Diagenetic environments indicated by key metal element systems in cold seep sediments
-
摘要:
冷泉活动是海底甲烷渗漏的重要表现形式,对全球碳循环和海洋极端环境的地球化学过程具有重要意义。利用冷泉沉积物中的金属元素体系重建早期成岩环境是理解冷泉区生物地球化学过程、揭示甲烷渗漏活动特征与历史演变的重要途径。本文系统阐述了冷泉环境中关键金属元素体系(Fe、Mn、Ni、Cu、Zn、Cd、As、Hg、Mo、W、U、Ba及REE)的生物地球化学行为,并梳理了其代表性指标在冷泉研究中的应用。现有研究主要聚焦于两类科学问题:揭示甲烷渗漏主导的复杂氧化还原条件演变,以及示踪与冷泉系统紧密相关的生物地球化学过程(特别是微生物代谢活动)。研究强调,冷泉系统不同成岩过程的多重影响使得单一元素指标的应用存在局限性,多指标综合应用与地质背景的精细分析对准确解读冷泉环境信息至关重要。未来研究应重点关注高分辨率原位微区分析技术以及金属稳定同位素体系的应用。
Abstract:Cold seep activity is a significant manifestation of seafloor methane seepage, playing a crucial role in global carbon cycling and the geochemical processes of extreme marine environments. Reconstructing early diagenetic environments using metal element systems in cold seep sediments is the key for understanding the biogeochemical processes and revealing the characteristics and historical evolution of methane seepage activities. This review systematically expounds on the biogeochemical behaviors of main metal element systems (Fe, Mn, Ni, Cu, Zn, Cd, As, Hg, Mo, W, U, Ba, and REE) in cold seep environment and synthesizes the applications of their representative proxies in cold seep research. Current research focuses primarily on two scientific aspects: revealing the evolution of complex redox conditions dominated by methane seepage and tracing the specific biogeochemical processes closely linked to the cold seep systems, particularly microbial metabolic activities. This study emphasizes that due to the multiple impacts of different diagenetic processes within cold seep systems, the application of any single element proxy has its limitations. Therefore, the integrated application of multi-proxy systems in combination with detailed analysis of the geological background is crucial for accurate interpretation of environmental information. Future research shall focus on the application of high-resolution in-situ microanalytical techniques and metal stable isotope systems.
-
-
图 2 冷泉环境中微量元素“颗粒穿梭”机制及在SMTZ的释放与再富集过程示意图[24]
Figure 2.
图 3 冷泉系统中不同载体的代表性金属元素地球化学指标示意图[80]
Figure 3.
-
[1] 陈多福, 陈先沛, 陈光谦. 冷泉流体沉积碳酸盐岩的地质地球化学特征[J]. 沉积学报, 2002, 20(1):34-40 doi: 10.3969/j.issn.1000-0550.2002.01.007
CHEN Duofu, CHEN Xianpei, CHEN Guangqian. Geology and geochemistry of cold seepage and venting-related carbonates[J]. Acta Sedimentologica Sinica, 2002, 20(1):34-40.] doi: 10.3969/j.issn.1000-0550.2002.01.007
[2] Kennedy M J, Christie-Blick N, Sohl L E. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals?[J]. Geology, 2001, 29(5):443-446. doi: 10.1130/0091-7613(2001)029<0443:APCCAI>2.0.CO;2
[3] Jiang G Q, Kennedy M J, Christie-Blick N. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates[J]. Nature, 2003, 426(6968):822-826. doi: 10.1038/nature02201
[4] Regnier P, Dale A W, Arndt S, et al. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: a modeling perspective[J]. Earth-Science Reviews, 2011, 106(1-2):105-130. doi: 10.1016/j.earscirev.2011.01.002
[5] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407(6804):623-626. doi: 10.1038/35036572
[6] 冯东, 陈多福, 苏正, 等. 海底甲烷缺氧氧化与冷泉碳酸盐岩沉淀动力学研究进展[J]. 海洋地质与第四纪地质, 2006, 26(3):125-131
FENG Dong, CHEN Duofu, SU Zheng, et al. Anaerobic oxidation of methane and seep carbonate precipitation kinetics at seafloor[J]. Marine Geology & Quaternary Geology, 2006, 26(3):125-131.]
