欧盟层面矿产资源地球物理勘探技术主要研发进展及对我国的启示

赵相宽, 张炜, 高曦, 吴西顺. 欧盟层面矿产资源地球物理勘探技术主要研发进展及对我国的启示[J]. 中国地质调查, 2025, 12(4): 16-23. doi: 10.19388/j.zgdzdc.2023.121
引用本文: 赵相宽, 张炜, 高曦, 吴西顺. 欧盟层面矿产资源地球物理勘探技术主要研发进展及对我国的启示[J]. 中国地质调查, 2025, 12(4): 16-23. doi: 10.19388/j.zgdzdc.2023.121
ZHAO Xiangkuan, ZHANG Wei, GAO Xi, WU Xishun. Research and development progresses of mineral resource geophysical exploration technology funded by European Union and its implications for China[J]. Geological Survey of China, 2025, 12(4): 16-23. doi: 10.19388/j.zgdzdc.2023.121
Citation: ZHAO Xiangkuan, ZHANG Wei, GAO Xi, WU Xishun. Research and development progresses of mineral resource geophysical exploration technology funded by European Union and its implications for China[J]. Geological Survey of China, 2025, 12(4): 16-23. doi: 10.19388/j.zgdzdc.2023.121

欧盟层面矿产资源地球物理勘探技术主要研发进展及对我国的启示

  • 基金项目:
    中国地质调查局“战略性矿产勘查战及综合勘查技术跟踪与研究(编号: DD20242476)”项目资助
详细信息
    作者简介: 赵相宽(1990—),男,工程师,主要从事矿业科技情报研究。Email:414857282@qq.com
  • 中图分类号: P315.0;P318.6;P319.3

Research and development progresses of mineral resource geophysical exploration technology funded by European Union and its implications for China

  • 2014年以来,欧盟在“地平线2020”(Horizon 2020)计划和欧洲创新与技术研究院(The European Institute of Innovation and Technology,EIT)支持下,先后资助了9个地球物理勘探技术研发项目,对我国矿产资源地球物理勘探技术的研发具有参考意义。通过系统整理相关项目,发现“地平线2020”计划和欧洲创新与技术研究院原材料部门的主要研发方向为穿透深度大、分辨率和精度更高、绿色环保、具有经济性的地球物理技术,具体包括地震、航空磁测、航空电磁、航空高光谱和钻探等。其研发历程给我国地球物理勘探技术的发展带来以下4点启示: ①被动源地震和电动震源是更加绿色环保的技术,压电地震仪可作为勘探隐伏石英矿床的有效手段; ②无人机航空地球物理勘探系统是重要的研发方向; ③随钻测井可能成为固体矿产勘探领域的重点研发方向之一; ④利用新型央地企关系有望推动相关技术的商业化应用和创新。研究在查明欧盟地球物理勘探技术最新研发方向的同时,对我国的相关技术领域研发和项目部署等具有启示意义。

  • 加载中
  • 图 1  Radai公司无人机电磁测量方法概念图

    Figure 1. 

    表 1  欧盟资助的矿产资源地球物理勘探技术项目及其重点研发方向

    Table 1.  Mineral resource geophysical exploration technology projects funded by the European Union and their major research and development fields

    资助项目来源 资助项目中文名称 资助项目英文简称 重点研发方向 资助经费/欧元
    “地平线2020”计划 环境友好、成本低廉的被动源地震矿产勘探技术 PACIFIC 地震 320万
    创新勘探技术 NEXT 航空磁测、航空电磁 690万
    创新的非侵入式勘探技术 INFACT 航空磁测、航空电磁、航空放射性、地面电磁、地面重力 562万
    保障可持续矿产资源供给的创新勘探技术 Smart Exploration 地震、航空电磁、钻探 522万
    用于勘探欧洲伟晶岩的绿色创新勘探工具 GREENPEG 地震、航空电磁、航空高光谱 925万
    EIT原材料部门 用于地质填图的多传感器无人机系统 MULSEDRO 航空磁测、航空高光谱 -
    用于矿产资源勘探的创新性地球物理测井工具 InnoLOG 地震、钻探 -
    多用途勘探无人机 MuVerDrone 航空磁测 -
    用于矿产资源勘探的地震成像技术 SIT4ME 地震 -
    注: “-”表示无数据,资助经费一栏中,EIT相关项目网站未标明其经费资助情况,因此无具体数据。
    下载: 导出CSV

