Sedimentary dynamics and material source in Yangma Island sea area in Yantai based on grain size end-member model
-
摘要:
基于养马岛海域30个表层沉积物粒度测试数据,计算沉积物粒度参数、分解粒度端元,结合区域水动力、岸线类型等因素对沉积物的沉积动力环境和物质来源解析判别。结果表明,海域沉积物平均粒径Φ值从河流入海口向远离岸线方向逐渐变大,分选性由中等逐渐变差,偏度以极正偏为主,峰度为中等—尖锐。粒度数据中提取出4个单峰端元组分,EM1、EM2、EM3和EM4粒级Φ值范围分别为2.75~8.75、3.00~6.25、2.25~4.25和1.50~3.75,EM1端元代表了水深较深、水动力弱沉积环境,物源是黄海沿岸流携带的黄河入海泥沙细粒物质;EM2端元代表了潮流波浪叠加作用下水动力较弱的沉积环境,物源是黄海沿岸流携带的黄河入海泥沙与海水侵蚀基岩海岸产生碎屑的混合物质;EM3端元为潮流、波浪叠加和航道影响下水动力较强的沉积环境,物源是入海河流携带泥沙混合海水侵蚀砂、泥岸线的碎屑。EM4端元代表了水深浅,海水与河水动力共同作用下强水动力沉积环境,物源为入海河流携带泥沙混合海水侵蚀砂、泥岸线以及人类活动产生的碎屑。
Abstract:Based on the grain size test data of 30 surface sediments in Yangma Island sea area in Bohai Sea, Yantai, the grain size parameters were calculated and end members were specified. The sedimentary dynamic environment and material source of sediments were analyzed by combining regional hydrodynamics and shoreline types. Results show that the average grain size (Φ) of the marine sediment gradually increased from river estuary off coast seaward, from moderately to poorly sorted, the skewness turned extremely positive, and the kurtosis was from mesokurtic to leptokurtic. Four single-peak end-member components were recognized from the grain size data, namely, EM1, EM2, EM3, and EM4 in the size ranges of 2.75~8.75, 3.00~6.25, 2.25~4.25, and 1.50~3.75, respectively. The EM1 represented a sedimentary environment in deep water and weak hydrodynamics, and the source of the material was the fine-grained material from Yellow River carried out by the Yellow Sea littoral currents. The EM2 end-member represented a weak hydrodynamic sedimentary environment under the effect of tidal wave superposition, and the material source was the mixture of Yellow River inlet sediment carried by the Yellow Sea littoral current and the debris produced by seawater erosion of bedrock coast. The EM3 end-member represented the sedimentary environment with strong hydrodynamic force under the influence of tidal current, wave superposition and channel, and the material source was the debris produced by the inlet river-carried sediments and the mix of seawater erosion of sand and mud coast. The EM4 end-member represented a strong hydrodynamic sedimentary environment under the joint action of seawater and river hydrodynamics, and the source of material was the sediment carried by the river into the sea, mixed with the sand and mud coast eroded by seawater, and the debris that generated from human activities.
