-
摘要:
海底热液喷口是地球内部与海洋之间重要的物质和能量交换通道,其地质背景决定了喷出流体的化学成分。热液烟囱体是海底热液喷口的典型结构与生态单元,栖息着类型多样且生理功能各异的微生物类群。这些微生物能够利用高温热液与低温海水之间的化学不平衡或通过各种硫化物矿物风化蚀变获取维持自身代谢所必须的能量,并根据陡峭的温度、pH、Eh和还原化合物浓度的环境梯度,选择性地分布在烟囱体的各种生态位中。基于高通量测序和组分分析发现,烟囱体中微生物生命过程中涉及到的营养代谢类型包含硫氧化、硫还原、甲烷氧化、产甲烷、氢营养、铁氧化、硝化及反硝化等多种代谢方式,暗示了它们在全球元素循环中的潜在作用。本文系统地总结了在全球范围内热液烟囱体中栖息的微生物群系及其分布特征与变化规律,有利于全面、系统地认识和理解热液微生物的生存策略及其对环境的响应机制以及热液微生物参与的地球化学循环。
Abstract:Seafloor hydrothermal vents serve as crucial conduits for material and energy exchange between the Earth's interior and the ocean, with their geological background playing a pivotal role in determining the chemical composition of the expelled fluid. Hydrothermal chimney stands as a quintessential structural and ecological unit within submarine hydrothermal vents, housing a diverse array of microbial groups with varying physiological functions. These microorganisms can use the chemical imbalance between high-temperature hydrothermal solution and low-temperature seawater or through weathering of various sulfide minerals to obtain the energy necessary to maintain their metabolism, and they are selectively distributed in various ecological niches in the chimney body along big environmental gradients of temperature, pH, Eh, and reducing compound concentration. Through high-throughput sequencing and omics analysis, it has been revealed that the nutrient metabolism types driving microbial life processes within the chimney encompass sulfur oxidation, sulfur reduction, methane oxidation, methane production, hydrogen nutrition, iron oxidation, nitrification and denitrification, and various other chemoautotrophic metabolic pathways, which suggests their potential significance in shaping the global element cycle. This paper provides a comprehensive and systematic overview of the microbiomes present in hydrothermal chimneys worldwide, including their distribution characteristics and variation patterns, contributing to the comprehensive and systematic understanding on hydrothermal microbial survival strategies, environmental adaptation mechanisms, and geochemical cycles involving hydrothermal microorganisms.
-
-
图 1 海底热液喷口在全球的分布[31]
Figure 1.
图 3 硫化物烟囱体内微生物演替的概念模型[24]
Figure 3.
表 1 海底不同区域发育的深海热液喷口
Table 1. Deep-sea hydrothermal vents developed in different seafloor areas