    表 2  不同地震方法的优缺点对比

    Table 2.  Advantages and disadvantages of different seismic methods

    地震和成像方法
    主动源地震技术 被动源地震技术
    反射成像 面波层析成像 体波反射成像
    原理 利用人工爆炸震源激发的地震反射波,得到地下结构和分层 利用环境噪声,使用层析成像方法对地下进行面波速度成像 利用环境噪声,采用互相关、反褶积和互相干等方法,从被动源地震记录中检索体波进行成像
    典型目标 具有密度差异的水平到浅倾斜的单元,横向尺度有限的目标,如地下空洞或隧道 具有横向和纵向速度差异的构造 具有密度和速度差异的水平到倾斜的单元
    缺点 需要主动震源;
    成本较高;
    潜在的安全风险
    破坏环境;
    需要进行大量预处理;
    噪声信号弱;
    需要特定的阵列设计
    依赖于噪声源特征;
    无通用处理规则;
    分辨率较低
    依赖于噪声源特征;
    数据以面波能量主导;
    提取体波无通用规则;
    有时难以解释;
    特殊阵列设计
    优点 能在有利环境中直接圈定矿体;
    软件工具有明确的协议和行业标准;
    分辨率更高;
    能提供高分辨构造信息
    成本较低;
    无需主动震源;
    能通过速度变化圈定控矿岩石;
    环境影响较小
    成本较低;
    无需主动震源;
    能够应用有行业标准的工具;
    与主动地震反射法相似的流程;
    如果存在高频噪声,可能分辨率较高
    下载: 导出CSV
  • [1]

    Gulley A L, Nassar N T, Xun S. China, the United States, and competition for resources that enable emerging technologies[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4111-4115.

    [2]

    范国强, 秦宇龙, 詹涵钰, 等. 四川攀西地区稀土资源成矿规律及找矿靶区[J]. 中国地质调查, 2022, 9(1): 23-31. doi: 10.19388/j.zgdzdc.2022.01.03

    Fan G Q, Qin Y L, Zhan H Y, et al. Metallization regularity and prospecting target area in Panzhihua-Xichang area of Sichuan Province[J]. Geological Survey of China, 2022, 9(1): 23-31. doi: 10.19388/j.zgdzdc.2022.01.03

    [3]

    王登红, 王成辉, 孙艳, 等. 我国锂铍钽矿床调查研究进展及相关问题简述[J]. 中国地质调查, 2017, 4(5): 1-8. doi: 10.19388/j.zgdzdc.2017.05.01

    Wang D H, Wang C H, Sun Y, et al. New progersses and discussion on the survey and research of Li, Be, Ta ore deposits in China[J]. Geological Survey of China, 2017, 4(5): 1-8. doi: 10.19388/j.zgdzdc.2017.05.01

    [4]

    王登红, 孙艳, 刘喜方, 等. 锂能源金属矿产深部探测技术方法与找矿方向[J]. 中国地质调查, 2018, 5(1): 1-9. doi: 10.19388/j.zgdzdc.2018.01.01

    Wang D H, Sun Y, Liu X F, et al. Deep exploration technology and prospecting direction for lithium energy metal[J]. Geological Survey of China, 2018, 5(1): 1-9. doi: 10.19388/j.zgdzdc.2018.01.01

    [5]

    王柯淇, 王治国, 高静怀, 等. 金属矿产资源探测的地震方法: 综述与展望[J]. 地球物理学进展, 2021, 36(4): 1607-1629.

    Wang K Q, Wang Z G, Gao H J, et al. Seismic methods for exploration of metal mineral resources: Review and prosect[J]. Progress in Geophysics, 2021, 36(4): 1607-1629.

    [6]

    刘富波, 李巨涛, 刘丽华, 等. 无人机平台半航空瞬变电磁勘探系统及其应用[J]. 地球物理学进展, 2017, 32(5): 2222-2229.

    Liu F B, Li J T, Liu L H, et al. Development and application of a new semi-airborne trasient electromagnetic system with UAV platform[J]. Progress in Geophysics, 2017, 32(5): 2222-2229.

    [7]

    熊盛青. 我国航空重磁勘探技术现状与发展趋势[J]. 地球物理学进展, 2009, 24(1): 113-117.

