新疆北山南部白山地区晚石炭世火山机构的发现及其地质意义

王杰, 康磊, 杨选江, 张晨博, 祖倩, 詹海鹏, 李玲, 雍华华. 2025. 新疆北山南部白山地区晚石炭世火山机构的发现及其地质意义. 华东地质, 46(2): 222-237. doi: 10.16788/j.hddz.32-1865/P.2024.01.017
引用本文: 王杰, 康磊, 杨选江, 张晨博, 祖倩, 詹海鹏, 李玲, 雍华华. 2025. 新疆北山南部白山地区晚石炭世火山机构的发现及其地质意义. 华东地质, 46(2): 222-237. doi: 10.16788/j.hddz.32-1865/P.2024.01.017
WANG Jie, KANG Lei, YANG Xuanjiang, ZHANG Chenbo, ZU Qian, ZHAN Haipeng, LI Ling, YONG Huahua. 2025. Discovery and geological significance of the Late Carboniferous volcanic edifices in Baishan of Southern Beishan area, Xinjiang. East China Geology, 46(2): 222-237. doi: 10.16788/j.hddz.32-1865/P.2024.01.017
Citation: WANG Jie, KANG Lei, YANG Xuanjiang, ZHANG Chenbo, ZU Qian, ZHAN Haipeng, LI Ling, YONG Huahua. 2025. Discovery and geological significance of the Late Carboniferous volcanic edifices in Baishan of Southern Beishan area, Xinjiang. East China Geology, 46(2): 222-237. doi: 10.16788/j.hddz.32-1865/P.2024.01.017

新疆北山南部白山地区晚石炭世火山机构的发现及其地质意义

  • 基金项目: 中国地质调查局“西昆仑—阿尔金成矿带区域地质调查(编号: DD20240030)”、“天山—北山成矿带那拉提—营毛沱地区地质矿产调查(编号: DD20160009)”和“新疆东天山卡拉塔格一带1∶5万丹乔喀幅等12幅戈壁荒漠覆盖区地质填图(编号:DD20179607) ”项目联合资助。
详细信息
    作者简介: 王杰,1989年生,男,工程师,硕士,主要从事地质矿产勘查研究工作。Email:jerryfrost@163.com
    通讯作者: 康磊,1984年生,男,教授级高级工程师,博士,主要从事区域地质、岩浆岩作用以及大地构造研究工作。Email:kang844@163.com
  • 中图分类号: P588.14

Discovery and geological significance of the Late Carboniferous volcanic edifices in Baishan of Southern Beishan area, Xinjiang

More Information
  • 对北山地区晚古生代裂谷带何时开始裂解的相关研究一直较薄弱。文章通过1∶5万区域地质调查,在新疆北山造山带南部新鉴别出保存完好的晚石炭世火山机构,岩石组合类型包括安山岩、英安岩、玄武岩、流纹岩及火山碎屑岩,锆石U-Pb年龄为313~300 Ma。火山岩具有相对较高的Na2O含量和Mg#值,相对较低的CaO和TiO2含量,属于钙碱性系列岩石。稀土元素配分模式呈明显的右倾式,具有弱的负铕异常(δ Eu=0.72~1.00),富集大离子亲石元素Rb、Th、K和LREE,亏损Nb、Ta、P和Ti。根据岩石的地球化学特征和(Th/Nb)N、(Nb/La)N等关键指数,发现岩浆在上侵喷发过程中可能受到强烈的地壳混染作用。碎屑岩的沉积序列显示其应形成于陆内环境,结合Zr/Nb-Nb/Th图解及Zr/Y-Nb/Y图解,认为基性火山岩源区可能形成于与地幔柱有关的构造地质背景。根据Zr/Y-Zr图解和Th/Hf-Ta/Hf图解,结合区域地质资料,认为该套火山岩系应形成于大陆裂谷初始裂解的环境,这是目前报道的该裂谷带最早的年龄信息,指示晚石炭世北山南部地区已开始处于陆内初始裂谷的环境。

  • 加载中
  • 图 1  新疆白山地区大地构造位置图(a)及火山机构地质略图(b)

    Figure 1. 

    图 2  玄武岩(PM10-50)(a)及流纹岩(PM10-58)(b)显微镜下照片(正交偏光)

    Figure 2. 

    图 3  玄武岩样品PM10-50-1TW代表性锆石阴极发光图像

    Figure 3. 

    图 4  玄武岩样品PM10-50-1TW的锆石U-Pb年龄谐和图(a)及加权平均年龄图(b)

    Figure 4. 

    图 5  流纹岩样品PM10-58-1TW代表性锆石阴极发光图像

    Figure 5. 

    图 6  流纹岩样品PM10-58-1TW的锆石U-Pb年龄谐和图(a)及加权平均年龄图(b)

    Figure 6. 

    图 7  白山地区火山岩Nb/Y-Zr/TiO2×0.000 1图解(a)(据Pearce, 1996)及FeOT/MgO-SiO2图解(b)(据Miyashiro, 1975

    Figure 7. 

    图 8  白山地区火山岩球粒陨石标准化稀土元素配分曲线图(a)和原始地幔标准化微量元素蛛网图(b)(球粒陨石和原始地幔标准化值据Sun and McDonough, 1989

    Figure 8. 

    图 9  白山地区火山岩样品Haker图解

    Figure 9. 

    图 10  白山地区火山岩Zr/Y-Zr 图解(a)(据Pearce and Norry, 1979)及Th/Hf-Ta/Hf 图解(b)(据汪云亮等,2001

    Figure 10. 

