Three-dimensional seismic characterization and sedimentary evolution of the Oligocene dendritic submarine canyons offshore eastern New Zealand
-
摘要:
前人对海底峡谷进行的研究大多集中于大中型海底峡谷,对于峡谷头部小型分支峡谷关注较少。本文基于高分辨率三维地震数据,研究新西兰南岛东部陆坡邦蒂海底峡谷头部渐新世埋藏分支峡谷的地震地层特征及沉积演化。通过地震层序分析,在渐新统地层内识别出7个地震层序界面,据此将渐新统划分为6个地震层序。以层序为单位,开展地震沉积单元分析,识别出冲坑列、U型谷及开放陆坡三种沉积单元。冲坑列由多个冲坑呈串珠状顺坡排列,解释为超临界浊流成因底形,其形成经历了从侵蚀型周期阶坎到部分沉积型周期阶坎的演化,解释为断续型分支峡谷,代表了分支峡谷的早期形态。U型谷平面上表现为平直的顺坡分布的线状凹槽,内部被浊流–半远洋交互沉积及少量碎屑流沉积充填,解释为平直型分支峡谷。开放陆坡位于冲坑列和U型谷之间及以外区域,以近平行反射为特征,内部发育多边形断层,解释为细粒半远洋沉积。断续型分支峡谷呈幕式发育,随时间推移冲坑数逐期减少并被细粒沉积充填;平直型分支峡谷上游表现出一定幅度的侧向迁移,下游则以垂向加积为主。海平面变化、沉积物供给及陆坡坡度对峡谷演化具有重要影响。
Abstract:Previous studies have focused largely on medium-to-large sized submarine canyons, with relatively little attention paid to small dendritic ones developed at canyon heads. We used high-resolution 3D seismic data to investigate the seismic stratigraphic characteristics and sedimentary evolution of the Oligocene buried dendritic tributary canyons located at the head of the Bounty Submarine Canyon System on the eastern continental slope offshore South Island, New Zealand. Through seismic sequence analysis, six seismic sequences separated by seven seismic horizons with reflection terminations were identified within the Oligocene strata. By seismic depositional element analysis, three depositional elements were identified, which are scour train, U-shaped valley, and open slope, respectively. The scour train, composed of multiple scours linearly arranged downslope, was identified as a train of supercritical turbidity-current bedforms. Within each sequence, the scours were vertically evolved from erosional to partially depositional cyclic steps. The train of scours comprises a discontinuous tributary canyon, possibly representing an early stage of dendritic canyons. The U-shaped valley appears as a downslope-extending straight depressions in plan view, filled with alternating turbidites and hemipelagites and minor debris-flow deposits, and was interpreted as a straight tributary canyon. Subparallel reflections with polygonal faults in the open slope environment were interpreted as fine-grained hemipelagic sediments. The development of the discontinuous tributary canyons is episodic. The scours gradually decreased in quantity and were filled by fine-grained sediments over time. The straight tributary canyon showed lateral migration in the upstream and aggradation in the downstream. The evolution of both tributary canyons was controlled by factors including sea-level change, sediment supply, and slope gradient.
-
-
[1] Shepard F P. Submarine canyons: multiple causes and long-time persistence[J]. AAPG Bulletin, 1981, 65(6):1062-1077.