类型 全扩张速率 代表区域 典型热液场 洋中脊扩张中心 快速至超快速(>80 mm/a) East Pacific Rise 21°N、13°N、9~10°N、7°S 中速(50~80 mm/a) Central Indian Ridge,Juan de Fuca Ridge Kairei、Edmond、Endeavor 慢速至超慢速(<50 mm/a) Southwest Indian Ridge,Mid-Atlantic Ridge,Gakkl Ridge 龙旂、断桥、Rainbow、Logatchev、Lucky Strike、Trans-Atlantic Geotraverse(TAG) 弧后扩张中心 Lau Basin,Manus basin,Mariana Trough Mariner,Tow Cam,Yokosuka,Vienna Woods 海底火山 Kermadec Arc,Central Pacific Brothers volcano, Loihi Seamount 扩张速率 基岩 位置 流体化学 快速—超快速 镁铁质(高MgO和FeO以及Si>45%) 洋中脊扩张中心 富含H2S 慢速—超慢速 镁铁质和超镁铁质(高 MgO、FeO 和 Si<45%) 洋中脊扩张中心和大洋核杂岩 富含H2和CH4(超镁铁质) 其他 长英质、英安质或安山质(Si>65%) 汇聚板块边界处的火山弧 低 pH、H2 和 CH4且富含金属 Guaymas Basin/Juan de Fuca Ridge 玄武岩与沉积物 靠近大陆边缘 富含NH4+ Lost City 超镁铁质岩 洋中脊转换断层核杂岩区 高pH、H2和CH4 表 3 烟囱体中空间位置与微生物以及代谢的关系[21-22, 44]
Table 3. Relationship between the spatial position in hydrothermal chimney and microorganisms and metabolism
空间位置 优势物种 电子供体/电子受体 代谢途径 环境条件 外层 Campylobacteria纲、Gammaproteobacteria纲、Methanobacteriota门、Methanobacteriota_B门、Thermoproteota门 H2S,H2/O2 、NO3− 硫氧化,氢氧化,反硝化等 低温、强氧化性 中间层 Thermococcales目、Desulfurococcales目、Archaeoglobales目、
Methanococcales目、Campylobacteria纲(Sulfurovum属和Sulfurimonas属)、Aquaficales纲H2S、H2、CH4/O2、NO3−、SO42− 硫氧化,氢氧化,甲烷氧化,硫酸盐还原等 中温、还原/氧化 内层 Thermococcales目、Desulfurococcales目、Methanococci纲、Methanopyri纲 H2S、H2/CO2 硫还原,硫氧化,产甲烷等 高温、强还原性 -
[1] Corliss J B, Dymond J, Gordon L I, et al. Submarine thermal springs on the galápagos rift[J]. Science, 1979, 203(4385):1073-1083. doi: 10.1126/science.203.4385.1073
[2] Lonsdale P. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers[J]. Deep Sea Research, 1977, 24(9):857-863. doi: 10.1016/0146-6291(77)90478-7
[3] Martin W, Baross J, Kelley D, et al. Hydrothermal vents and the origin of life[J]. Nature Reviews Microbiology, 2008, 6(11):805-814. doi: 10.1038/nrmicro1991
[4] Cavanaugh C M. Microbial symbiosis: patterns of diversity in the marine environment[J]. American Zoologist, 1994, 34(1):79-89. doi: 10.1093/icb/34.1.79
[5] Kelley D S, Baross J A, Delaney J R. Volcanoes, fluids, and life at mid-ocean ridge spreading centers[J]. Annual Review of Earth and Planetary Sciences, 2002, 30:385-491. doi: 10.1146/annurev.earth.30.091201.141331
[6] Reysenbach A L, Shock E. Merging genomes with geochemistry in hydrothermal ecosystems[J]. Science, 2002, 296(5570):1077-1082. doi: 10.1126/science.1072483
[7] Kristall B, Kelley D S, Hannington M D, et al. Growth history of a diffusely venting sulfide structure from the Juan de Fuca Ridge: a petrological and geochemical study[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(7):Q07001.
[8] Tivey M K. How to build a black smoker chimney[J]. Oceanus, 1998, 41(2):22-26.
