Microstructural characteristics of manganese oxides in deep-sea low-temperature hydrothermal deposit and their implications
-
摘要:
海底低温热液产生的富铁硅锰氧化物广泛分布于全球海底,但目前对于其中富锰氧化物的形成机制还不清楚。本研究采集了来自西南印度洋脊龙旂热液区的富铁硅锰氧化物,利用扫描电子显微镜和透射电子显微镜对其中富锰氧化物的显微结构的元素和矿物组成进行了高分辨表征。结果表明富锰氧化物中广泛分布表面具孔洞、主要由弱结晶含钠δ-MnO2组成的球状颗粒,它们内部碳含量很高,其表层与内部相比结晶度更高且碳含量更低。锰氧化物球状颗粒表面沉淀不同厚度的铁硅氧化物,并分布由嗜中性微需氧铁氧化菌产生的铁硅氧化物丝状显微结构。据此认为微生物锰氧化对富锰氧化物中大量锰氧化物球状颗粒的形成起到主要的促进作用,并且这些球状颗粒形成后通过自催化锰氧化产生结晶度更高的表层锰氧化物。锰氧化物球状颗粒的表层结构通过影响与热液流体接触的表面积和孔隙空间大小影响后期沉淀铁硅氧化物的厚度,其表面存在的孔洞能够为铁氧化菌的附着提供更为稳定的微环境。本研究为揭示海底低温热液环境中微生物的锰氧化作用、生物成因锰氧化物的特征及其后期变化过程提供了重要科学依据。
Abstract:Fe-Si-Mn oxyhydroxides deposited from deep-sea low-temperature hydrothermal fluids are widely distributed on the global seafloor, yet the formation mechanisms of Mn-rich oxides within these deposits remain unclear. This study used scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to perform high-resolution characterization of the elemental and mineralogical composition of the microstructures of Mn-rich oxides in Fe-Si-Mn oxyhydroxide deposit from the Longqi Hydrothermal Field on the Southwest Indian Ridge. The Mn-rich oxides contain abundant spheres composed of poorly crystallized Na-bearing δ-MnO2 with surface pores, which have carbon-rich interiors and more crystalline, carbon-depleted outer layers. Fe-Si oxyhydroxide layers of varying thicknesses and Fe-Si oxyhydroxide filaments formed by neutrophilic microaerophilic Fe-oxidizing bacteria are on the surfaces of the Mn oxide spheres. Results suggest that the Mn oxide spheres formed mainly via microbial Mn oxidation, followed by autocatalytic Mn oxidation, forming more crystalline outer layers. Their surface structures influenced the thickness of the secondary Fe-Si oxyhydroxide precipitates by altering surface area and pore space in contact with hydrothermal fluids. The surface pores may have provided more stable microenvironments for the attachment of Fe-oxidizing bacteria. This study offered important scientific evidence into microbial roles in Mn oxide formation and the characteristics and post-depositional processes of biogenic Mn oxides in deep-sea low-temperature hydrothermal environments.
-
-
[1] Post J E. Manganese oxide minerals: crystal structures and economic and environmental significance[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7):3447-3454.
[2] Hansel C M. Two - manganese in marine microbiology[J]. Advances in Microbial Physiology, 2017, 70:37-83.
[3] Goldberg E D. Marine geochemistry 1. chemical scavengers of the sea[J]. The Journal of Geology, 1954, 62(3):249-265. doi: 10.1086/626161
[4] Tebo B M, Bargar J R, Clement B G, et al. BIOGENIC MANGANESE OXIDES: properties and mechanisms of formation[J]. Annual Review of Earth and Planetary Sciences, 2004, 32:287-328. doi: 10.1146/annurev.earth.32.101802.120213
[5] Tebo B M, Johnson H A, McCarthy J K, et al. Geomicrobiology of manganese(II) oxidation[J]. Trends in Microbiology, 2005, 13(9):421-428. doi: 10.1016/j.tim.2005.07.009
[6] 苏键镁. 细菌氧化锰的作用机理及生物锰氧化物的特性研究[D]. 华中农业大学博士学位论文, 2015: 14–16
SU Jianmei. Studies on the mechanism of bacterial Mn(II) oxidation and characteristics of biological manganese oxides [D]. Doctor Dissertation of Huazhong Agricultural University, 2015: 14–16.]