    图 11  白山地区火山岩与北山晚石炭世火山岩Zr/Nb-Nb/Th图解(a)及Zr/Y-Nb/Y图解(b)(Condie, 2005

    Figure 11. 

    表 1  杏仁状玄武岩(PM10-50-1TW)LA-ICP-MS U-Pb锆石年龄分析结果

    Table 1.  LA-ICP-MS zircon age of the almond-shaped basalt (PM10-50-1TW)

    测点编号 207Pb/206Pb 206Pb/238U 207Pb/235U 208Pb/232Th 207Pb/206Pb 206Pb/238U 207Pb/235U 208Pb/232Th Pb/10-6 232Th/10-6 238U/10-6 Th/U
    比值 比值 比值 比值 年龄/Ma 年龄/Ma 年龄/Ma 年龄/Ma
    PM10-50-1-2 0.098 43 0.006 53 0.266 76 0.006 65 3.617 88 0.233 82 0.086 71 0.004 25 1 594.5 118.98 1524.4 33.85 1553.5 51.41 1680.7 79.04 425.24 90.77 128.83 0.70
    PM10-50-1-3 0.059 11 0.010 71 0.049 05 0.001 68 0.399 52 0.071 35 0.015 94 0.001 18 571.20 351.87 308.70 10.29 341.3 51.76 319.7 23.54 95.46 104.58 191.34 0.55
    PM10-50-1-4 0.052 87 0.002 25 0.050 12 0.000 72 0.365 18 0.015 39 0.018 07 0.000 46 323.40 93.90 315.30 4.40 316.1 11.45 361.9 9.13 87.52 274.23 618.20 0.44
    PM10-50-1-5 0.053 20 0.003 60 0.050 11 0.000 86 0.367 31 0.024 53 0.016 63 0.000 42 337.30 145.92 315.20 5.30 317.7 18.22 333.4 8.27 82.41 304.79 282.71 1.08
    PM10-50-1-6 0.057 61 0.003 29 0.069 39 0.001 18 0.550 84 0.030 91 0.024 52 0.000 72 514.70 121.07 432.50 7.10 445.5 20.24 489.6 14.15 120.49 187.15 289.20 0.65
    PM10-50-1-7 0.061 55 0.002 75 0.068 39 0.001 04 0.579 95 0.025 53 0.021 82 0.000 49 658.30 93.13 426.50 6.28 464.4 16.41 436.3 9.69 105.45 360.33 397.23 0.91
    PM10-50-1-8 0.057 59 0.002 42 0.050 42 0.000 74 0.400 10 0.016 54 0.017 80 0.000 44 514.00 89.89 317.10 4.51 341.7 12.00 356.5 8.65 86.21 298.39 543.05 0.55
    PM10-50-1-10 0.053 55 0.015 63 0.048 81 0.002 15 0.360 13 0.104 06 0.013 81 0.001 77 352.20 551.90 307.20 13.19 312.3 77.69 277.2 35.38 98.52 223.04 266.21 0.84
    PM10-50-1-13 0.058 81 0.003 84 0.069 52 0.001 32 0.563 25 0.035 96 0.022 41 0.000 69 559.90 136.23 433.30 7.99 453.6 23.36 447.9 13.59 111.74 378.62 426.78 0.89
    PM10-50-1-14 0.052 28 0.010 89 0.049 46 0.002 26 0.356 25 0.072 65 0.013 53 0.001 40 297.80 416.10 311.20 13.85 309.4 54.39 271.7 27.87 87.76 146.35 208.92 0.70
    PM10-50-1-15 0.047 79 0.006 33 0.048 75 0.001 12 0.320 97 0.042 10 0.015 20 0.000 83 88.10 287.96 306.80 6.86 282.6 32.36 304.8 16.51 83.81 83.48 143.36 0.58
    PM10-50-1-16 0.062 87 0.009 49 0.069 33 0.002 20 0.600 50 0.089 08 0.022 01 0.002 42 703.90 292.10 432.10 13.23 477.6 56.52 440.1 47.79 135.93 31.24 69.19 0.45
    PM10-50-1-17 0.058 14 0.004 85 0.049 55 0.001 02 0.396 85 0.032 50 0.017 49 0.000 83 534.40 173.30 311.70 6.27 339.4 23.62 350.5 16.57 91.84 110.32 227.91 0.48
    PM10-50-1-18 0.055 18 0.006 08 0.048 84 0.001 29 0.371 28 0.040 08 0.012 09 0.000 71 419.30 229.10 307.40 7.91 320.6 29.68 242.9 14.13 68.24 195.74 250.14 0.78
    PM10-50-1-20 0.050 17 0.003 18 0.049 27 0.000 82 0.340 55 0.021 27 0.018 76 0.000 53 203.00 140.75 310.00 5.06 297.6 16.11 375.7 10.49 92.41 315.50 499.19 0.63
    PM10-50-1-21 0.069 24 0.001 73 0.157 30 0.002 01 1.500 32 0.037 31 0.053 05 0.001 52 905.80 50.53 941.70 11.17 930.5 15.15 1044.8 29.18 249.84 60.96 355.37 0.17
    PM10-50-1-23 0.052 12 0.018 79 0.049 08 0.002 43 0.352 43 0.126 01 0.012 09 0.003 89 290.80 664.13 308.90 14.95 306.5 94.6 242.8 77.64 117.14 164.89 387.10 0.43
    下载: 导出CSV

    表 2  流纹岩(PM10-58-1TW)LA-ICP-MS U-Pb锆石年龄分析结果

    Table 2.  LA-ICP-MS zircon age of the rhyolite (PM10-58-1TW)