[9] Kelley D S, Karson J A, Blackman D K, et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N[J]. Nature, 2001, 412(6843):145-149. doi: 10.1038/35084000
[10] Seyfried W E Jr, Pester N J, Tutolo B M, et al. The Lost City hydrothermal system: constraints imposed by vent fluid chemistry and reaction path models on subseafloor heat and mass transfer processes[J]. Geochimica et Cosmochimica Acta, 2015, 163:59-79. doi: 10.1016/j.gca.2015.04.040
[11] Aquino K A, Früh-Green G L, Rickli J, et al. Multi-stage evolution of the Lost City hydrothermal vent fluids[J]. Geochimica et Cosmochimica Acta, 2022, 332:239-262. doi: 10.1016/j.gca.2022.06.027
[12] Ludwig K A, Kelley D S, Butterfield D A, et al. Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field[J]. Geochimica et Cosmochimica Acta, 2006, 70(14):3625-3645. doi: 10.1016/j.gca.2006.04.016
[13] Aquino K A, Frueh-Green G L, Bernasconi S M, et al. Controls on mineral formation in high pH fluids from the Lost City Hydrothermal field[J]. Geochemistry Geophysics Geosystems, 2024, 25(2):e2023GC011010. doi: 10.1029/2023GC011010
[14] Olins H C, Rogers D R, Frank K L, et al. Assessing the influence of physical, geochemical and biological factors on anaerobic microbial primary productivity within hydrothermal vent chimneys[J]. Geobiology, 2013, 11(3):279-293. doi: 10.1111/gbi.12034
[15] Sievert S M, Vetriani C. Chemoautotrophy at deep-sea vents: past, present, and future[J]. Oceanography, 2012, 25(1):218-233. doi: 10.5670/oceanog.2012.21
[16] Charlou J L, Donval J P, Fouquet Y, et al. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR)[J]. Chemical Geology, 2002, 191(4):345-359. doi: 10.1016/S0009-2541(02)00134-1
[17] Adam N, Perner M. Microbially mediated hydrogen cycling in deep-sea hydrothermal vents[J]. Frontiers in Microbiology, 2018, 9:2873. doi: 10.3389/fmicb.2018.02873
[18] Zeng X, Alain K, Shao Z Z. Microorganisms from deep-sea hydrothermal vents[J]. Marine Life Science & Technology, 2021, 3(2):204-230.
[19] Li J T, Cui J M, Yang Q H, et al. Oxidative weathering and microbial diversity of an inactive seafloor hydrothermal sulfide chimney[J]. Frontiers in Microbiology, 2017, 8:1378. doi: 10.3389/fmicb.2017.01378
[20] McCliment E A, Voglesonger K M, O'Day P A, et al. Colonization of nascent, deep-sea hydrothermal vents by a novel Archaeal and Nanoarchaeal assemblage[J]. Environmental Microbiology, 2006, 8(1):114-125. doi: 10.1111/j.1462-2920.2005.00874.x
[21] Schrenk M O, Kelley D S, Delaney J R, et al. Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney[J]. Applied and Environmental Microbiology, 2003, 69(6):3580-3592. doi: 10.1128/AEM.69.6.3580-3592.2003
[22] Li J T, Zhou H Y, Fang J S, et al. Microbial distribution in different spatial positions within the walls of a black sulfide hydrothermal chimney[J]. Marine Ecology Progress Series, 2014, 508:67-85. doi: 10.3354/meps10841
[23] Sylvan J B, Toner B M, Edwards K J. Life and death of deep-sea vents: bacterial diversity and ecosystem succession on inactive hydrothermal sulfides[J]. mBio, 2012, 3(1):e00279-11.
[24] Hou J L, Sievert S M, Wang Y Z, et al. Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys[J]. Microbiome, 2020, 8(1):102. doi: 10.1186/s40168-020-00851-8
[25] Zhou H Y, Li J T, Peng X T, et al. Microbial diversity of a sulfide black smoker in main endeavour hydrothermal vent field, Juan de Fuca Ridge[J]. The Journal of Microbiology, 2009, 47(3):235-247. doi: 10.1007/s12275-008-0311-z
[26] Suzuki Y, Inagaki F, Takai K, et al. Microbial diversity in inactive chimney structures from deep-sea hydrothermal systems[J]. Microbial Ecology, 2004, 47(2):186-196. doi: 10.1007/s00248-003-1014-y
[27] Christakis C A, Polymenakou P N, Mandalakis M, et al. Microbial community differentiation between active and inactive sulfide chimneys of the Kolumbo submarine volcano, Hellenic Volcanic Arc[J]. Extremophiles, 2018, 22(1):13-27. doi: 10.1007/s00792-017-0971-x
[28] Meier D V, Pjevac P, Bach W, et al. Microbial metal-sulfide oxidation in inactive hydrothermal vent chimneys suggested by metagenomic and metaproteomic analyses[J]. Environmental Microbiology, 2019, 21(2):682-701. doi: 10.1111/1462-2920.14514
[29] Meier D V, Pjevac P, Bach W, et al. Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents[J]. The ISME Journal, 2017, 11(7):1545-1558. doi: 10.1038/ismej.2017.37
[30] Wang Y, Bi H Y, Chen H G, et al. Metagenomics reveals dominant unusual sulfur oxidizers inhabiting active hydrothermal chimneys from the southwest Indian Ridge[J]. Frontiers in Microbiology, 2022, 13:861795. doi: 10.3389/fmicb.2022.861795
[31] Früh-Green G L, Kelley D S, Lilley M D, et al. Diversity of magmatism, hydrothermal processes and microbial interactions at mid-ocean ridges[J]. Nature Reviews Earth & Environment, 2022, 3(12):852-871.