[7] 陈虎, 王世杰, 翁庆北, 等. 生物氧化锰矿物的研究进展[J]. 矿物学报, 2022, 42(1):21-28
Chen H, Wang S J, Weng Q B, et al. Research progresses of biological manganese oxide minerals[J]. Acta Mineralogica Sinica, 2022, 42(1):21-28.]
[8] Ehrlich H L, Newman D K, Kappler A. Geomicrobiology of manganese[M]//Ehrlich H L, Newman D K, Kappler A. Ehrlich's Geomicrobiology. 6th ed. Boca Raton: CRC Press, 2015: 401-452.
[9] Yu H, Leadbetter J R. Bacterial chemolithoautotrophy via manganese oxidation[J]. Nature, 2020, 583(7816):453-458. doi: 10.1038/s41586-020-2468-5
[10] 刘进超, 王欧美, 李佳佳, 等. 生物地球化学锰循环中的微生物胞外电子传递机制[J]. 微生物学报, 2018, 58(4):546-559
LIU Jinchao, WANG Oumei, LI Jiajia, et al. Mechanisms of extracellular electron transfer in the biogeochemical manganese cycle[J]. Acta Microbiologica Sinica, 2018, 58(4):546-559.]
[11] 段国文, 耿新燕, 魏绪宇, 等. 锰氧化细菌的生理生态功能与作用机制研究进展[J]. 微生物学通报, 2020, 47(9):3039-3053
DUAN Guowen, GENG Xinyan, WEI Xuyu, et al. Advances in physiological and ecological functions of manganese oxidizing bacteria and the underlying molecular mechanisms[J]. Microbiology China, 2020, 47(9):3039-3053.]
[12] Templeton A, Knowles E. Microbial transformations of minerals and metals: recent advances in geomicrobiology derived from synchrotron-based X-ray spectroscopy and X-ray microscopy[J]. Annual Review of Earth and Planetary Sciences, 2009, 37:367-391. doi: 10.1146/annurev.earth.36.031207.124346
[13] Edmond J M, Von Damm K L, McDuff R E, et al. Chemistry of hot springs on the East Pacific Rise and their effluent dispersal[J]. Nature, 1982, 297(5863):187-191. doi: 10.1038/297187a0
[14] Cowen J P, Bertram M A, Baker E T, et al. Geomicrobial transformation of manganese in Gorda Ridge event plumes[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1998, 45(12):2713-2737. doi: 10.1016/S0967-0645(98)00090-3
[15] Cowen J P, Massoth G J, Baker E T. Bacterial scavenging of Mn and Fe in a mid- to far-field hydrothermal particle plume[J]. Nature, 1986, 322(6075):169-171. doi: 10.1038/322169a0
[16] Dick G J, Clement B G, Webb S M, et al. Enzymatic microbial Mn(II) oxidation and Mn biooxide production in the Guaymas Basin deep-sea hydrothermal plume[J]. Geochimica et Cosmochimica Acta, 2009, 73(21):6517-6530. doi: 10.1016/j.gca.2009.07.039
[17] Lee J M, Lam P J, Vivancos S M, et al. Changing chemistry of particulate manganese in the near-and far-field hydrothermal plumes from 15°S East Pacific Rise and its influence on metal scavenging[J]. Geochimica et Cosmochimica Acta, 2021, 300:95-118. doi: 10.1016/j.gca.2021.02.020
[18] Peng X T, Ta K, Chen S, et al. Coexistence of Fe(II)- and Mn(II)-oxidizing bacteria govern the formation of deep sea umber deposits[J]. Geochimica et Cosmochimica Acta, 2015, 169:200-216. doi: 10.1016/j.gca.2015.09.011
[19] Li J W, Peng X T, Zhou H Y, et al. Molecular evidence for microorganisms participating in Fe, Mn, and S biogeochemical cycling in two low-temperature hydrothermal fields at the Southwest Indian Ridge[J]. Journal of Geophysical Research: Biogeosciences, 2013, 118(2):665-679. doi: 10.1002/jgrg.20057
[20] Dick G J, Lee Y E, Tebo B M. Manganese(II)-oxidizing Bacillus spores in Guaymas basin hydrothermal sediments and plumes[J]. Applied and Environmental Microbiology, 2006, 72(5):3184-3190. doi: 10.1128/AEM.72.5.3184-3190.2006
[21] Connell L, Barrett A, Templeton A, et al. Fungal diversity associated with an active deep sea volcano: Vailulu'u seamount, Samoa[J]. Geomicrobiology Journal, 2009, 26(8):597-605. doi: 10.1080/01490450903316174
[22] Johannessen K C, Vander Roost J, Dahle H, et al. Environmental controls on biomineralization and Fe-mound formation in a low-temperature hydrothermal system at the Jan Mayen Vent Fields[J]. Geochimica et Cosmochimica Acta, 2017, 202:101-123. doi: 10.1016/j.gca.2016.12.016