[2] Normark W R, Posamentier H, Mutti E. Turbidite systems: state of the art and future directions[J]. Reviews of Geophysics, 1993, 31(2):91-116. doi: 10.1029/93RG02832
[3] Clark J D, Kenyon N H, Pickering K T. Quantitative analysis of the geometry of submarine channels: implications for the classification of submarine fans[J]. Geology, 1992, 20(7):633-636. doi: 10.1130/0091-7613(1992)020<0633:QAOTGO>2.3.CO;2
[4] Jobe Z R, Lowe D R, Uchytil S J. Two fundamentally different types of submarine canyons along the continental margin of Equatorial Guinea[J]. Marine and Petroleum Geology, 2011, 28(3):843-860. doi: 10.1016/j.marpetgeo.2010.07.012
[5] Deptuck M E, Steffens G S, Barton M, et al. Architecture and evolution of upper fan channel-belts on the Niger Delta slope and in the Arabian Sea[J]. Marine and Petroleum Geology, 2003, 20(6-8):649-676. doi: 10.1016/j.marpetgeo.2003.01.004
[6] Covault J A, Sylvester Z, Hubbard S M, et al. The stratigraphic record of submarine-channel evolution[J]. The Sedimentary Record, 2016, 14(3):4-11. doi: 10.2110/sedred.2016.3.4
[7] Weimer P, Slatt R M. Petroleum systems of deepwater settings[M]. Tulsa: Society of Exploration Geophysicists, 2004.
[8] Normark W R. Growth patterns of deep-sea fans[J]. AAPG Bulletin, 1970, 54(11):2170-2195.
[9] Mutti E, Ricci Lucchi F. Turbidites of the northern Apennines: introduction to facies analysis[J]. International Geology Review, 1978, 20(2):125-166. doi: 10.1080/00206817809471524
[10] Walker R G. Deep-water sandstone facies and ancient submarine fans: models for exploration for stratigraphic traps[J]. AAPG Bulletin, 1978, 62(6):932-966.
[11] Deptuck M E, Sylvester Z, Pirmez C, et al. Migration–aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon, western Niger Delta slope[J]. Marine and Petroleum Geology, 2007, 24(6-9):406-433. doi: 10.1016/j.marpetgeo.2007.01.005
[12] Covault J A, Romans B W, Graham S A, et al. Terrestrial source to deep-sea sink sediment budgets at high and low sea levels: insights from tectonically active Southern California[J]. Geology, 2011, 39(7):619-622. doi: 10.1130/G31801.1
[13] Prather B E, Deptuck M E, Mohrig D, et al. Application of the Principles of Seismic Geomorphology to Continental-Slope and Base-of-Slope Systems: Case Studies from Seafloor and Near-Seafloor Analogues [C]//SEPM Special Publication. Tulsa: Society for Sedimentary Geology (SEPM), 2012: 5-9.
[14] Kolla V, Bourges P, Urruty J M, et al. Evolution of deep-water Tertiary sinuous channels offshore Angola (west Africa) and implications for reservoir architecture[J]. AAPG Bulletin, 2001, 85(8):1373-1405.
[15] Kolla V, Posamentier H W, Wood L J. Deep-water and fluvial sinuous channels: characteristics, similarities and dissimilarities, and modes of formation[J]. Marine and Petroleum Geology, 2007, 24(6-9):388-405. doi: 10.1016/j.marpetgeo.2007.01.007
[16] Posamentier H W. Deep-water turbidites and submarine fans[M]//Facies Models Revisited. Tulsas: SEPM Society for Sedimentary Geology, 2006: 399-520.