[32] Tivey M K. The influence of hydrothermal fluid composition and advection rates on black smoker chimney mineralogy: insights from modeling transport and reaction[J]. Geochimica et Cosmochimica Acta, 1995, 59(10):1933-1949. doi: 10.1016/0016-7037(95)00118-2
[33] McCollom T M, Shock E L. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 1997, 61(20):4375-4391. doi: 10.1016/S0016-7037(97)00241-X
[34] Tivey M K. Generation of seafloor hydrothermal vent fluids and associated mineral deposits[J]. Oceanography, 2007, 20(1):50-65. doi: 10.5670/oceanog.2007.80
[35] Koschinsky A, Garbe-Schönberg D, Sander S, et al. Hydrothermal venting at pressure-temperature conditions above the critical point of seawater, 5°S on the Mid-Atlantic Ridge[J]. Geology, 2008, 36(8):615-618. doi: 10.1130/G24726A.1
[36] Luther III G W, Gartman A, Yücel M, et al. Chemistry, temperature, and faunal distributions at diffuse-flow hydrothermal vents: comparison of two geologically distinct ridge systems[J]. Oceanography, 2012, 25(1):234-245. doi: 10.5670/oceanog.2012.22
[37] Orcutt B N, Sylvan J B, Knab N J, et al. Microbial Ecology of the Dark Ocean above, at, and below the Seafloor[J]. Microbiology and Molecular Biology Reviews, 2011, 75(2):361-422. doi: 10.1128/MMBR.00039-10
[38] Amend J P, McCollom T M, Hentscher M, et al. Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types[J]. Geochimica et Cosmochimica Acta, 2011, 75(19):5736-5748. doi: 10.1016/j.gca.2011.07.041
[39] McCollom T M. Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems[J]. Astrobiology, 2007, 7(6):933-950. doi: 10.1089/ast.2006.0119
[40] Holden J F, Breier J A, Rogers K L, et al. Biogeochemical processes at hydrothermal vents: microbes and minerals, bioenergetics, and carbon fluxes[J]. Oceanography, 2012, 25(1):196-208. doi: 10.5670/oceanog.2012.18
[41] Lilley M D, Butterfield D A, Olson E J, et al. Anomalous CH4 and NH4+ concentrations at an unsedimented mid-ocean-ridge hydrothermal system[J]. Nature, 1993, 364(6432):45-47. doi: 10.1038/364045a0
[42] Zhou Z C, John E S, Anantharaman K, et al. Global patterns of diversity and metabolism of microbial communities in deep-sea hydrothermal vent deposits[J]. Microbiome, 2022, 10(1):241. doi: 10.1186/s40168-022-01424-7
[43] Flores G E, Campbell J H, Kirshtein J D, et al. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge[J]. Environmental Microbiology, 2011, 13(8):2158-2171. doi: 10.1111/j.1462-2920.2011.02463.x
[44] Dick G J. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally[J]. Nature Reviews Microbiology, 2019, 17(5):271-283. doi: 10.1038/s41579-019-0160-2
[45] Kelley D S, Karson J A, Fruh-Green G L, et al. A serpentinite-hosted ecosystem: the Lost City hydrothermal field[J]. Science, 2005, 307(5714):1428-1434. doi: 10.1126/science.1102556
[46] 彭晓彤, 周怀阳. EPR9-10°N热液烟囱体的结构特征与生长历史[J]. 中国科学 D辑: 地球科学, 2005, 35(8):720-728
PENG Xiaotong, ZHOU Huaiyang. The structural characteristics and growth history of the EPR9-10°N hydrothermal chimney[J]. Scientia sinica(Terrae), 2005, 35(8):720-728.]