[23] Sauter D, Cannat M. The ultraslow spreading Southwest Indian Ridge[M]//Rona P A, Devey C W, Dyment J, et al. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington: AGU Publications, 2010: 153-173.
[24] Dick H J B, Lin J, Schouten H. An ultraslow-spreading class of ocean ridge[J]. Nature, 2003, 426(6965):405-412. doi: 10.1038/nature02128
[25] Tao C H, Li H M, Huang W, et al. Mineralogical and geochemical features of sulfide chimneys from the 49°39′E hydrothermal field on the Southwest Indian Ridge and their geological inferences[J]. Chinese Science Bulletin, 2011, 56(26):2828-2838. doi: 10.1007/s11434-011-4619-4
[26] Tao C H, Lin J, Guo S Q, et al. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge[J]. Geology, 2012, 40(1):47-50. doi: 10.1130/G32389.1
[27] Tao C H, Li H M, Jin X B, et al. Seafloor hydrothermal activity and polymetallic sulfide exploration on the Southwest Indian Ridge[J]. Chinese Science Bulletin, 2014, 59(19):2266-2276. doi: 10.1007/s11434-014-0182-0
[28] Ji F W, Zhou H Y, Yang Q H, et al. Geochemistry of hydrothermal vent fluids and its implications for subsurface processes at the active Longqi hydrothermal field, Southwest Indian Ridge[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 122:41-47. doi: 10.1016/j.dsr.2017.02.001
[29] Copley J T, Marsh L, Glover A G, et al. Ecology and biogeography of megafauna and macrofauna at the first known deep-sea hydrothermal vents on the ultraslow-spreading Southwest Indian Ridge[J]. Scientific Reports, 2016, 6(1):39158. doi: 10.1038/srep39158
[30] Zhou Y D, Zhang D S, Zhang R Y, et al. Characterization of vent fauna at three hydrothermal vent fields on the Southwest Indian Ridge: Implications for biogeography and interannual dynamics on ultraslow-spreading ridges[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2018, 137:1-12. doi: 10.1016/j.dsr.2018.05.001
[31] Li J T, Yang J Y, Sun M X, et al. Distribution and succession of microbial communities along the dispersal pathway of hydrothermal plumes on the Southwest Indian Ridge[J]. Frontiers in Marine Science, 2020, 7:581381. doi: 10.3389/fmars.2020.581381
[32] Li J T, Sun M X, Qi W L, et al. Geochemical and Sr‐Nd‐Pb‐Fe isotopic constraints on the formation of Fe‐Si oxyhydroxide deposits at the ultraslow‐spreading Southwest Indian Ridge[J]. Geochemistry, Geophysics, Geosystems, 2024, 25(2):e2023GC011185. doi: 10.1029/2023GC011185
[33] Lee S, Xu H, Xu W, et al. The structure and crystal chemistry of vernadite in ferromanganese crusts[J]. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 2019, 75(4):591-598. doi: 10.1107/S2052520619006528
[34] Liang X R, Zhao Z X, Zhu M Q, et al. Self-assembly of birnessite nanoflowers by staged three-dimensional oriented attachment[J]. Environmental Science: Nano, 2017, 4(8):1656-1669. doi: 10.1039/C6EN00619A
[35] Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5):751-767. doi: 10.1107/S0567739476001551
[36] Balistrieri L S, Murray J W. The surface chemistry of δMnO2 in major ion sea water[J]. Geochimica et Cosmochimica Acta, 1982, 46(6):1041-1052. doi: 10.1016/0016-7037(82)90057-6
[37] Johnson E A, Post J E. Water in the interlayer region of birnessite: Importance in cation exchange and structural stability[J]. American Mineralogist, 2006, 91(4):609-618. doi: 10.2138/am.2006.2090
[38] Post J E, Veblen D R. Crystal structure determinations of synthetic sodium, magnesium, and potassium birnessite using TEM and the Rietveld method[J]. American Mineralogist, 1990, 75(5-6):477-489.