    Xiong S Q. The present situation and development of airborne gravity and magnetic survey techniques in China[J]. Progress in Geophysics, 2009, 24(1): 113-117.

    [8]

    刘双, 胡祥云, 郭宁, 等. 无人机航磁测量技术综述[J]. 武汉大学学报: 信息科学版, 2023, 48(6): 823-840.

    Liu S, Hu X Y, Guo N, et al. Overview on UAV Aeromagnetic Survey Technology[J]. Geomatics and Information Science of Wuhan University, 2009, 24(1): 113-117.

    [9]

    郭华, 王明, 岳良广, 等. 吊舱式高温超导全张量磁梯度测量系统研发与应用研究[J]. 地球物理学报, 2022, 65(1): 360-370.

    Guo H, Wang M, Yue L G, et al. Development and applieation of a full tensor magnetie gradient measurementfor the cabin HTS[J]. Chinese Journal of Geophysics, 2022, 65(1): 360-370.

    [10]

    Pacific. D1.3-Report Comparing Best Practice in Active and Passive Exploration Methods[R]. PACIFIC consortium, 2018.

    [11]

    Naghadeh D H, Bean C J, Brenguier F, et al. Retrieving reflection arrivals from passive seismic data using Radon correlation[J]. Journal of Geophysics and Engineering, 2021, 18: 177-191. doi: 10.1093/jge/gxab004

    [12]

    Xu Y, Lebedev S, Meier T, et al. Optimized workflows for high-frequency seismic interferometry using dense arrays[J]. Geophysical Journal International, 2021, 227: 875-897. doi: 10.1093/gji/ggab260

    [13]

    Egis, Sisprobe by Egis[EB/OL]. https://www.egis-group.com/sisprobe-by-egis.

    [14]

    Brodic B, Ras P, Kunder R D, et al. Seismic imaging using an e-vib — A case study analyzing the signal properties of a seismic vibrator driven by electric linear synchronous motors[J]. Geophysics, 2021, 86(3): B223-B235. doi: 10.1190/geo2020-0181.1

    [15]

    Kunder R D. Electric Seismic Source with broadband frequency (E-Vib)[J]. First Break, 2020, 38(8): 82-83.

    [16]

    Greenpeg. Deliverable D 1.1 Project Management Plan-July 2020[R]. GREENPEG, 2020.

    [17]

    Greenpeg. Deliverable D 7.1 GREENPEG Market analysis[R]. GREENPEG, 2020.

    [18]

    Müller A, Brönner M, Menuge J, et al. The GREENPEG Project Toolset to Explore for Buried Pegmatites Hosting Lithium, High-Purity Quartz, and Other Critical Raw Materials[J]. Economic Geology, 2025, 120(3): 745-778. doi: 10.5382/econgeo.5143

    [19]

    Karinen A. Magnetic vector inversion using XYZ measured by fluxgate magnetometer in UAV[C]. EGU General Assembly 2021, online, 19-30 Apr 2021, EGU21-13006.

    [20]

    Karinen A, Pirttijärvi M, Saartenoja A. DELIVERABLE 3.12 Vector magnetic surveys with drones[R]. NEXT, 2020.

    [21]

    Karinen A, Pirttijärvi M, Saartenoja A. DELIVERABLE 3.7 Vector magnetic surveys with drones[R]. NEXT, 2020.

    [22]

    Heincke B, Jackisch R, Saartenoja A, et al. Developing multi-sensor drones for geological mapping and mineral exploration: setup and first results from the MULSEDRO project. [J]. GEUS Bulletin, 2019, 43: 1-5.

    [23]

    Stolz R, Schifer M, Becken M, et al. SQUIDs for magnetic and electromagnetic methods in mineral exploration[J]. Mineral Economics, 2022, 35: 467-494. doi: 10.1007/s13563-022-00333-3

    [24]

    Stolz R, Schmelz M, Zakosarenko V, et al. Superconducting sensors and methods in geophysical applications[J]. Superconductor Science and Technology, 2021, 34: 033001.

    [25]

    Supracon. SQUID[EB/OL]. http://www.supracon.com/.

    [26]

    Infact. Technical information[EB/OL]. https://www.infactproject.eu/technical-information/.