[7] Ruban A, Tesi T, Yaroshchuk E, et al. The influence of cold seepage on the grain size and geochemistry of sediments from the Laptev Sea shelf[J]. Marine and Petroleum Geology, 2024, 160:106638. doi: 10.1016/j.marpetgeo.2023.106638
[8] Hu Y, Feng D, Peckmann J, et al. New insights into cerium anomalies and mechanisms of trace metal enrichment in authigenic carbonate from hydrocarbon seeps[J]. Chemical Geology, 2014, 381:55-66. doi: 10.1016/j.chemgeo.2014.05.014
[9] Deng Y N, Chen F, Hu Y, et al. Methane seepage patterns during the middle Pleistocene inferred from molybdenum enrichments of seep carbonates in the South China Sea[J]. Ore Geology Reviews, 2020, 125:103701. doi: 10.1016/j.oregeorev.2020.103701
[10] Miao X, Feng X, Li J, et al. Enrichment mechanism of trace elements in pyrite under methane seepage[J]. Geochemical Perspectives Letters, 2022, 21:18-22. doi: 10.7185/geochemlet.2211
[11] Miao X M, Oppo D, Wei J G, et al. Enrichment pattern of tungsten in sediments under methane seepage environments: applicability as a proxy for tracing and reconstructing (paleo-) methane seepage[J]. Chemical Geology, 2024, 663:122262. doi: 10.1016/j.chemgeo.2024.122262
[12] Jin M, Chen F, Li N, et al. Isotope evidence for the enrichment mechanism of molybdenum in methane-seep sediments: implications for past seepage intensity[J]. Geochimica et Cosmochimica Acta, 2024, 373:282-291. doi: 10.1016/j.gca.2024.04.003
[13] Ge L, Jiang S Y, Swennen R, et al. Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: evidence from trace and rare earth element geochemistry[J]. Marine Geology, 2010, 277(1-4):21-30. doi: 10.1016/j.margeo.2010.08.008
[14] Liu S, Feng X L, Feng Z Q, et al. Geochemical evidence of methane seepage in the sediments of the Qiongdongnan Basin, South China Sea[J]. Chemical Geology, 2020, 543:119588. doi: 10.1016/j.chemgeo.2020.119588
[15] Qin S S, Zhu M X, Li T, et al. Geochemistry of iron and trace metals in seep carbonates of the middle Okinawa Trough impacted by hydrothermal plumes[J]. Chemical Geology, 2024, 648:121950. doi: 10.1016/j.chemgeo.2024.121950
[16] Wang X, Barrat J A, Bayon G, et al. Lanthanum anomalies as fingerprints of methanotrophy[J]. Geochemical Perspectives Letters, 2020, 14:26-30. doi: 10.7185/geochemlet.2019
[17] Wang X D, Bayon G, Kim J H, et al. Trace element systematics in cold seep carbonates and associated lipid compounds[J]. Chemical Geology, 2019, 528:119277. doi: 10.1016/j.chemgeo.2019.119277
[18] Smrzka D, Zwicker J, Bach W, et al. The behavior of trace elements in seawater, sedimentary pore water, and their incorporation into carbonate minerals: a review[J]. Facies, 2019, 65(4):41. doi: 10.1007/s10347-019-0581-4
[19] Smrzka D, Feng D, Himmler T, et al. Trace elements in methane-seep carbonates: potentials, limitations, and perspectives[J]. Earth-Science Reviews, 2020, 208:103263. doi: 10.1016/j.earscirev.2020.103263
[20] Lemaitre N, Bayon G, Ondréas H, et al. Trace element behaviour at cold seeps and the potential export of dissolved iron to the ocean[J]. Earth and Planetary Science Letters, 2014, 404:376-388. doi: 10.1016/j.jpgl.2014.08.014
[21] Wang Q X, Chen D F, Peckmann J. Iron shuttle controls on molybdenum, arsenic, and antimony enrichment in Pliocene methane-seep carbonates from the southern Western Foothills, Southwestern Taiwan[J]. Marine and Petroleum Geology, 2019, 100:263-269. doi: 10.1016/j.marpetgeo.2018.11.011
[22] Tribovillard N, Du Châtelet E A, Gay A, et al. Geochemistry of cold seepage-impacted sediments: per-ascensum or per-descensum trace metal enrichment?[J]. Chemical Geology, 2013, 340:1-12. doi: 10.1016/j.chemgeo.2012.12.012