-
-
表 1 沉积物粒度参数及端元含量
Table 1. grain size parameters and end member content of sediments
样品编号 平均粒径/Φ 分选系数 偏度 峰度 端元含量/% EM1 EM2 EM3 EM4 HB1 4.55 1.35 0.47 1.17 29.00 30.81 40.19 0.00 HB2 4.32 1.69 0.23 1.24 35.54 23.39 29.27 11.81 HB3 4.74 1.51 0.34 0.98 44.44 23.00 29.87 2.69 HB4 4.44 1.59 0.27 1.13 36.37 25.21 28.15 10.28 HS5 5.31 1.41 0.41 0.89 48.80 49.88 1.32 0.00 HS6 4.94 1.16 0.38 1.10 37.21 60.40 2.39 0.00 HB7 4.57 1.33 0.32 1.25 29.47 42.56 23.37 4.60 HB8 4.64 1.29 0.48 1.18 26.32 40.06 33.62 0.00 HB9 4.35 1.18 0.47 1.30 21.42 31.60 46.97 0.00 HB10 4.26 1.37 0.30 1.17 28.59 26.79 33.53 11.09 HS11 4.40 1.20 0.49 1.13 26.08 23.84 50.08 0.00 HS12 4.94 0.97 0.34 1.20 34.96 65.04 0.00 0.00 HB13 4.99 1.44 0.37 0.90 45.23 30.39 24.37 0.00 HB14 4.59 1.26 0.44 1.23 26.27 43.02 30.70 0.00 HB15 4.44 1.04 0.42 1.36 14.35 55.97 29.69 0.00 HB16 4.50 1.33 0.32 1.18 32.21 35.73 28.14 3.92 HS17 4.64 1.05 0.28 1.23 28.06 58.87 13.07 0.00 HS18 4.87 1.27 0.32 1.02 41.31 40.75 17.94 0.00 HB19 4.94 1.44 0.21 0.88 55.56 21.54 21.56 1.33 HB20 4.61 1.23 0.38 1.08 31.08 41.60 26.94 0.37 HB21 4.28 1.20 0.36 1.51 17.11 40.60 37.79 4.51 HS22 3.40 1.51 0.74 1.13 16.68 10.31 0.00 73.01 HS23 4.78 1.33 0.56 1.11 24.20 46.24 29.56 0.00 HB24 4.27 1.01 0.46 1.63 6.76 50.35 42.89 0.00 HB25 3.92 0.84 0.19 1.66 1.98 41.31 53.20 3.51 HB26 2.35 0.34 0.02 0.94 0.00 0.00 0.00 100.00 HB27 2.71 0.93 0.58 1.58 6.10 10.05 3.95 79.89 HB28 3.04 0.56 0.16 0.87 0.00 0.00 50.65 49.35 HB29 5.02 1.83 0.09 0.79 63.37 8.67 14.58 13.39 HB30 3.60 1.67 0.11 0.99 27.91 26.07 14.16 31.86 表 2 沉积物端元拟合结果
Table 2. End member fitting results of sediments
端元个数 端元相关系数R2 角度离差 1 0.521 35.7 2 0.839 19.9 3 0.920 13.8 4 0.955 10.3 5 0.976 7.4 6 0.990 4.9 7 0.994 3.7 8 0.995 3.4 9 0.995 2.7 10 0.997 2.6 -
[1] Weltje G J. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 1997, 29(4):503-549. doi: 10.1007/BF02775085
[2] Weltje G J, Prins M A. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics[J]. Sedimentary Geology, 2003, 162(1-2):39-62. doi: 10.1016/S0037-0738(03)00235-5
[3] 张云峰, 张振克, 丁海燕, 等. 江苏启东嘴潮滩敏感粒度组分及环境意义[J]. 海洋环境科学, 2021, 40(1):81-86 doi: 10.12111/j.mes.20190220
ZHANG Yunfeng, ZHANG Zhenke, DING Haiyan, et al. The sensitive grain-size components of core sediments and environmental significance at tidal flat around Qidong cape, Jiangsu province[J]. Marine Environmental Science, 2021, 40(1):81-86.] doi: 10.12111/j.mes.20190220
[4] 陈洪云, 孙有斌. 黄土高原风尘沉积的物质来源研究: 回顾与展望[J]. 第四纪研究, 2008, 28(5):892-900 doi: 10.3321/j.issn:1001-7410.2008.05.012
CHEN Hongyun, SUN Youbin. Study on provenance of eolian dust deposits on the Chinese Loess Plateau: Retrospects and prospects[J]. Quaternary Sciences, 2008, 28(5):892-900.] doi: 10.3321/j.issn:1001-7410.2008.05.012
[5] Middleton G V. Hydraulic interpretation of sand size distributions[J]. The Journal of Geology, 1976, 84(4):405-426. doi: 10.1086/628208
[6] 王伟斌, 姚弘毅, 吴昊, 等. 厦门五缘湾及同安湾口表层沉积物粒度端元解析[J]. 渔业研究, 2023, 45(1):54-63
WANG Weibin, YAO Hongyi, WU Hao, et al. End-member analysis of surface sediments in Wuyuan Bay and Tong’an Bay mouth of Xiamen, Fujian Province[J]. Journal of Fisheries Research, 2023, 45(1):54-63.]