[47] Takai K, Nakamura K, Toki T, et al. Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(31):10949-10954.
[48] Pagé A, Tivey M K, Stakes D S, et al. Temporal and spatial archaeal colonization of hydrothermal vent deposits[J]. Environmental Microbiology, 2008, 10(4):874-884. doi: 10.1111/j.1462-2920.2007.01505.x
[49] Wirth R. Colonization of black smokers by hyperthermophilic microorganisms[J]. Trends in Microbiology, 2017, 25(2):92-99. doi: 10.1016/j.tim.2016.11.002
[50] Gonnella G, Böhnke S, Indenbirken D, et al. Endemic hydrothermal vent species identified in the open ocean seed bank[J]. Nature Microbiology, 2016, 1(8):16086. doi: 10.1038/nmicrobiol.2016.86
[51] Mora M, Bellack A, Ugele M, et al. The temperature gradient-forming device, an accessory unit for normal light microscopes to study the biology of hyperthermophilic microorganisms[J]. Applied and Environmental Microbiology, 2014, 80(15):4764-4770. doi: 10.1128/AEM.00984-14
[52] Huber R, Stotters P, Cheminee J L, et al. Hyperthermophilic archaebacteria within the crater and open-sea plume of erupting Macdonald Seamount[J]. Nature, 1990, 345(6271):179-182. doi: 10.1038/345179a0
[53] Gupta R S. The phylum Aquificae[M]//Rosenberg E, DeLong E F, Lory S, et al. The Prokaryotes: Other Major Lineages of Bacteria and The Archaea. Berlin, Heidelberg: Springer, 2014.
[54] Brileya K, Reysenbach A L. The class Archaeoglobi[M]//Rosenberg E, DeLong E F, Lory S, et al. The Prokaryotes. Berlin, Heidelberg: Springer, 2014: 15-23.
[55] Reysenbach A L, Liu Y T, Banta A B, et al. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents[J]. Nature, 2006, 442(7101):444-447. doi: 10.1038/nature04921
[56] Müller D W, Meyer C, Gürster S, et al. The Iho670 fibers of Ignicoccus hospitalis: a new type of archaeal cell surface appendage[J]. Journal of Bacteriology, 2009, 191(20):6465-6468. doi: 10.1128/JB.00858-09
[57] Oren A. The family halobacteriaceae[M]//Rosenberg E, DeLong E F, Lory S, et al. The Prokaryotes. Berlin, Heidelberg: Springer, 2014: 41-121.
[58] Oren A. The family Methanococcaceae[M]//Rosenberg E, DeLong E F, Lory S, et al. The Prokaryotes. Berlin, Heidelberg: Springer, 2014: 215-224.