[23] Bayon G, Birot D, Ruffine L, et al. Evidence for intense REE scavenging at cold seeps from the Niger Delta margin[J]. Earth and Planetary Science Letters, 2011, 312(3-4):443-452. doi: 10.1016/j.jpgl.2011.10.008
[24] Ota Y, Suzumura M, Tsukasaki A, et al. Anaerobic oxidation of methane and trace-element geochemistry in microbial mat-covered sediments related to methane seepage, northeastern Japan Sea[J]. Chemical Geology, 2022, 611:121093. doi: 10.1016/j.chemgeo.2022.121093
[25] Peckmann J, Reimer A, Luth U, et al. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea[J]. Marine Geology, 2001, 177(1-2):129-150. doi: 10.1016/S0025-3227(01)00128-1
[26] Jørgensen B B, Böttcher M E, Lüschen H, et al. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(9):2095-2118. doi: 10.1016/j.gca.2003.07.017
[27] Gong S G, Izon G, Peng Y B, et al. Multiple sulfur isotope systematics of pyrite for tracing sulfate-driven anaerobic oxidation of methane[J]. Earth and Planetary Science Letters, 2022, 597:117827. doi: 10.1016/j.jpgl.2022.117827
[28] Lin Z Y, Sun X M, Peckmann J, et al. How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: a SIMS study from the South China Sea[J]. Chemical Geology, 2016, 440:26-41. doi: 10.1016/j.chemgeo.2016.07.007
[29] Lin Z Y, Sun X M, Lu Y, et al. The enrichment of heavy iron isotopes in authigenic pyrite as a possible indicator of sulfate-driven anaerobic oxidation of methane: insights from the South China Sea[J]. Chemical Geology, 2017, 449:15-29. doi: 10.1016/j.chemgeo.2016.11.032
[30] Lin Z Y, Sun X M, Chen K Y, et al. Effects of sulfate reduction processes on the trace element geochemistry of sedimentary pyrite in modern seep environments[J]. Geochimica et Cosmochimica Acta, 2022, 333:75-94. doi: 10.1016/j.gca.2022.06.026
[31] Beal E J, House C H, Orphan V J. Manganese- and iron-dependent marine methane oxidation[J]. Science, 2009, 325(5937):184-187. doi: 10.1126/science.1169984
[32] Egger M, Hagens M, Sapart C J, et al. Iron oxide reduction in methane-rich deep Baltic Sea sediments[J]. Geochimica et Cosmochimica Acta, 2017, 207:256-276. doi: 10.1016/j.gca.2017.03.019
[33] Luo M, Torres M E, Hong W L, et al. Impact of iron release by volcanic ash alteration on carbon cycling in sediments of the northern Hikurangi margin[J]. Earth and Planetary Science Letters, 2020, 541:116288. doi: 10.1016/j.jpgl.2020.116288
[34] Canfield D E, Thamdrup B. Towards a consistent classification scheme for geochemical environments, or, why we wish the term 'suboxic' would go away[J]. Geobiology, 2009, 7(4):385-392. doi: 10.1111/j.1472-4669.2009.00214.x
[35] Riedinger N, Formolo M J, Lyons T W, et al. An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments[J]. Geobiology, 2014, 12(2):172-181. doi: 10.1111/gbi.12077
[36] Xu C L, Li Q, Lv T H, et al. Dynamic interactions between Fe, Mn, S and C cycles in the Okinawa Trough seep sediments[J]. Global and Planetary Change, 2025, 248:104736. doi: 10.1016/j.gloplacha.2025.104736
[37] Zhang H, Zhou J M, Yuan P, et al. Implication from mineralogical and geochemical characteristics of authigenic micronodules in the Haima cold seeps for understanding the manganese geochemistry in active seepage[J]. Journal of Geophysical Research: Oceans, 2023, 128(3):e2022JC019194. doi: 10.1029/2022JC019194
[38] Glass J B, Orphan V J. Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide[J]. Frontiers in Microbiology, 2012, 3:61.