[7] 张晓东, 季阳, 杨作升, 等. 南黄海表层沉积物粒度端元反演及其对沉积动力环境的指示意义[J]. 中国科学: 地球科学, 2015, 45(10): 1515-1523
ZHANG Xiaodong, JI Yang, YANG Zuosheng, et al. End member inversion of surface sediment grain size in the South Yellow Sea and its implications for dynamic sedimentary environments[J]. Science China Earth Sciences, 2016, 59(2): 258-267.]
[8] 林镇坤, 王爱军, 叶翔. 南流江河口水下三角洲表层沉积物端元分析及其沉积动力环境意义[J]. 沉积学报, 2019, 37(1):124-134
LIN Zhenkun, WANG Aijun, YE Xiang. End-member analysis for surficial sediment of Nanliujiang river subaqueous delta and associated sediment dynamic environmental significance[J]. Acta Sedimentologica Sinica, 2019, 37(1):124-134.]
[9] 黎武标, 李志文, 王志刚, 等. 粒度端元揭示的芝罘剖面末次间冰期: 末次冰期气候环境变化特征[J]. 海洋地质与第四纪地质, 2019, 39(2):177-187
LI Wubiao, LI Zhiwen, WANG Zhigang, et al. Climatic environment changes during the last interglacial-glacial cycle in Zhifu loess section: Revealed by grain-size end-member algorithm[J]. Marine Geology and Quaternary Geology, 2019, 39(2):177-187.]
[10] 张晓东, 翟世奎, 许淑梅. 端元分析模型在长江口邻近海域沉积物粒度数据反演方面的应用[J]. 海洋学报, 2006, 28(4):159-166 doi: 10.3321/j.issn:0253-4193.2006.04.021
ZHANG Xiaodong, ZHAI Shikui, XU Shumei. The application of grain-size end-member modeling to the shelf near the estuary of Changjiang River in China[J]. Acta Oceanologica Sinica, 2006, 28(4):159-166.] doi: 10.3321/j.issn:0253-4193.2006.04.021
[11] 孔祥淮, 刘健, 李巍然, 等. 山东半岛东北部海底表层沉积物粒度分布特征和沉积作用研究[J]. 海洋湖沼通报, 2006(3):37-47 doi: 10.3969/j.issn.1003-6482.2006.03.006
KONG Xianghuai, LIU Jian, LI Weiran, et al. Study on grain-size distribution of surface sediments and modern sedimentation in the littoral zone in the northeastern part of the Shandong Peninsula[J]. Transactions of Oceanology and Limnology, 2006(3):37-47.] doi: 10.3969/j.issn.1003-6482.2006.03.006
[12] 顾效源, 王伟. 山东芝罘湾附近海域浅地层结构特征[J]. 海岸工程, 2021, 40(2):131-139
GU Xiaoyuan, WANG Wei. Characteristics of the shallow stratigrafic structure in the sea area near the Zhifu Bay, Shandong[J]. Coastal Engineering, 2021, 40(2):131-139.]
[13] 汤世凯, 于剑峰, 李金鹏, 等. 烟台芝罘湾底质沉积物粒度特征和沉积动力环境研究[J]. 山东国土资源, 2020, 36(1):22-28 doi: 10.12128/j.issn.1672-6979.2020.01.004
TANG Shikai, YU Jianfeng, LI Jinpeng, et al. Study on grain size characteristics of surface sediments and sedimentary dynamic environment in Zhifu Bay in Yantai city[J]. Shandong Land and Resources, 2020, 36(1):22-28.] doi: 10.12128/j.issn.1672-6979.2020.01.004
[14] 王莹, 吴建政, 胡日军, 等. 养马岛连陆海堤对沉积动力环境的影响[J]. 海洋地质动态, 2008, 24(6):19-25 doi: 10.3969/j.issn.1009-2722.2008.06.004
WANG Ying, WU Jianzheng, HU Rijun, et al. The impact of Yangma Island's land connected seawall on sedimentary dynamic environment[J]. Marine Geology Letters, 2008, 24(6):19-25.] doi: 10.3969/j.issn.1009-2722.2008.06.004
[15] 山东省科学技术委员会. 山东省海岛志[M]. 济南: 山东科学技术出版社, 1995: 95-96
Shandong Provincial Science and Technology Commission. Shandong island Chronicle[M]. Ji’nan: Shandong Science and Technology Press, 1995: 95-96.]