[59] Herzog B, Wirth R. Swimming behavior of selected species of Archaea[J]. Applied and Environmental Microbiology, 2012, 78(6):1670-1674. doi: 10.1128/AEM.06723-11
[60] Wirth R, Luckner M, Wanner G. Validation of a hypothesis: colonization of black smokers by hyperthermophilic microorganisms[J]. Frontiers in Microbiology, 2018, 9:524. doi: 10.3389/fmicb.2018.00524
[61] Nercessian O, Reysenbach A L, Prieur D, et al. Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise (13°N)[J]. Environmental Microbiology, 2003, 5(6):492-502. doi: 10.1046/j.1462-2920.2003.00437.x
[62] Reysenbach A L, Longnecker K, Kirshtein J. Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent[J]. Applied and Environmental Microbiology, 2000, 66(9):3798-3806. doi: 10.1128/AEM.66.9.3798-3806.2000
[63] Reysenbach A L. Microbial diversity of marine and terrestrial thermal springs[J]. Biodiversity of Microbial Life, Foundation of Earth's Biosphere, 2002.
[64] Kormas K A, Tivey M K, Von Damm K, et al. Bacterial and archaeal phylotypes associated with distinct mineralogical layers of a white smoker spire from a deep-sea hydrothermal vent site (9°N, East Pacific Rise)[J]. Environmental Microbiology, 2006, 8(5):909-920. doi: 10.1111/j.1462-2920.2005.00978.x
[65] Harmsen H, Prieur D, Jeanthon C. Distribution of microorganisms in deep-sea hydrothermal vent chimneys investigated by whole-cell hybridization and enrichment culture of thermophilic subpopulations[J]. Applied and Environmental Microbiology, 1997, 63(7):2876-2883. doi: 10.1128/aem.63.7.2876-2883.1997
[66] Pjevac P, Meier D V, Markert S, et al. Metaproteogenomic profiling of microbial communities colonizing actively venting hydrothermal chimneys[J]. Frontiers in Microbiology, 2018, 9:680. doi: 10.3389/fmicb.2018.00680
[67] Stokke R, Dahle H, Roalkvam I, et al. Functional interactions among filamentous Epsilonproteobacteria and Bacteroidetes in a deep-sea hydrothermal vent biofilm[J]. Environmental Microbiology, 2015, 17(10):4063-4077. doi: 10.1111/1462-2920.12970
[68] Dahle H, Roalkvam I, Thorseth I H, et al. The versatile in situ gene expression of an Epsilonproteobacteria-dominated biofilm from a hydrothermal chimney[J]. Environmental Microbiology Reports, 2013, 5(2):282-290. doi: 10.1111/1758-2229.12016
[69] Berg I A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways[J]. Applied and Environmental Microbiology, 2011, 77(6):1925-1936. doi: 10.1128/AEM.02473-10
[70] Kashefi K, Lovley D R. Extending the upper temperature limit for life[J]. Science, 2003, 301(5635):934. doi: 10.1126/science.1086823
[71] 魏曼曼, 陈新华, 周洪波. 深海热液喷口微生物群落研究进展[J]. 海洋科学, 2012, 36(6):113-121
WEI Manman, CHEN Xinhua, ZHOU Hongbo. Research process of microbial community in deep-sea hydrothermal vents[J]. Marine Sciences, 2012, 36(6):113-121.]
[72] 赵维殳, 肖湘. 多重极端环境中的生命: 深海热液中的超嗜热古菌Thermococclaes[J]. 中国科学: 生命科学, 2017, 47(5):470-481 doi: 10.1360/N052017-00056
ZHAO Weishu, XIAO Xiang. Life in a multi-extreme environment: Thermococcales living in deep sea hydrothermal vents[J]. Scientia Sinica Vitae, 2017, 47(5):470-481.] doi: 10.1360/N052017-00056
[73] Huber H, Stetter K O. Desulfurococcales[M]//Dworkin M, Falkow S, Rosenberg E, et al. The Prokaryotes. New York: Springer, 2006: 52-68.
[74] Nakagawa S, Takai K. The isolation of thermophiles from deep-sea hydrothermal environments[J]. Methods in Microbiology, 2006, 35:55-91.