[39] Krüger M, Meyerdierks A, Glöckner F O, et al. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically[J]. Nature, 2003, 426(6968):878-881. doi: 10.1038/nature02207
[40] 王旭东, 庄光超, 冯东. 海洋沉积体系甲烷生物地球化学循环的微量元素地球化学示踪研究进展[J]. 海洋地质与第四纪地质, 2024, 44(6):82-95
WANG Xudong, ZHUANG Guangchao, FENG Dong. Advancements in studying the biogeochemistry of methane in marine depositional systems through trace element geochemistry[J]. Marine Geology & Quaternary Geology, 2024, 44(6):82-95.]
[41] Lee D H, Kim J H, Lee Y M, et al. Metalloenzyme signatures in authigenic carbonates from the Chukchi Borderlands in the western Arctic Ocean[J]. Scientific Reports, 2022, 12(1):16597. doi: 10.1038/s41598-022-21184-6
[42] Lane T W, Morel F M M. A biological function for cadmium in marine diatoms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(9):4627-4631.
[43] Lane T W, Saito M A, George G N, et al. A cadmium enzyme from a marine diatom[J]. Nature, 2005, 435(7038):42.
[44] Smrzka D, Lin Z, Monien P, et al. Pyrite-based trace element fingerprints for methane and oil seepage[J]. Geochemical Perspectives Letters, 2024, 29:33-37. doi: 10.7185/geochemlet.2409
[45] Wang B, Lei H Y, Huang F F. Impacts of sulfate-driven anaerobic oxidation of methane on the morphology, sulfur isotope, and trace element content of authigenic pyrite in marine sediments of the northern South China Sea[J]. Marine and Petroleum Geology, 2022, 139:105578. doi: 10.1016/j.marpetgeo.2022.105578
[46] Morse J W, Luther III G W. Chemical influences on trace metal-sulfide interactions in anoxic sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(19-20):3373-3378. doi: 10.1016/S0016-7037(99)00258-6
[47] Baya C, Le Pape P, Baptiste B, et al. Influence of trace level As or Ni on pyrite formation kinetics at low temperature[J]. Geochimica et Cosmochimica Acta, 2021, 300:333-353. doi: 10.1016/j.gca.2021.01.042
[48] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1-2):12-32. doi: 10.1016/j.chemgeo.2006.02.012
[49] Wang X, Wang J Y, Mao S H, et al. Speciation and distribution of arsenic in cold seep sediments of the South China Sea[J]. Marine Pollution Bulletin, 2024, 202:116258. doi: 10.1016/j.marpolbul.2024.116258
[50] Shi L D, Guo T, Lv P L, et al. Coupled anaerobic methane oxidation and reductive arsenic mobilization in wetland soils[J]. Nature Geoscience, 2020, 13(12):799-805. doi: 10.1038/s41561-020-00659-z
[51] Zhang C W, Liu X Y, Shi L D, et al. Unexpected genetic and microbial diversity for arsenic cycling in deep sea cold seep sediments[J]. npj Biofilms and Microbiomes, 2023, 9(1):13. doi: 10.1038/s41522-023-00382-8
[52] Carvalho L, Monteiro R, Figueira P, et al. Vertical distribution of major, minor and trace elements in sediments from mud volcanoes of the Gulf of Cadiz: evidence of Cd, As and Ba fronts in upper layers[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2018, 131:133-143. doi: 10.1016/j.dsr.2017.12.003
[53] Tribovillard N. Arsenic in marine sediments: how robust a redox proxy?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 550:109745. doi: 10.1016/j.palaeo.2020.109745
[54] Brown Jr G, Sleeper K, Johnson M W, et al. Mercury concentrations, speciation, and isotopic composition in sediment from a cold seep in the northern Gulf of Mexico[J]. Marine Pollution Bulletin, 2013, 77(1-2):308-314. doi: 10.1016/j.marpolbul.2013.09.030
[55] Mu X D, Wang X D, Lan Z W, et al. Involvement of Hg-bearing methane seeps in forming Ediacaran cap carbonate in South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2024, 651:112389. doi: 10.1016/j.palaeo.2024.112389
[56] Argentino C, Kalenitchenko D, Lindgren M, et al. HgCl2 addition to pore water samples from cold seeps can affect the geochemistry of dissolved inorganic carbon ([DIC], δ13CDIC)[J]. Marine Chemistry, 2023, 251: 104236.