[17] Jobe Z R, Howes N C, Auchter N C. Comparing submarine and fluvial channel kinematics: implications for stratigraphic architecture[J]. Geology, 2016, 44(11):931-934. doi: 10.1130/G38158.1
[18] Mahon E M, Wallace M W. 3D seismic geomorphology of Early Cenozoic incised channels, Gippsland Basin, SE Australia: evidence for submarine origin[J]. Sedimentary Geology, 2022, 430:106092. doi: 10.1016/j.sedgeo.2022.106092
[19] Gouott B S B, Yem M, Atangana J Q Y, et al. Seismic geomorphology of a Late Cretaceous submarine channel system in the Kribi/Campo sub-basin, offshore Cameroon[J]. Marine and Petroleum Geology, 2022, 145:105865. doi: 10.1016/j.marpetgeo.2022.105865
[20] Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235(4793):1156-1167. doi: 10.1126/science.235.4793.1156
[21] Sylvester Z, Pirmez C, Cantelli A. A model of submarine channel-levee evolution based on channel trajectories: implications for stratigraphic architecture[J]. Marine and Petroleum Geology, 2011, 28(3):716-727. doi: 10.1016/j.marpetgeo.2010.05.012
[22] Bouchakour M, Zhao X M, Ge J W, et al. Evolution of submarine channel morphology in intra-slope mini-basins: 3D-seismic interpretation from offshore Niger delta[J]. Marine and Petroleum Geology, 2022, 146:105912. doi: 10.1016/j.marpetgeo.2022.105912
[23] Mitchell W H, Whittaker A C, Mayall M, et al. New models for submarine channel deposits on structurally complex slopes: examples from the Niger delta system[J]. Marine and Petroleum Geology, 2021, 129:105040. doi: 10.1016/j.marpetgeo.2021.105040
[24] Barrier A, Nicol A, Browne G H, et al. Early Oligocene marine canyon-channel systems: implications for regional paleogeography in the Canterbury Basin, New Zealand[J]. Marine Geology, 2019, 418:106037. doi: 10.1016/j.margeo.2019.106037
[25] Abbey C J. The Waitaki Canyon - An investigation of the Late Quaternary development of a shelf-indenting submarine canyon using high-resolution boomer seismic data[D]. Master Dissertation of University of Otago, 2017.
[26] Harishidayat D, Raja W R. Quantitative seismic geomorphology of four different types of the continental slope channel complexes in the Canterbury Basin, New Zealand[J]. Applied Sciences, 2022, 12(9):4386. doi: 10.3390/app12094386
[27] Mitchell J, Nell H. OS20/20 Canterbury—Great South Basin TAN1209 voyage report[R]. Wellington: National Institute of Water and Atmospheric Research (NIWA), 2012.
[28] Sahoo T R, Kroeger K F, Thrasher G, et al. Facies distribution and impact on petroleum migration in the Canterbury Basin, New Zealand[C]//International Conference and Exhibition, Melbourne, Australia 13-16 September 2015. Tulsa: American Association of Petroleum Geologists (AAPG), 2015.
[29] Zhao T, Zhang J, Li F Y, et al. Characterizing a turbidite system in Canterbury Basin, New Zealand, using seismic attributes and distance-preserving self-organizing maps[J]. Interpretation, 2016, 4(1):SB79-SB89. doi: 10.1190/INT-2015-0094.1
[30] O'malley M D. A multi-channel seismic interpretation of the canterbury basin offshore New Zealand and potential hydrocarbon sources[D]. Master Dissertation of Ohio State University, 2018.
[31] Carter R M, Carter L. The bounty channel system: a 55-million-year-old sediment conduit to the deep sea, Southwest Pacific Ocean[J]. Geo-Marine Letters, 1987, 7(4):183-190. doi: 10.1007/BF02242770
[32] Carter L, Carter R M, McCave I N. Evolution of the sedimentary system beneath the deep Pacific inflow off eastern New Zealand[J]. Marine Geology, 2004, 205(1-4):9-27. doi: 10.1016/S0025-3227(04)00016-7
[33] Kumar P C, Alves T M, Sain K. Submarine canyon systems focusing sub-surface fluid in the Canterbury Basin, South Island, New Zealand[J]. Scientific Reports, 2021, 11(1):16990. doi: 10.1038/s41598-021-96574-3
[34] Carter L, Mitchell J S. Late Quaternary sediment pathways through the deep ocean, east of New Zealand[J]. Paleoceanography, 1987, 2(4):409-422. doi: 10.1029/PA002i004p00409
[35] Samuel S P. Depositional history of Paleocene sediments in the offshore canterbury basin, New Zealand[D]. Master Dissertation of Victoria University of Wellington, 2010.