[75] Jørgensen B B, Boetius A. Feast and famine - microbial life in the deep-sea bed[J]. Nature Reviews Microbiology, 2007, 5(10):770-781. doi: 10.1038/nrmicro1745
[76] Pillot G, Ali O A, Davidson S, et al. Identification of enriched hyperthermophilic microbial communities from a deep-sea hydrothermal vent chimney under electrolithoautotrophic culture conditions[J]. Scientific Reports, 2021, 11(1):14782. doi: 10.1038/s41598-021-94135-2
[77] Pillot G, Amin Ali O, Davidson S, et al. Evolution of thermophilic microbial communities from a deep-sea hydrothermal chimney under electrolithoautotrophic conditions with nitrate[J]. Microorganisms, 2021, 9(12):2475. doi: 10.3390/microorganisms9122475
[78] Whitman W B, Jeanthon C. Methanococcales[M]//Dworkin M, Falkow S, Rosenberg E, et al. The Prokaryotes. New York: Springer, 2006: 257-273.
[79] Edwards K J, Rogers D R, Wirsen C O, et al. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic α- and, γ-Proteobacteria from the deep sea[J]. Applied and Environmental Microbiology, 2003, 69(5):2906-2913. doi: 10.1128/AEM.69.5.2906-2913.2003
[80] McCollom T M. Geochemical constraints on primary productivity in submarine hydrothermal vent plumes[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2000, 47(1):85-101. doi: 10.1016/S0967-0637(99)00048-5
[81] Kato S, Takano Y, Kakegawa T, et al. Biogeography and biodiversity in sulfide structures of active and inactive vents at deep-sea hydrothermal fields of the southern Mariana Trough[J]. Applied and Environmental Microbiology, 2010, 76(9):2968-2979. doi: 10.1128/AEM.00478-10
[82] Zhang L K, Kang M Y, Xu J J, et al. Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge[J]. Scientific Reports, 2016, 6:25982. doi: 10.1038/srep25982
[83] Kato S, Yamagishi A. Prokaryotes in metal deposits on the deep seafloor[M]//Wilson N T. Deep Sea. Hauppauge: Nov a Science Publishers, 2014: 103-134.
[84] 孙明雪, 宿蕾, 李江涛. 海底热液环境中嗜中性微需氧铁氧化菌的多样性、生物矿化作用及其代谢特征[J]. 微生物学报, 2022, 62(6):2119-2135
SUN Mingxue, SU Lei, LI Jiangtao. Diversity, biomineralization, and metabolic characteristics of neutrophilic microaerophilic iron-oxidizing bacteria in seafloor hydrothermal environments[J]. Acta Microbiologica Sinica, 2022, 62(6):2119-2135.]
[85] Dong X Y, Zhang C W, Li W L, et al. Functional diversity of microbial communities in inactive seafloor sulfide deposits[J]. Fems Microbiology Ecology, 2021, 97(8):fiab108. doi: 10.1093/femsec/fiab108
[86] Kato S, Ohkuma M, Powell D H, et al. Comparative genomic insights into ecophysiology of neutrophilic, microaerophilic iron oxidizing bacteria[J]. Frontiers in Microbiology, 2015, 6:1265.
[87] Mcallister S M, Polson S W, Butterfield D A, et al. Validating the cyc2 neutrophilic iron oxidation pathway using meta-omics of Zetaproteobacteria iron mats at marine hydrothermal vents[J]. mSystems, 2020, 5(1):e00553-19.
[88] Fallon E K, Petersen S, Brooker R A, et al. Oxidative dissolution of hydrothermal mixed-sulphide ore: an assessment of current knowledge in relation to seafloor massive sulphide mining[J]. Ore Geology Reviews, 2017, 86:309-337. doi: 10.1016/j.oregeorev.2017.02.028
[89] Reeves E P, Yoshinaga M Y, Pjevac P, et al. Microbial lipids reveal carbon assimilation patterns on hydrothermal sulfide chimneys[J]. Environmental Microbiology, 2014, 16(11):3515-3532. doi: 10.1111/1462-2920.12525
-