    测点编号 207Pb/206Pb 206Pb/238U 207Pb/235U 208Pb/232Th 207Pb/206Pb 206Pb/238U 207Pb/235U 208Pb/232Th Pb/10-6 232Th/10-6 238U/10-6 Th/U
    比值 比值 比值 比值 年龄/Ma 年龄/Ma 年龄/Ma 年龄/Ma
    PM10-58-1-1 0.057 59 0.001 76 0.079 07 0.001 08 0.625 97 0.019 13 0.026 79 0.000 53 513.9 66.08 490.6 6.45 493.6 11.95 534.3 10.35 55.19 402.81 616.62 0.65
    PM10-58-1-2 0.055 44 0.003 64 0.047 65 0.000 85 0.363 11 0.023 51 0.017 09 0.000 41 429.6 140.42 300.1 5.24 314.5 17.51 342.4 8.21 21.39 441.52 333.16 1.33
    PM10-58-1-3 0.061 17 0.002 53 0.079 02 0.001 19 0.664 49 0.027 23 0.024 45 0.002 09 645.3 86.61 490.2 7.12 517.4 16.61 488.2 41.27 30.13 32.90 390.45 0.08
    PM10-58-1-4 0.050 91 0.018 07 0.047 62 0.002 57 0.333 26 0.117 11 0.015 32 0.003 98 236.6 661.51 299.9 15.84 292.1 89.19 307.3 79.18 3.17 22.83 63.58 0.36
    PM10-58-1-6 0.059 03 0.003 00 0.079 05 0.001 28 0.641 65 0.032 20 0.026 99 0.000 56 568.2 107.07 490.5 7.64 503.3 19.92 538.4 10.98 29.64 391.12 270.77 1.44
    PM10-58-1-9 0.058 31 0.006 82 0.047 75 0.001 38 0.383 09 0.043 83 0.018 27 0.001 25 540.9 237.92 300.7 8.47 329.3 32.18 366.0 24.78 18.69 153.36 348.42 0.44
    PM10-58-1-11 0.060 82 0.002 39 0.091 80 0.001 35 0.768 22 0.029 80 0.030 89 0.000 78 632.9 82.38 566.2 7.97 578.7 17.11 614.9 15.22 39.55 192.02 380.07 0.51
    PM10-58-1-14 0.055 18 0.002 84 0.047 66 0.000 76 0.362 05 0.018 35 0.016 29 0.000 38 419.5 110.72 300.2 4.65 313.7 13.68 326.6 7.52 35.25 518.61 585.17 0.89
    PM10-58-1-15 0.058 26 0.011 77 0.047 58 0.002 02 0.381 59 0.075 65 0.010 80 0.001 57 539.1 390.29 299.6 12.43 328.2 55.6 217.1 31.47 4.72 46.85 90.32 0.52
    PM10-58-1-16 0.049 24 0.007 11 0.047 72 0.001 22 0.323 44 0.046 20 0.021 50 0.001 14 159.1 306.23 300.5 7.52 284.5 35.45 429.9 22.5 6.31 57.17 110.10 0.52
    PM10-58-1-17 0.052 76 0.003 62 0.047 75 0.000 81 0.346 92 0.023 52 0.018 02 0.000 56 318.6 148.26 300.7 5.01 302.4 17.73 361.0 11.21 15.58 154.90 274.35 0.56
    PM10-58-1-19 0.054 36 0.004 64 0.047 71 0.001 03 0.357 25 0.029 88 0.018 23 0.000 73 385.7 181.11 300.5 6.32 310.2 22.35 365.1 14.54 19.75 200.73 339.23 0.59
    PM10-58-1-22 0.059 20 0.003 23 0.065 18 0.001 05 0.531 69 0.028 56 0.022 51 0.000 90 574.6 114.50 407.0 6.37 432.9 18.93 450.0 17.74 17.47 67.92 241.51 0.28
    PM10-58-1-23 0.069 73 0.001 77 0.144 85 0.001 85 1.391 76 0.035 11 0.045 27 0.001 60 920.3 51.26 872.0 10.45 885.4 14.91 894.9 30.90 62.54 44.81 406.74 0.11
    PM10-58-1-24 0.053 01 0.002 96 0.047 66 0.000 75 0.348 13 0.019 17 0.014 56 0.000 59 329.0 121.76 300.1 4.63 303.3 14.44 292.2 11.83 20.43 120.91 386.68 0.31
    下载: 导出CSV

    表 3  白山地区火山岩主量元素、稀土元素及微量元素分析结果

    Table 3.  Major elements, rare earth elements and trace elements of volcanic rocks distributed in Baishan area

