (in Chinese), 1999, 29(2): 155-162. doi: 10.3969/j.issn.1674-7240.1999.02.008

    [99]

    刘焱光, 孟宪伟, 付云霞. 冲绳海槽Jade热液场烟囱物稀土元素和锶、钕同位素地球化学特征[J]. 海洋学报, 2005, 27(5):67-72

    LIU Yanguang, MENG Xianwei, FU Yunxia. Rare earth element and strontium-neodymium isotope characteristics of hydrothermal chimney in Jade area in the Okinawa Trough [J]. Acta Oceanologica Sinica, 2005, 27(5): 67-72.

    [100]

    侯增谦, 艾永德, 曲晓明, 等. 岩浆流体对冲绳海槽海底成矿热水系统的可能贡献[J]. 地质学报, 1999, 73(1):57-65 doi: 10.3321/j.issn:0001-5717.1999.01.007

    HOU Zengqian, AI Yongde, QU Xiaoming, et al. Possible contribution of magmatic fluids to seafloor ore-forming hydrothermal system in the Okinawa Trough [J]. Acta Geologica Sinica, 1999, 73(1): 57-65. doi: 10.3321/j.issn:0001-5717.1999.01.007

    [101]

    侯增谦, 张绮玲. 冲绳海槽现代活动热水区CO2-烃类流体: 流体包裹体证据[J]. 中国科学(D辑), 1998, 28(2):142-148 doi: 10.3321/j.issn:1006-9267.1998.02.006

    HOU Zengqian, ZHANG Qiling. CO2-Hydrocarbon fluids of the Jade hydrothermal field in the Okinawa Trough: fluid inclusion evidence [J]. Science in China Series D-Earth Sciences, 1998, 28(2): 142-148. doi: 10.3321/j.issn:1006-9267.1998.02.006

    [102]

    Chen Z X, Zeng Z G, Wang X Y, et al. Element and Sr isotope zoning in plagioclase in the dacites from the southwestern Okinawa Trough: Insights into magma mixing processes and time scales [J]. Lithos, 2020, 376-377: 105776. doi: 10.1016/j.lithos.2020.105776

    [103]

    Chen Z X, Zeng Z G, Tamehe L S, et al. Magmatic sulfide saturation and dissolution in the basaltic andesitic magma from the Yaeyama Central Graben, southern Okinawa Trough [J]. Lithos, 2021, 388-389: 106082. doi: 10.1016/j.lithos.2021.106082

    [104]

    陈祖兴, 曾志刚, 王晓媛, 等. 岩浆房持续的时间: 矿物内元素扩散年代学研究进展及展望[J]. 地球科学进展, 2020, 35(12):1232-1242

    CHEN Zuxing, ZENG Zhigang, WANG Xiaoyuan, et al. Duration of magma chamber: Progress and prospect of element diffusion chronometry of minerals [J]. Advances in Earth Science, 2020, 35(12): 1232-1242.

    [105]

    Li X H, Zeng Z G, Dan W, et al. Source lithology and crustal assimilation recorded in low δ18O olivine from Okinawa Trough, back-arc basin [J]. Lithos, 2020, 360-361: 105444. doi: 10.1016/j.lithos.2020.105444

    [106]

    Li X H, Zeng Z G, Yang H X, et al. Integrated major and trace element study of clinopyroxene in basic, intermediate and acidic volcanic rocks from the middle Okinawa Trough: Insights into petrogenesis and the influence of subduction component [J]. Lithos, 2020, 352-353: 105320. doi: 10.1016/j.lithos.2019.105320

    [107]

    Li X H, Ren Z Y, Zeng Z G, et al. Petrogenesis of middle Okinawa Trough volcanic rocks: Constraints from lead isotopes in olivine-hosted melt inclusions [J]. Chemical Geology, 2020, 543: 119600. doi: 10.1016/j.chemgeo.2020.119600

    [108]

    Zhang Y X, Zeng Z G, Gaetani G, et al. Mineralogical constraints on the magma mixing beneath the Iheya Graben, an active back-arc spreading centre of the Okinawa trough [J]. Journal of Petrology, 2020, 61(9): egaa098.

    [109]

    Zhang Y X, Gaetani G, Zeng Z G, et al. Halogen (F, Cl) concentrations and Sr-Nd-Pb-B isotopes of the basaltic andesites from the southern Okinawa Trough: Implications for the recycling of subducted serpentinites [J]. Journal of Geophysical Research:Solid Earth, 2021, 126(3): e2021JB021709.

    [110]

    张玉祥, 曾志刚, 王晓媛, 等. 冲绳海槽地质构造对热液活动的控制机理[J]. 地球科学进展, 2020, 35(7):678-690

    ZHANG Yuxiang, ZENG Zhigang, WANG Xiaoyuan, et al. Geologic control on hydrothermal activities in the Okinawa Trough [J]. Advances in Earth Science, 2020, 35(7): 678-690.

    [111]

    Zeng Z G, Wang X Y, Murton B J, et al. Dispersion and intersection of hydrothermal plumes in the Manus back-arc basin, western pacific [J]. Geofluids, 2020, 2020: 4260806. doi: 10.1155/2020/4260806

    [112]

    Zeng Z G, Li X H, Chen S, et al. Iron, copper, and zinc isotopic fractionation in seafloor basalts and hydrothermal sulfides [J]. Marine Geology, 2021, 436: 106491. doi: 10.1016/j.margeo.2021.106491

  • 加载中
计量
  • 文章访问数:  1799
  • PDF下载数:  215
  • 施引文献:  0
出版历程
收稿日期:  2021-07-01
修回日期:  2021-08-26
刊出日期:  2021-10-28

目录