[36] Barrier A, Bischoff A, Nicol A, et al. Relationships between volcanism and plate tectonics: a case-study from the Canterbury Basin, New Zealand[J]. Marine Geology, 2021, 433:106397. doi: 10.1016/j.margeo.2020.106397
[37] 袭著纲, 骆宗强, 刘铁树. 新西兰坎特伯雷盆地构造-沉积演化及海域含油气远景[J]. 海相油气地质, 2015, 20(3):59-65 doi: 10.3969/j.issn.1672-9854.2015.03.009
XI Zhugang, LUO Zongqiang, LIU Tieshu. Tectonic-sedimentary evolution and offshore hydrocarbon potential in Canterbury Basin, New Zealand[J]. Marine Origin Petroleum Geology, 2015, 20(3):59-65.] doi: 10.3969/j.issn.1672-9854.2015.03.009
[38] Uruski C, Baillie P. Petroleum potential of the deepwater Taranaki basin, New Zealand[M]//Fillon R H, Rosen N C, Weimer P, et al. Petroleum Systems of Deep-Water Basins–Global and Gulf of Mexico Experience. Houston: SEPM Society for Sedimentary Geology, 2001.
[39] Fulthorpe C S, Carter R M, Miller K G, et al. Marshall Paraconformity: a mid-Oligocene record of inception of the Antarctic circumpolar current and coeval glacio-eustatic lowstand?[J]. Marine and Petroleum Geology, 1996, 13(1):61-77. doi: 10.1016/0264-8172(95)00033-X
[40] Higgs K E, Browne G H, Sahoo T R. Reservoir characterisation of syn-rift and post-rift sandstones in frontier basins: an example from the Cretaceous of Canterbury and Great South basins, New Zealand[J]. Marine and Petroleum Geology, 2019, 101:1-29. doi: 10.1016/j.marpetgeo.2018.11.030
[41] Higgs K E, Funnell R H, Browne G H. A multidisciplinary study of diagenesis and pore fluid evolution in frontier basins; an example from Canterbury and Great South basins, New Zealand[J]. Marine and Petroleum Geology, 2021, 124:104817. doi: 10.1016/j.marpetgeo.2020.104817
[42] Schiøler P, Rogers K, Sykes R, et al. Palynofacies, organic geochemistry and depositional environment of the Tartan Formation (Late Paleocene), a potential source rock in the Great South Basin, New Zealand[J]. Marine and Petroleum Geology, 2010, 27(2):351-369. doi: 10.1016/j.marpetgeo.2009.09.006
[43] Barrier A, Browne G H, Nicol A, et al. Sedimentary architecture of a Late Cretaceous under-filled rift basin, Canterbury Basin, New Zealand[J]. Basin Research, 2022, 34(1):342-365. doi: 10.1111/bre.12622
[44] Bache F, Mortimer N, Sutherland R, et al. Seismic stratigraphic record of transition from Mesozoic subduction to continental breakup in the Zealandia sector of eastern Gondwana[J]. Gondwana Research, 2014, 26(3-4):1060-1078. doi: 10.1016/j.gr.2013.08.012
[45] Beggs J M, Ghisetti F C, Tulloch A J. Basin and petroleum systems analysis of the West Coast region, South Island, New Zealand[C]//PESA Eastern Australasian Basins Symposium III. Sydney: Petroleum Exploration Society of Australia (PESA), 2008: 14-17.
[46] Mortimer N, Campbell H J, Tulloch A J, et al. Zealandia: earth’s hidden continent[J]. GSA Today, 2017, 27(3):27-35.
[47] Mortimer N, van den Bogaard P, Hoernle K, et al. Late Cretaceous oceanic plate reorganization and the breakup of Zealandia and Gondwana[J]. Gondwana Research, 2019, 65:31-42. doi: 10.1016/j.gr.2018.07.010
[48] Strogen D P, Seebeck H, Nicol A, et al. Two-phase Cretaceous–Paleocene rifting in the Taranaki Basin region, New Zealand; implications for Gondwana break-up[J]. Journal of the Geological Society, 2017, 174(5):929-946. doi: 10.1144/jgs2016-160
[49] Field B D, Browne G H, Davy B W. Cretaceous and Cenozoic Sedimentary Basins and Geological Evolution of the Canterbury Region, South Island, New Zealand[M]. Lower Hutt: New Zealand Geological Survey, 1989: 1-94.