    项目 样品编号及岩性
    PM10-5-1 PM10-5-2 PM10-5-3 PM10-11-1 PM10-11-2 PM10-21-1 PM10-21-2 PM10-21-3 PM10-50-1 PM10-50-2 PM10-50-3
    辉绿玢岩 玄武岩
    SiO2 55.25 55.45 56.47 58.51 62.25 56.49 59.42 61.77 52.33 51.95 50.81
    TiO2 1.09 1.11 1.10 1.03 0.99 0.94 0.95 0.92 1.25 1.28 1.35
    Al2O3 14.77 15.18 14.81 14.37 13.15 16.56 15.37 15.22 15.69 15.85 16.22
    Fe2O3 2.54 2.21 2.25 5.08 3.33 2.74 2.31 1.96 5.22 7.83 4.36
    FeO 5.14 5.33 5.26 2.16 3.30 3.58 4.09 3.92 3.55 0.96 4.18
    MnO 0.13 0.12 0.12 0.096 0.10 0.11 0.11 0.12 0.14 0.13 0.14
    MgO 5.47 5.21 5.23 4.24 4.13 3.82 4.49 4.04 6.90 5.89 7.43
    CaO 7.05 6.54 5.63 5.00 4.45 7.04 3.74 3.61 6.20 7.63 6.78
    Na2O 3.90 3.99 4.28 3.64 3.37 3.97 4.07 3.03 4.68 4.58 4.67
    K2O 0.90 1.11 1.18 2.38 1.41 0.56 1.70 2.02 0.43 1.21 0.31
    P2O5 0.12 0.12 0.13 0.32 0.29 0.27 0.28 0.27 0.19 0.18 0.19
    LOI 3.51 3.46 3.37 3.02 3.08 3.76 3.33 2.97 3.26 2.35 3.40
    Total 99.87 99.83 99.83 99.85 99.85 99.84 99.86 99.85 99.84 99.84 99.84
    Mg# 56.77 55.93 56.14 52.89 53.90 52.97 56.47 55.89 59.86 56.74 62.04
    Cr 178 171 168 161 152 104 103 103 239 255 264
    Ni 73.4 58.8 60.9 57.5 53.6 50.2 50.8 50.9 73.5 74.7 76.0
    Co 30.8 29.9 30.2 24.7 24.1 20.0 21.5 20.0 35.9 36.3 35.9
    Rb 37.8 41.5 54.0 76.0 51.8 24.3 47.8 49.8 16.8 45.9 16.8
    Sr 152 164 202 189 208 196 230 363 340 251 356
    Ba 108 138 159 255 201 43.6 217 221 97.7 289 55.2
    V 196 198 196 157 142 162 129 132 228 170 297
    Nb 7.03 7.33 7.65 8.87 8.46 7.65 7.70 7.80 4.40 4.09 4.49
    Ta 0.51 0.52 0.55 0.65 0.60 0.56 0.54 0.58 0.32 0.31 0.33
    Zr 137 146 149 200 192 191 188 188 113 110 116
    Hf 3.96 4.05 4.21 4.56 4.33 4.52 4.48 4.49 2.89 2.84 2.96
    Ga 18.5 17.9 17.8 13.8 12.4 15.7 14.3 15.9 15.4 14.2 14.0
    U 0.82 0.77 0.82 0.91 0.81 0.89 0.75 0.80 0.50 0.32 0.84
    Th 7.25 6.51 7.55 4.89 4.52 4.30 4.23 4.50 1.88 1.53 1.89
    La 16.0 14.7 19.5 17.8 17.8 16.1 16.5 16.0 8.03 6.82 8.1
    Ce 35.0 32.7 40.2 39.6 38.9 37.1 37.7 36.3 19.1 16.4 19.0
    Pr 4.54 4.10 5.03 5.25 5.06 5.02 4.90 4.74 2.68 2.43 2.72
    Nd 19.9 17.5 21.6 22.6 21.9 22.3 21.0 20.0 12.6 11.6 13.0
    Sm 4.94 4.36 5.16 5.26 5.00 5.12 4.94 4.79 3.63 3.48 3.79
    Eu 1.23 1.24 1.35 1.35 1.31 1.32 1.25 1.30 1.19 1.23 1.23
    Gd 5.44 4.89 5.49 5.28 4.90 5.10 4.97 4.91 4.23 4.08 4.36
    Tb 0.91 0.80 0.86 0.84 0.77 0.82 0.81 0.78 0.69 0.65 0.73
    Dy 5.56 4.87 5.21 4.79 4.46 4.74 4.67 4.53 4.29 4.22 4.48
    Ho 1.13 1.00 1.05 0.94 0.87 0.92 0.94 0.91 0.85 0.84 0.92
    Er 3.08 2.77 2.95 2.63 2.38 2.49 2.59 2.55 2.32 2.29 2.56
    Tm 0.46 0.41 0.45 0.39 0.36 0.38 0.39 0.38 0.34 0.34 0.37
    Yb 2.96 2.69 2.93 2.50 2.33 2.48 2.48 2.52 2.24 2.19 2.38
    Lu 0.45 0.41 0.43 0.38 0.34 0.38 0.37 0.37 0.33 0.32 0.35
    Y 35.2 28.1 30.8 27.2 25.4 27.2 26.5 25.5 24.2 23.4 25.2
    (La/Yb)N 3.65 3.69 4.50 4.81 5.16 4.39 4.50 4.29 2.42 2.10 2.30
    (Th/Nb)N 8.65 7.45 8.28 4.62 4.48 4.71 4.61 4.84 3.58 3.14 3.53
    (Nb/La)N 0.42 0.48 0.38 0.48 0.46 0.46 0.45 0.47 0.53 0.58 0.53
    δEu 0.72 0.82 0.77 0.78 0.80 0.78 0.76 0.81 0.93 1.00 0.92
    注:主量元素含量单位为%,微量元素和稀土元素含量单位为10−6$ \delta Eu=\dfrac{{Eu}_{N}}{0.5({Sm}_{N}+{Gd}_{N})} $
    下载: 导出CSV
  • [1]

    AO S J, XIAO W J, HAN C M, MAO Q G, ZHANG J E. 2010. Geochronology and geochemistry of Early Permian mafic-ultramafic complexes in the Beishan area, Xinjiang, NW China: implications for late Paleozoic tectonic evolution of the southern Altaids[J]. Gondwana Research,18(2-3):466-478. doi: 10.1016/j.gr.2010.01.004

    [2]

    CHEN S P, ZHU Y H. 1992. Rock chemistry and analysis of its structural environment for Carboniferous-Permian volcanics in Beishan, Xinjiang[J]. Earth Science-Journal of China University of Geosciences,17(6):647-656 (in Chinese with English abstract).