[39] Portehault D, Cassaignon S, Nassif N, et al. A core–corona hierarchical manganese oxide and its formation by an aqueous soft chemistry mechanism[J]. Angewandte Chemie International Edition, 2008, 47(34):6441-6444. doi: 10.1002/anie.200800331
[40] Miyata N, Suganuma R, Sunouchi K, et al. Biological Mn(II) oxidation under organic substrate-limited conditions and its application in mine drainage remediation[J]. Biochemical Engineering Journal, 2024, 203:109187. doi: 10.1016/j.bej.2023.109187
[41] Bargar J R, Tebo B M, Bergmann U, et al. Biotic and abiotic products of Mn(II) oxidation by spores of the marine bacillus sp. strain SG-1[J]. American Mineralogist, 2005, 90(1):143-154. doi: 10.2138/am.2005.1557
[42] Zhou H, Fu C. Manganese-oxidizing microbes and biogenic manganese oxides: characterization, Mn(II) oxidation mechanism and environmental relevance[J]. Reviews in Environmental Science and Bio/Technology, 2020, 19(3):489-507. doi: 10.1007/s11157-020-09541-1
[43] Xu X L, Zhang L T, Song F H, et al. Genomic insights into the alphaproteobacterium Georhizobium sp. MAB10 revealed a pathway of Mn(II) oxidation-coupled anoxygenic photoautotrophy: a novel understanding of the biotic process in deep-sea ferromanganese nodule formation[J]. mBio, 2025, 16(1):e0267524. doi: 10.1128/mbio.02675-24
[44] Learman D R, Wankel S D, Webb S M, et al. Coupled biotic–abiotic Mn(II) oxidation pathway mediates the formation and structural evolution of biogenic Mn oxides[J]. Geochimica et Cosmochimica Acta, 2011, 75(20):6048-6063. doi: 10.1016/j.gca.2011.07.026
[45] Zhao H Y, Zhu M Q, Li W, et al. Redox reactions between Mn(II) and hexagonal birnessite change its layer symmetry[J]. Environmental Science & Technology, 2016, 50(4):1750-1758.
[46] Morgan J J. Kinetics of reaction between O2 and Mn(II) species in aqueous solutions[J]. Geochimica et Cosmochimica Acta, 2005, 69(1):35-48. doi: 10.1016/j.gca.2004.06.013
[47] Liu J, Chen Q Z, Yang Y X, et al. Coupled redox cycling of Fe and Mn in the environment: the complex interplay of solution species with Fe- and Mn-(oxyhydr)oxide crystallization and transformation[J]. Earth-Science Reviews, 2022, 232:104105. doi: 10.1016/j.earscirev.2022.104105
[48] Schaefer M V, Handler R M, Scherer M M. Fe(II) reduction of pyrolusite (β-MnO2) and secondary mineral evolution[J]. Geochemical Transactions, 2017, 18(1):7. doi: 10.1186/s12932-017-0045-0
-