[57] Li J W, Dong X Y, Tang Y J, et al. Deep sea cold seeps are a sink for mercury and source for methylmercury[J]. Communications Earth & Environment, 2024, 5(1):324.
[58] Yuan J J, Liu Y, Chen S, et al. Mercury isotopes in deep-sea epibenthic biota suggest limited Hg transfer from photosynthetic to chemosynthetic food webs[J]. Environmental Science & Technology, 2023, 57(16):6550-6562.
[59] Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation[J]. Chemical Geology, 2009, 268(3-4):211-225. doi: 10.1016/j.chemgeo.2009.09.001
[60] Chen F, Hu Y, Feng D, et al. Evidence of intense methane seepages from molybdenum enrichments in gas hydrate-bearing sediments of the northern South China Sea[J]. Chemical Geology, 2016, 443:173-181. doi: 10.1016/j.chemgeo.2016.09.029
[61] Nan J B, Tsang M Y, Li J, et al. Postdepositional behavior of molybdenum in deep sediments and implications for paleoredox reconstruction[J]. Geophysical Research Letters, 2023, 50(21):e2023GL104706. doi: 10.1029/2023GL104706
[62] Akintomide O A, Adebayo S, Horn J D, et al. Geochemistry of the redox-sensitive trace elements molybdenum, tungsten, and rhenium in the euxinic porewaters and bottom sediments of the Pettaquamscutt River estuary, Rhode Island[J]. Chemical Geology, 2021, 584:120499. doi: 10.1016/j.chemgeo.2021.120499
[63] Hu Y, Feng D, Liang Q Y, et al. Impact of anaerobic oxidation of methane on the geochemical cycle of redox-sensitive elements at cold-seep sites of the northern South China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122:84-94. doi: 10.1016/j.dsr2.2015.06.012
[64] Torres M E, Brumsack H J, Bohrmann G, et al. Barite fronts in continental margin sediments: a new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts[J]. Chemical Geology, 1996, 127(1-3):125-139. doi: 10.1016/0009-2541(95)00090-9
[65] Dickens G R. Sulfate profiles and barium fronts in sediment on the Blake Ridge: present and past methane fluxes through a large gas hydrate reservoir[J]. Geochimica et Cosmochimica Acta, 2001, 65(4):529-543. doi: 10.1016/S0016-7037(00)00556-1
[66] Riedinger N, Kasten S, Gröger J, et al. Active and buried authigenic barite fronts in sediments from the Eastern Cape Basin[J]. Earth and Planetary Science Letters, 2006, 241(3-4):876-887. doi: 10.1016/j.jpgl.2005.10.032
[67] Griffith E M, Paytan A. Barite in the ocean–occurrence, geochemistry and palaeoceanographic applications[J]. Sedimentology, 2012, 59(6):1817-1835. doi: 10.1111/j.1365-3091.2012.01327.x
[68] 冯东, 陈多福. 海底沉积物孔隙水钡循环对天然气渗漏的指示[J]. 地球科学进展, 2007, 22(1):49-57 doi: 10.3321/j.issn:1001-8166.2007.01.007