[50] Hoffmann J J L, Gorman A R, Crutchley G J. Seismic evidence for repeated vertical fluid flow through polygonally faulted strata in the Canterbury Basin, New Zealand[J]. Marine and Petroleum Geology, 2019, 109:317-329. doi: 10.1016/j.marpetgeo.2019.06.025
[51] Carter L, Carter R M. Holocene evolution of the nearshore sand wedge, South Otago continental shelf, New Zealand[J]. New Zealand Journal of Geology and Geophysics, 1986, 29(4):413-424. doi: 10.1080/00288306.1986.10422163
[52] Browne G H, Field B D. The Lithostratigraphy of Late Cretaceous to Early Pleistocene Rocks of Northern Canterbury, New Zealand[R]. Wellington: New Zealand Department of Scientific and Industrial Research, 1985: 63.
[53] Browne G H, Field B D. A review of Cretaceous-Cenozoic sedimentation and tectonics, East Coast, South Island, New Zealand[C]//Sequences, stratigraphy, sedimentology: surface and subsurface. Calgary: Canadian Society of Petroleum Geologists (CSPG), 1988: 37-48.
[54] Marsaglia K M, Browne G H, George S C, et al. The transformation of sediment into rock: insights from IODP Site U1352, Canterbury Basin, New Zealand[J]. Journal of Sedimentary Research, 2017, 87(3):272-287. doi: 10.2110/jsr.2017.15
[55] Carter R M, Landis C A. Correlative Oligocene unconformities in southern Australasia[J]. Nature Physical Science, 1972, 237(70):12-13. doi: 10.1038/physci237012a0
[56] Lewis D W, Belliss S E. Mid tertiary unconformities in the Waitaki subdivision, North Otago[J]. Journal of the Royal Society of New Zealand, 1984, 14(3):251-276. doi: 10.1080/03036758.1984.10426303
[57] King P R. Tectonic reconstructions of New Zealand: 40 Ma to the Present[J]. New Zealand Journal of Geology and Geophysics, 2000, 43(4):611-638. doi: 10.1080/00288306.2000.9514913
[58] Lu H, Fulthorpe C S. Controls on sequence stratigraphy of a middle Miocene-Holocene, current-swept, passive margin: offshore Canterbury Basin, New Zealand[J]. GSA Bulletin, 2004, 116(11-12):1345-1366. doi: 10.1130/B2525401.1
[59] Mitchum R M, Vail P R, Sangree J B. Seismic stratigraphy and global changes of sea level: Part 6. Stratigraphic interpretation of seismic reflection patterns in depositional sequences: Section 2. Application of seismic reflection configuration to stratigraphic interpretation[M]// Payton C E. Seismic Stratigraphy: Applications to Hydrocarbon Exploration. Tulsa: AAPG, 1977.
[60] Posamentier H W, Kolla V. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings[J]. Journal of Sedimentary Research, 2003, 73(3):367-388. doi: 10.1306/111302730367
[61] Catuneanu O. Principles of Sequence Stratigraphy[M]. 2nd ed. Amsterdam: Elsevier, 2022.
[62] Chima S, Reece J C, Milley K, et al. Decision support tools to improve cancer diagnostic decision making in primary care: a systematic review[J]. British Journal of General Practice, 2019, 69(689):e809-e818. doi: 10.3399/bjgp19X706745
[63] Brown A R. Interpretation of three-dimensional seismic data[M]. Tulsa: American Association of Petroleum Geologists (AAPG) & Society of Exploration Geophysicists (SEG), 2004.