    [3]

    CONDIE K C. 1989. Geochemical changes in basalts and andesites across the Archean Proterozoic boundary: identification and significance[J]. Lithos,23 (1):1-18.

    [4]

    CONDIE K C.2005. High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? [J]. Lithos,79(3-4):491-504.

    [5]

    JIANG C Y, CHENG S L, YE S F, XIA M Z, JIANG H B, DAI Y C. 2006. Lithogeochemistry and petrogenesis of Zhongposhanbei mafic rock body, at Beishan region, Xinjiang[J]. Acta Petrologica Sinica,22(1):115-126 (in Chinese with English abstract).

    [6]

    JIANG H Y, HE Z Y. 2022. Petrogenesis and tectonic implications of Late Paleozoic granite-diorite from the southern Beishan orogen[J]. Earth Science,47(9):3270-3284 (in Chinese with English abstract).

    [7]

    JIANG H Y, HE Z Y, ZONG K Q, ZHANG Z M, ZHAO Z D. 2013. Zircon U-Pb dating and Hf isotopic studies on the Beishan complex in the southern Beishan orogenic belt[J]. Acta Petrologica Sinica,29(11):3949-3967 (in Chinese with English abstract).

    [8]

    HUO H D, YANG Z L, HONG W T. 2024. Inverse reaction rim of biotite in early Cretaceous nosean phonolite of Niangniangshan, Ningwu Basin: mineralogical evidence of magma mixing triggered volcanic eruption[J]. East China Geology, 45(1): 115-133(in Chinese with English abstract).

    [9]

    GAO J B,CHEN J.2023.The genesis and prospecting indicators of the Shidong gold deposit in East Tianshan,Xinjiang[J].Geology and Exploration,59(3):521-532(in Chinese with English abstract).

    [10]

    KIEFFER B, ARNDT N, LAPIERRE H, BASTIEN L, BOSCH D, PECHER A, YIRGU G, AYALEW D, WEIS D, JERRAM D A, KELLER F, MEUGNIOT C. 2004. Flood and shield basalts from Ethiopia: magmas from the African superswell[J]. Journal of Petrology,45(4):793-834. doi: 10.1093/petrology/egg112

    [11]

    LI H Q, CHEN F W, MEI Y P, WU H, CHENG S L, YANG J Q, DAI Y C. 2006. Isotopic ages of No. 1 intrusive body in Pobei mafic-ultramafic belt of Xinjiang and their geological significance[J]. Mineral Deposits,25(4):463-469 (in Chinese with English abstract).

    [12]

    LI Y H, YANG X K, WANG Q L, CUI D X, JI L Y, HAO M. 2012. Redetermination of the volcanic eruption time and analysis of geochemical characteristics of volcanic rocks in eastern Maotoushan of Beishan area, Xinjiang[J]. Geology in China,39(3):683-694 (in Chinese with English abstract).

    [13]

    LI Z H, LI Y , LI R J, SU H, LI K. 2021.Determination and geological significance of Middle Jurassic intermediate-acidic volcanic rocks in central-north region of the Great Khingan Mountains volcanic belt[J]. East China Geology, 42(3): 269-278(in Chinese with English abstract).

    [14]

    LU F, ZHANG Y, ZHANG X H, MO Z F, LÜ J S, WU B. 2023. Zircon U-Pb geochronology, geochemical characteristics and geological significance of the Chakeng granite porphyry, northeast Jiangxi Province[J]. East China Geology, 44(1): 39-50(in Chinese with English abstract).

    [15]

    LING J L, XIA M Z, GUO N X, WANG B Y, XIA Z D, JIANG C Y. 2011. Petrogenesis of Luodong mafic-ultramafic layered intrusion, Beishan region, Xinjiang[J]. Geochimica,40(6):499-515 (in Chinese with English abstract).

    [16]

    LIU Y R, LU X B, MEI W, DAI Y C. 2012. Mineralogy of clinopyroxene from Pobei mafic-ultramafic complex in Beishan area, Xinjiang, and its geological significance[J]. Acta Petrologica et Mineralogica,31(2):212-224 (in Chinese with English abstract).

    [17]

    MAO J W, PIRAJNO F, ZHANG Z H, CHAI F M, WU H, CHEN S P, CHENG L S, YANG J M, ZHANG C Q. 2008. A review of the Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): principal characteristics and ore-forming processes[J]. Journal of Asian Earth Sciences,32(2-4):184-203. doi: 10.1016/j.jseaes.2007.10.006

    [18]

    MIYASHIRO A. 1975. Classification, characteristics and origin of ophiolites[J]. Journal of Geology, 83: 249-281.

    [19]

    NIU Y Z, WEI J S, SHI J Z, CHEN G C. 2013. LA-ICP-MS zircon U-Pb dating of the Upper Carboniferous volcanic rocks from northern Beishan region in Gansu Province and its tectonic significance[J]. Geological Bulletin of China,32(11):1720-1727 (in Chinese with English abstract).

    [20]

    PEARCE J A. 1996. A user’s guide to basalt discrimination diagrams[C]//WYMAN D A. Trace element geochemistry of volcanic rocks: application for massive sulphide exploration. Geological Association of Canada Short Course Notes, 12: 79-113.

    [21]

    PEAREC J A and NORRY M J. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks [J]. Contributions to Mineralogy and Petrology, 69(1): 33-47.