FENG Dong, CHEN Duofu. Barium cycling in pore water of seafloor sediment: indicator of methane fluxes[J]. Advances in Earth Science, 2007, 22(1):49-57.] doi: 10.3321/j.issn:1001-8166.2007.01.007
[69] Kasten S, Nöthen K, Hensen C, et al. Gas hydrate decomposition recorded by authigenic barite at pockmark sites of the northern Congo Fan[J]. Geo-Marine Letters, 2012, 32(5-6):515-524. doi: 10.1007/s00367-012-0288-9
[70] Feng J X, Luo M, Liang J Q, et al. Possible links with methane seepage and gas hydrate dynamics inferred from authigenic barite records in the northern south china sea[J]. Frontiers in Earth Science, 2022, 10:968504. doi: 10.3389/feart.2022.968504
[71] Wood R S, Lepland A, Ogliore R C, et al. Microscale δ34S heterogeneities in cold seep barite record variable methane flux off the Lofoten-Vesterålen Continental Margin, Norway[J]. Earth and Planetary Science Letters, 2021, 574:117164. doi: 10.1016/j.jpgl.2021.117164
[72] Magnall J M, Gleeson S A, Stern R A, et al. Open system sulphate reduction in a diagenetic environment–isotopic analysis of barite (δ34S and δ18O) and pyrite (δ34S) from the Tom and Jason Late Devonian Zn–Pb–Ba deposits, Selwyn Basin, Canada[J]. Geochimica et Cosmochimica Acta, 2016, 180:146-163. doi: 10.1016/j.gca.2016.02.015
[73] McLennan S M. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1):169-200.
[74] German C R, Elderfield H. Application of the Ce anomaly as a paleoredox indicator: the ground rules[J]. Paleoceanography, 1990, 5(5):823-833. doi: 10.1029/PA005i005p00823
[75] Feng D, Chen D F, Peckmann J. Rare earth elements in seep carbonates as tracers of variable redox conditions at ancient hydrocarbon seeps[J]. Terra Nova, 2009, 21(1):49-56. doi: 10.1111/j.1365-3121.2008.00855.x
[76] De Baar H J W, Bacon M P, Brewer P G, et al. Rare earth elements in the Pacific and Atlantic Oceans[J]. Geochimica et Cosmochimica Acta, 1985, 49(9):1943-1959. doi: 10.1016/0016-7037(85)90089-4
[77] Byrne R H, Kim K H. Rare earth element scavenging in seawater[J]. Geochimica et Cosmochimica Acta, 1990, 54(10):2645-2656. doi: 10.1016/0016-7037(90)90002-3
[78] Zhong S J, Mucci A. Partitioning of rare earth elements (REEs) between calcite and seawater solutions at 25°C and 1 atm, and high dissolved REE concentrations[J]. Geochimica et Cosmochimica Acta, 1995, 59(3):443-453. doi: 10.1016/0016-7037(94)00381-U
[79] Haley B A, Klinkhammer G P, McManus J. Rare earth elements in pore waters of marine sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(6):1265-1279. doi: 10.1016/j.gca.2003.09.012
[80] Mienert J, Berndt C, Tréhu A M, et al. World Atlas of Submarine Gas Hydrates in Continental Margins[M]. Cham: Springer, 2022.