[16] 中华人民共和国国家质量监督检疫总局. GB/T 12763.8-2007 海洋调查规范 第8部分: 海洋地质地球物理调查[S]. 北京: 中国标准出版社, 2008: 1-94
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. GB/T 12763.8-2007 Specifications for oceanographic survey-Part 8: Marine geology and geophysics survey[S]. Beijing: Standards Press of China, 2008: 1-94.]
[17] Folk R L, Ward W C. Brazos River bar: a study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 1957, 27(1):3-26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D
[18] Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12):4494-4506. doi: 10.1002/2015GC006070
[19] 王兆夺, 于东生, 汪卫国, 等. 泉州湾表层沉积物粒度指示的沉积动力端元解析[J]. 热带地理, 2021, 41(5):975-986
WANG Zhaoduo, YU Dongsheng, WANG Weiguo, et al. End-member analysis of sedimentary dynamics indicated by the grain-size of surface sediments in the Quanzhou Bay[J]. Tropical Geography, 2021, 41(5):975-986.]
[20] Prins M A, Vriend M, Nugteren G, et al. Late Quaternary Aeolian dust input variability on the Chinese Loess Plateau: Inferences from unmixing of loess grain-size records[J]. Quaternary Science Reviews, 2007, 26(1-2):230-242. doi: 10.1016/j.quascirev.2006.07.002
[21] Sun D H, Bloemendal J, Rea D K, et al. Grain-size distribution function of polymodal sediments in hydraulic and Aeolian environments, and numerical partitioning of the sedimentary components[J]. Sedimentary Geology, 2002, 152(3-4):263-277. doi: 10.1016/S0037-0738(02)00082-9
[22] Pejrup M. The triangular diagram used for classification of estuarine sediments: a new approach[M]//de Boer P L, van Gelder A, Nio S D. Tide-Influenced Sedimentary Environments and Facies. Dordrecht: Reidel, 1988: 289-300.
[23] 中国海湾志编纂委员会. 中国海湾志: 第三分册(山东半岛北部和东部海湾)[M]. 北京: 海洋出版社, 1991: 215-216
China Bay Record Committee. The Bay Chorography in China: The Northern and Eastern Bays of the Shandong Peninsula[M]. Beijing: China Ocean Press, 1991: 215-216.]
[24] 薛佐, 印萍, 王文海. 养马岛西南海域泥沙运移及近岸演化态势研究[J]. 海岸工程, 2005, 24(1):19-28 doi: 10.3969/j.issn.1002-3682.2005.01.003
XUE Zuo, YIN Ping, WANG Wenhai. Study on the sediment transport and nearshore evolution situation in the sea area southwest of Yangma Island[J]. Coastal Engineering, 2005, 24(1):19-28.] doi: 10.3969/j.issn.1002-3682.2005.01.003
[25] 孔祥淮, 刘健, 李巍然, 等. 山东半岛东北部滨浅海区表层沉积物的稀土元素及其物源判别[J]. 海洋地质与第四纪地质, 2007, 27(3):51-59
KONG Xianghuai, LIU Jian, LI Weiran, et al. Geochemistry of REE and provenance of surface sediments in the littoral area of the northeastern Shandong Peninsula[J]. Marine Geology and Quaternary Geology, 2007, 27(3):51-59.]
[26] 韩宗珠, 王一冰, 孙苑高, 等. 黄海表层沉积物的矿物组成特征及其物源分析[J]. 海洋地质前沿, 2022, 38(4):10-19
HAN Zongzhu, WANG Yibing, SUN Yuangao, et al. Composition of minerals in surface sediments of the Yellow Sea and their provenance[J]. Marine Geology Frontiers, 2022, 38(4):10-19.]
[27] 乔淑卿, 石学法, 方习生, 等. 渤海-北黄海沉积物黏土矿物特征及其环境意义[J]. 海洋科学进展, 2020, 38(2):253-262 doi: 10.3969/j.issn.1671-6647.2020.02.006
QIAO Shuqing, SHI Xuefa, FANG Xisheng, et al. Distribution and composition of clay minerals in seafloor surface sediments of the Bohai Sea and North Yellow Sea and their implications for sedimentary environment[J]. Advances in Marine Science, 2020, 38(2):253-262.] doi: 10.3969/j.issn.1671-6647.2020.02.006
-