    [22]

    QIN K Z, TIAN Y, YAO Z S, WANG Y, MAO Y J, WANG B, XUE S C, TANG D M, KANG Z. 2014. Metallogenetic conditions, magma conduit and exploration potential of the Kalatongk Cu-Ni orefield in Northern Xinjiang[J]. Geology in China,41(3):912-935 (in Chinese with English abstract).

    [23]

    SAUNDERS A D, STOREY M, KENT R W, NORRY M J. 1992. Consequences of plume-lithosphere interactions[M]//STOREY B C, ALABASTER T, PANKHURST R J. Proceedings of the magmatism and the causes of continental break-up. London: Geological Society, Special Publication, 68(1): 41-60.

    [24]

    SU B X, QIN K Z, SUN H, WANG H. 2010. Geochronological, petrological, mineralogical and geochemical studies of the Xuanwoling mafic-ultramafic intrusion in Beishan area, Xinjiang[J]. Acta Petrologica Sinica,26(11):3283-3294 (in Chinese with English abstract).

    [25]

    SUN S S, MCDONOUGH W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 42(1): 313-345.

    [26]

    THOMPSON R N, MORRISON M A, DICKIN A P, HENDRY G L. 1984. An assessment of the relative roles of a crust and mantle in magma genesis: an elemental approach[J]. Phil. Trans. R. Soc. Lond, A310: 549-590.

    [27]

    WANG H L, HE S P, ZHANG E P, XU X Y, CHEN J L. 2005. Revision of the late Paleozoic lithostratigraphocal system of the Tianshan and Beishan are and depositional environments[J]. Journal of Stratigraphy,29(S1):541-547 (in Chinese with English abstract).

    [28]

    WANG G Q, LI X M, XU X Y, YU J Y, JI B, ZHU T. 2018. Petrogenesis and tectonic setting of the Carboniferous and Permian volcanic rocks in the Beishan orogenic belt[J]. Acta Petrologica et Mineralogica,37(6):884-900 (in Chinese with English abstract).

    [29]

    WANG Y L, ZHANG C J, XIU S Z. 2001.Th/Hf-Ta/Hf identification of tectonic setting of basalts[J]. Acta Petrologica Sinica, 17(3): 413-421(in Chinese with English abstract).

    [30]

    WANG Z Q, ZHOU M J, LI X F, DA H X. 2024.Identification and significance of fluid exsolution in high silica granite[J]. East China Geology, 45(1): 26-48(in Chinese with English abstract).

    [31]

    WILSON M. 1989. Igneous petrogenesis[M]. London: Unwin Hyman, 1-464.

    [32]

    XIA Z D, WANG Y, JIANG C Y, LING J L, XIA M Z, GUO N X. 2013. Petrography and mineralogy of the xuanwoling mafic-ultramafic layered intrusion in the Beishan Region, Xinjiang[J]. Acta Geologica Sinica,87(4):486-497 (in Chinese with English abstract).

    [33]

    XIA L Q, XIA Z C, XU X Y, LI X M, MA Z P. 2007. The discrimination between continental basalt and island arc basalt based on geochemical method[J]. Acta Petrologica et mineralogical,26(1):77-89 (in Chinese with English abstract).

    [34]

    XIAO X C, HE G Q, CHENG S D, XU X, LI J Y, HAO J. 2004. An introduction to the explanatory text of the map of tectonics of Xinjiang and its neighbouting area[M]. Beijing: Geological Publishing House, 1-61 (in Chinese with English abstract).

    [35]

    XIE X, LI W M, SUN J M, LI J, HUANG M. 2018. Geochemistry and zircon U-Pb dating of the Baishan mafic-ultramafic rock complex in the Beishan area of Xinjiang and its prospecting significance[J]. Geological Science and Technology Information,37(6):11-21 (in Chinese with English abstract).

    [36]

    XIE W, SONG X Y, NIE X Y, CHENG S L. 2011. Features of the mantle source and tectonic setting of the Poshi Ni-Cu sulfide-bearing intrusion, Xinjiang, China[J]. Earth Science Frontiers,18(3):189-200 (in Chinese with English abstract

    [37]

    XU Y G, WEI X, LUO Z Y, LIU H Q, CAO J. 2014. The Early Permian Tarim large igneous province: main characteristics and a plume incubation model[J]. Lithos,204:20-35. doi: 10.1016/j.lithos.2014.02.015

    [38]

    XU W B, ZHANG M J, BAO Y W, MAN Y, LI S A, WANG P. 2022. Comparison of metallogenic conditions of Permian mafic oxide and sulfide deposits in the northeastern margin of Tarim craton, China[J]. Acta Geologica Sinica,96(12):4257-4274 (in Chinese with English abstract).

    [39]

    XU Y G, ZHONG Y T, WEI X, CHEN J, LIU H Q, XIE W, LUO Z Y, LI H Y, HE B, HUANG X L, WANG Y, CHEN Y. 2017. Permian mantle plumes and Earth’s surface system evolution[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 36(3): 358-373 (in Chinese with English abstract).

    [40]

    YANG H Q, LI Y, ZHAO G B, LI W Y, WANG X H, JIANG H B, TAN W J, SUN N Y. 2010. Character and structural attribute of the Beishan ophiolite[J]. Northwestern Geology,43(1):26-36 (in Chinese with English abstract).

    [41]

    YU M G, HONG W T, LIU K, DUAN Z, CHU P L, CHEN R.2022. Geochronology, petrogenesis and tectonic setting of Middle Jurassic volcanic rocks from Yinshan deposit in Dexing, Jiangxi Province[J]. East China Geology, 43(4): 428-447(in Chinese with English abstract).