[81] Poulton S W, Canfield D E. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates[J]. Chemical Geology, 2005, 214(3-4):209-221. doi: 10.1016/j.chemgeo.2004.09.003
[82] Miao X M, Feng X L, Liu X T, et al. Effects of methane seepage activity on the morphology and geochemistry of authigenic pyrite[J]. Marine and Petroleum Geology, 2021, 133:105231. doi: 10.1016/j.marpetgeo.2021.105231
[83] Yu X, Miao X M, Oppo D, et al. Trace element signatures in sedimentary pyrite as indicators of methane seepage activities[J]. Marine and Petroleum Geology, 2025, 173:107290. doi: 10.1016/j.marpetgeo.2025.107290
[84] Qin S S, Zhu M X, Sun Z L, et al. Diagenetic geochemistry of iron, sulfur, and molybdenum in sediments of the middle Okinawa Trough impacted by hydrothermal plumes and/or cold seeps[J]. Earth and Space Science, 2023, 10(3):e2022EA002709. doi: 10.1029/2022EA002709
[85] Raiswell R, Hardisty D S, Lyons T W, et al. The iron paleoredox proxies: a guide to the pitfalls, problems and proper practice[J]. American Journal of Science, 2018, 318(5):491-526. doi: 10.2475/05.2018.03
[86] Gong S G, Mao H N, Jiang X Y, et al. Evaluating the impact of methane flux on the trace element geochemistry of sedimentary pyrite: insights from the South China Sea[J]. Chemical Geology, 2025, 690:122868. doi: 10.1016/j.chemgeo.2025.122868
[87] Bayon G, Lemaitre N, Barrat J A, et al. Microbial utilization of rare earth elements at cold seeps related to aerobic methane oxidation[J]. Chemical Geology, 2020, 555:119832. doi: 10.1016/j.chemgeo.2020.119832
[88] Meyer A C S, Grundle D, Cullen J T. Selective uptake of rare earth elements in marine systems as an indicator of and control on aerobic bacterial methanotrophy[J]. Earth and Planetary Science Letters, 2021, 558:116756. doi: 10.1016/j.jpgl.2021.116756
[89] Sun Y D, Di P F, Peckmann J, et al. Trace and rare earth element fingerprints of aerobic oxidation of methane in seep‐dwelling bivalves[J]. Journal of Geophysical Research: Oceans, 2024, 129(3):e2023JC020475. doi: 10.1029/2023JC020475
[90] Jia Z C, Li N, Peckmann J, et al. Geochemical fingerprinting of siboglinid tube worms: insights from stable isotopes (C, N, and S) and trace elements[J]. Journal of Geophysical Research: Oceans, 2025, 130(3):e2024JC022177. doi: 10.1029/2024JC022177
[91] Skovran E, Palmer A D, Rountree A M, et al. XoxF is required for expression of methanol dehydrogenase in Methylobacterium extorquens AM1[J]. Journal of bacteriology, 2011, 193(21):6032-6038. doi: 10.1128/JB.05367-11
[92] Pol A, Barends T R M, Dietl A, et al. Rare earth metals are essential for methanotrophic life in volcanic mudpots[J]. Environmental Microbiology, 2014, 16(1):255-264. doi: 10.1111/1462-2920.12249
[93] Duperron S, Gaudron S M, Lemaitre N, et al. A microbiological and biogeochemical investigation of the cold seep tubeworm Escarpia southwardae (Annelida: Siboglinidae): symbiosis and trace element composition of the tube[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2014, 90:105-114. doi: 10.1016/j.dsr.2014.05.006
[94] Chen C, Wang J S, Algeo T J, et al. Application of pyrite trace-metal and S and Ni isotope signatures to distinguish sulfate- versus iron-driven anaerobic oxidation of methane[J]. Chemical Geology, 2024, 662:122211. doi: 10.1016/j.chemgeo.2024.122211
[95] Chen C, Wang J S, Algeo T J, et al. Sulfate-driven anaerobic oxidation of methane inferred from trace-element chemistry and nickel isotopes of pyrite[J]. Geochimica et Cosmochimica Acta, 2023, 349:81-95. doi: 10.1016/j.gca.2023.04.002
[96] Zhang G L, Deng Y N, Chen F, et al. Copper and zinc isotopic compositions of methane-derived carbonates: implications for paleo-methane seepage and paleoenvironmental proxies[J]. Geological Society of America Bulletin, 2024, 136(9-10):4005-4017. doi: 10.1130/B37374.1
[97] Lin Z Y, Sun X M, Lu Y, et al. Iron isotope constraints on diagenetic iron cycling in the Taixinan seepage area, South China Sea[J]. Journal of Asian Earth Sciences, 2018, 168:112-124. doi: 10.1016/j.jseaes.2018.01.007
[98] Miao X M, Wei J G, Li J R, et al. Isotopically light Mo in sediments of methane seepage controlled by the benthic Fe–Mn redox shuttle process[J]. Global and Planetary Change, 2024, 239:104512. doi: 10.1016/j.gloplacha.2024.104512
-