[64] Chenin J, Silver C, Bedle H. Seismic geomorphology anomalies within a Pliocene deepwater channel complex in the Taranaki Basin, offshore New Zealand[J]. Interpretation, 2021, 9(1):C1-C10. doi: 10.1190/INT-2020-0037.1
[65] Back S, Van Gent H, Reuning L, et al. 3D seismic geomorphology and sedimentology of the Chalk Group, southern Danish North Sea[J]. Journal of the Geological Society, 2011, 168(2):393-406. doi: 10.1144/0016-76492010-047
[66] Zeng H L, Backus M M, Barrow K T, et al. Stratal slicing, Part 1: realistic 3-D seismic model[J]. Geophysics, 1998, 63(2):502-513. doi: 10.1190/1.1444351
[67] Strogen D P, King P R. A New Zealandia-Wide Seismic Horizon Naming Scheme[M]. Lower Hutt, New Zealand: GNS Science, 2014.
[68] Slootman A, Cartigny M J B. Cyclic steps: review and aggradation-based classification[J]. Earth-Science Reviews, 2020, 201:102949. doi: 10.1016/j.earscirev.2019.102949
[69] Cartigny M J B, Postma G, van den Berg J H, et al. A comparative study of sediment waves and cyclic steps based on geometries, internal structures and numerical modeling[J]. Marine Geology, 2011, 280(1-4):40-56. doi: 10.1016/j.margeo.2010.11.006
[70] Covault J A, Kostic S, Paull C K, et al. Cyclic steps and related supercritical bedforms: building blocks of deep-water depositional systems, western North America[J]. Marine Geology, 2017, 393:4-20. doi: 10.1016/j.margeo.2016.12.009
[71] Mayall M, Jones E, Casey M. Turbidite channel reservoirs: key elements in facies prediction and effective development[J]. Marine and Petroleum Geology, 2006, 23(8):821-841. doi: 10.1016/j.marpetgeo.2006.08.001
[72] Posamentier H W, Davies R J, Cartwright J A, et al. Seismic geomorphology: An overview[M]//Davies R J, Posamentier H W, Wood L J, et al. Seismic geomorphology: Applications to hydrocarbon exploration and production. London: Geological Society of London, 2007: 1-14.
[73] Moscardelli L, Wood L. New classification system for mass transport complexes in offshore Trinidad[J]. Basin Research, 2008, 20(1):73-98. doi: 10.1111/j.1365-2117.2007.00340.x
[74] Urlaub M, Talling P J, Masson D G. Timing and frequency of large submarine landslides: implications for understanding triggers and future geohazard[J]. Quaternary Science Reviews, 2013, 72:63-82. doi: 10.1016/j.quascirev.2013.04.020
[75] Talling P J, Masson D G, Sumner E J, et al. Subaqueous sediment density flows: depositional processes and deposit types[J]. Sedimentology, 2012, 59(7):1937-2003. doi: 10.1111/j.1365-3091.2012.01353.x
[76] Miller K G, Kominz M A, Browning J V, et al. The phanerozoic record of global sea-level change[J]. Science, 2005, 310(5752):1293-1298. doi: 10.1126/science.1116412
[77] Shanmugam G, Moiola R J. Eustatic control of turbidites and winnowed turbidites[J]. Geology, 1982, 10(5):231-235. doi: 10.1130/0091-7613(1982)10<231:ECOTAW>2.0.CO;2
[78] Peakall J, Amos K J, Keevil G M, et al. Flow processes and sedimentation in submarine channel bends[J]. Marine and Petroleum Geology, 2007, 24(6-9):470-486. doi: 10.1016/j.marpetgeo.2007.01.008
[79] Sylvester Z, Deptuck M, Prather B, et al. Seismic stratigraphy of a shelf-edge delta and linked submarine channels in the northeastern Gulf of Mexico[M]//SEPM Special Publication, No. 99. Tulsa: Society for Sedimentary Geology (SEPM), 2012: 31-59.
-