    [42]

    YU X, YANG S F, CHEN H L, LI Z L, LI Y Q.2017. Petrogenetic model of the Permian Tarim Large Igneous Province. Science China Earth Sciences, 47:1179-1190(in Chinese with English abstract).

    [43]

    ZHANG C L, LI Z X, LI X H, XU Y G, ZHOU G, YE H M. 2010. A Permian large igneous province in Tarim and central Asian Orogenic blet, NW China: results of a ca. 275 Ma mantle plume?[J]. GSA Bulletin,122(11-12):2020-2040. doi: 10.1130/B30007.1

    [44]

    ZHANG C L, MA H D, LI H K, ZHU B Y, QIU L, WANG W. 2022. Paleoproterozoic in Quruqtagh terrane in northern Tarim[J]. East China Geology,43(2):133-140 (in Chinese with English abstract).

    [45]

    ZHAO Z X, XU H, JIA Y Q, GAO Y, CHEN H D, GAO J. 2016. Geochemistry and LA-ICP-MS zircon U-Pb age of porphyritic granodiorite in the Beishan orogenic belt in Inner Mongolia and their geological significance[J]. East China Geology,37(4):252-258 (in Chinese with English abstract).

    [46]

    ZUO G C, LIU Y K, LIU C Y. 2003. Framework and evolution of the tectonic structure in Beishan area across Gansu Province, Xinjiang Autonomous Region and Inner Mongolia Autonomous Region[J]. Acta Geologica Gansu,12(1):1-15 (in Chinese with English abstract).

    [47]

    陈升平, 朱云海. 1992. 新疆北山石炭纪、二叠纪火山岩岩石化学及其构造环境分析[J]. 地球科学——中国地质大学学报,17(6):647-656.

    [48]

    姜常义, 程松林, 叶书锋, 夏明哲, 姜寒冰, 代玉财. 2006. 新疆北山地区中坡山北镁铁质岩体岩石地球化学与岩石成因[J]. 岩石学报,22(1):115-126. doi: 10.3321/j.issn:1000-0569.2006.01.012

    [49]

    姜洪颖, 贺振宇. 2022. 北山造山带南部晚古生代花岗岩-闪长岩的成因与构造意义[J]. 地球科学,47(9):3270-3284. doi: 10.3321/j.issn.1000-2383.2022.9.dqkx202209011

    [50]

    姜洪颖, 贺振宇, 宗克清, 张泽明, 赵志丹. 2013. 北山造山带南缘北山杂岩的锆石U-Pb定年和Hf同位素研究[J]. 岩石学报,29(11):3949-3967.

    [51]

    霍海东, 杨祝良, 洪文涛. 2024.宁芜盆地娘娘山早白垩世黝方石响岩中黑云母逆反应边结构:岩浆混合触发火山喷发的矿物学证据[J]. 华东地质, 45(1): 115-133.

    [52]

    高俊宝,陈俊.2023. 新疆东天山石东金矿床成因及找矿标志[J].地质与勘探, 59(3):521-532.

    [53]

    康磊, 计文化, 张超, 王杰, 司国辉, 董浩强, 李文明, 孙吉明, 郭刚, 陈艳文, 张玉, 苏会平, 张鑫, 胡朝斌, 杨再朝, 康文彬, 刘学钧, 吴天圣. 2019. K46E020014、K46E020015幅1∶5万区域地质调查报告[R]. 西安: 中国地质调查局西安地质调查中心, 69-228.

    [54]

    李华芹, 陈富文, 梅玉萍, 吴华, 程松林, 杨甲全, 代玉财. 2006. 新疆坡北基性-超基性岩带Ⅰ号岩体Sm-Nd和SHRIMP U- Pb同位素年龄及其地质意义[J]. 矿床地质,25(4):463-469. doi: 10.3969/j.issn.0258-7106.2006.04.010

    [55]

    李煜航, 杨兴科, 王庆良, 崔笃信, 季灵运, 郝明. 2012. 新疆北山矛头山东早二叠世火山岩喷发活动时代厘定及地球化学特征分析[J]. 中国地质,39(3):683-694. doi: 10.3969/j.issn.1000-3657.2012.03.011

    [56]

    李中会, 李阳, 李睿杰, 苏航, 李凯. 2021.大兴安岭火山岩带中北部中侏罗世中酸性火山岩的厘定及其地质意义[J]. 华东地质, 42(3): 269-278.

    [57]

    陆凡, 张勇, 张雪辉, 莫子奋, 吕劲松, 武彬. 2023.赣东北茶坑花岗斑岩锆石U-Pb年代学、地球化学特征及地质意义[J]. 华东地质, 44(1): 39-50.

    [58]

    凌锦兰, 夏明哲, 郭娜欣, 汪帮耀, 夏昭德, 姜常义. 2011. 新疆北山地区罗东镁铁质-超镁铁质层状岩体岩石成因[J]. 地球化学,40(6):499-515.

    [59]

    刘艳荣, 吕新彪, 梅微, 代玉才. 2012. 新疆北山地区坡北镁铁-超镁铁岩体单斜辉石的矿物学特征及其地质意义[J]. 岩石矿物学杂志,31(2):212-224. doi: 10.3969/j.issn.1000-6524.2012.02.009

    [60]

    牛亚卓, 魏建设, 史冀忠, 陈高潮. 2013. 甘肃北山地区北部上石炭统火山岩LA-ICP-MS锆石U-Pb年龄及其构造意义[J]. 地质通报,32(11):1720-1727. doi: 10.3969/j.issn.1671-2552.2013.11.004

    [61]

    秦克章, 田野, 姚卓森, 王勇, 毛亚晶, 王斌, 薛胜超, 唐冬梅, 康珍. 2014. 新疆喀拉通克铜镍矿田成矿条件、岩浆通道与成矿潜力分析[J]. 中国地质,41(3):912-935. doi: 10.3969/j.issn.1000-3657.2014.03.018

    [62]

    苏本勋, 秦克章, 孙赫, 王恒. 2010. 新疆北山地区旋窝岭镁铁-超镁铁岩体的年代学、岩石矿物学和地球化学研究[J]. 岩石学报,26(11):3283-3294.

    [63]

    王洪亮, 何世平, 张二朋, 徐学义, 陈隽璐. 2005. 中国天山—北山地区晚古生代岩石地层系统厘定及沉积环境分析[J]. 地层学杂志,29(S1):541-547.

    [64]

    王国强, 李向民, 徐学义, 余吉远, 计波, 朱涛. 2018. 北山石炭纪-二叠纪火山岩成因及构造背景[J]. 岩石矿物学杂志,37(6):884-900. doi: 10.3969/j.issn.1000-6524.2018.06.002

    [65]

    王志强, 周美娟, 黎训飞, 笪昊翔.2024. 高硅花岗岩流体出溶作用的识别和意义[J]. 华东地质, 45(1): 26-48.

    [66]

    汪云亮,张成江,修淑芝. 2001.玄武岩类形成的大地构造环境的 Th/Hf-Ta/Hf图解判别[J].岩石学报,17(3):413-421.

    [67]

    夏林圻, 夏祖春, 徐学义, 李向民, 马中平. 2007. 利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J]. 岩石矿物学杂志,26(1):77-89. doi: 10.3969/j.issn.1000-6524.2007.01.011

    [68]

    夏昭德, 王垚, 姜常义, 凌锦兰, 夏明哲, 郭娜欣. 2013. 新疆北山地区漩涡岭镁铁质-超镁铁质层状岩体岩石学与矿物学研究[J]. 地质学报,87(4):486-497. doi: 10.3969/j.issn.0001-5717.2013.04.004

    [69]

    肖序常, 何国琦, 成守德, 徐新, 李锦轶, 郝杰. 2004. 中国新疆及邻区大地构造图及说明书[M]. 北京: 地质出版社, 1-61.

    [70]

    校培喜, 王兴安, 王育习, 黄玉华, 王升勤, 张汉文, 李育敬, 王香萍, 陈莉群, 王静平. 2005. 笔架山幅1∶ 25万区域地质调查报告[R]. 西安: 西安地质矿产研究所, 126-128.

    [71]

    谢燮, 李文明, 孙吉明, 李军, 黄敏. 2018. 新疆北山地区白山镁铁-超镁铁岩体LA-ICP-MS锆石U-Pb年龄、地球化学特征及其找矿意义[J]. 地质科技通报,37(6):11-21.

    [72]

    颉炜, 宋谢炎, 聂晓勇, 程松林. 2011. 新疆坡十铜镍硫化物含矿岩体岩浆源区特征及构造背景探讨[J]. 地学前缘,18(3):189-200.

    [73]

    徐文博, 张铭杰, 包亚文, 满毅, 李思奥, 王鹏. 2022. 塔里木克拉通东北缘二叠纪镁铁质岩浆氧化物与硫化物成矿条件对比[J]. 地质学报,96(12):4257-4274. doi: 10.3969/j.issn.0001-5717.2022.12.013

    [74]

    徐义刚, 钟玉婷, 位荀, 陈军, 刘海泉, 颉炜, 罗震宇, 李洪颜, 何斌, 黄小龙, 王焰, 陈赟. 2017. 二叠纪地幔柱与地表系统演变[J]. 矿物岩石地球化学通报,36(3):358-373. doi: 10.3969/j.issn.1007-2802.2017.03.001

    [75]

    杨合群, 李英, 赵国斌, 李文渊, 王小红, 姜寒冰, 谭文娟, 孙南一. 2010. 北山蛇绿岩特征及构造属性[J]. 西北地质,43(1):26-36. doi: 10.3969/j.issn.1009-6248.2010.01.002

    [76]

    余明刚, 洪文涛, 刘凯, 段政, 褚平利, 陈荣. 2022.江西德兴银山中侏罗世火山岩年代学、岩石成因及构造背景[J]. 华东地质, 43(4): 428-447.

    [77]

    余星,杨树锋,陈汉林,历子龙,励音骐. 2017.塔里木早二叠世大火成岩省的成因模式[J].中国科学:地球科学,47:1179–1190.

    [78]

    张传林, 马华东, 李怀坤, 朱炳玉, 邱林, 王威. 2022. 塔里木北缘库鲁克塔格地区古元古界——祝贺芮行健先生90华诞[J]. 华东地质,43(2):133-140.

    [79]

    赵志雄, 许海, 贾元琴, 高勇, 陈海东, 高鉴. 2016. 内蒙古北山地区斑状花岗闪长岩地球化学、LA-ICP-MS锆石U-Pb年龄及地质意义[J]. 华东地质,37(4):252-258.

    [80]

    左国朝, 刘义科, 刘春燕. 2003. 甘新蒙北山地区构造格局及演化[J]. 甘肃地质学报,12(1):1-15.

  • 加载中

(11)

(3)

计量
  • 文章访问数:  54
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2024-01-17
修回日期:  2024-11-29
录用日期:  2024-11-29
刊出日期:  2025-06-28

目录