    [27]

    Døssing A, Silva E L S D, Martelet G, et al. A High-Speed, Light-Weight Scalar Magnetometer Bird for km Scale UAV Magnetic Surveying: On Sensor Choice, Bird Design, and Quality of Output Data[J]. Remote Sensing, 2021, 13(4): 649. doi: 10.3390/rs13040649

    [28]

    Døssing A, Martelet G, Rasmussen T M K, et al. A Multidisciplinary UAV- and Ground-Geophysical Mapping of Complex Mineralisations in an Inter-Tidal Coastal Zone, Brittany (France)[C]. NSG2020 3rd Conference on Geophysics for Mineral Exploration and Mining, online, 7-8 Dec 2020, p. 1-5.

    [29]

    Martelet G, Gloaguen E, Døssing A, et al. Airborne/UAV Multisensor Surveys Enhance the Geological Mapping and 3D Model of a Pseudo-Skarn Deposit in Ploumanac'h, French Brittany[J]. Minerals, 2021, 11(11): 1259. doi: 10.3390/min11111259

    [30]

    Ketelaere D DSpiteri A. A Practical Toolkit addressed to Mineral Exploration and Mining Companies[R]. Malta: IRMCo, 2021.

    [31]

    Pirttijärvi M, Saartenoja AKorkeakangas P. DELIVERABLE 3.10 EM surveys Ⅱ with drones[R]. NEXT, 2021.

    [32]

    Pirttijärvi MKorkeakangas P. DELIVERABLE 3.5 EM surveys with drones[R]. NEXT, 2020.

    [33]

    Eadie T, Legault J M, Plastow G, et al. VTEM ET: An improved helicopter time-domain EM system for near surface applications[J]. ASEG Extended Abstracts, 2018, 1: 1-5.

    [34]

    Legault J M, Prikhodko A, Lzarra C, et al. VtemTM and ZtemTM Helicopter EM Case-Study Over the Nuqrah Cu-Pb-Zn-Au Sedex Massive Sulphide Deposit in Western Arabian Shield, KSA[C]. 13th SAGA Biennial Conference & Exhibition, South Africa, Oct 2013, cp-378-00027.

    [35]

    Wijns C, Legault J M. What is ZTEM seeing over these tropical porphyry deposits?[J]. ASEG Extended Abstracts, 2018, 1: 1-5.

    [36]

    Bastani M, Johansson H, Paulusson A, et al. Unmanned Aerial Vehicles (UAV) and ground-based electromagnetic (EM) systems[J]. First Break, 2020, 38(8): 87-89.

    [37]

    Gisselø P. Deep-probing time-domain electromagnetic helicopter-based system (HTEM)[J]. First Break, 2020, 38(8): 80-81.

    [38]

    Müller A, Reime W, Wall F, et al. GREENPEG-exploration for pegmatite minerals to feed the energy transition: first steps towards the Green Stone Age[J]. Geological Society, London, Special Publications, 2022, 526(1): 27.

    [39]

    Sivard A, Jansson N, Juhlin C, et al. Slimhole System[J]. First Break, 2020, 38(8): 78-79.

    [40]

    Andrés B, Carlos R D-B, Fernando J, et al. Mineral interpretation results using deep learning with hyperspectral imagery[C]. EGU General Assembly 2020, 2020, EGU2020-19667.

    [41]

    闫浩飞, 刘国峰. 主被动源地震勘探在金属矿勘查中的应用[J]. 地球物理学进展, 2024, 39(5): 1810-1823.

    Yan H F, Liu G F. Application of active and passive source seismic exploration in mineral exploration[J]. Progress in Geophysics, 2024, 39(5): 1810-1823.

    [42]

    张炜, 王海华, 房大任. 天然氢产业发展分析与展望[J]. 中国地质调查, 2025, 12(2): 20-29. doi: 10.19388/j.zgdzdc.2024.314

    Zhang W, Wang H H, Fang D R. Analysis and prospect of natural hydrogen industry development[J]. Geological Survey of China, 2025, 12(2): 20-29. doi: 10.19388/j.zgdzdc.2024.314

    [43]

    李沐洁, 赵俐红, 孔庆翰, 等. 沂沭断裂带地壳结构特征: 来自远震接收函数的证据[J]. 山东科技大学学报: 自然科学版, 2023, 2: 13-21.

    Li S J, Zhao L H, Kong Q H, et al. Crustal structure in Yishu fault zone: Evidence from teleseismic receiver functions[J]. Journal of Shandong University of Science and Technology(Natural Science), 2023, 2: 13-21.

    [44]

    张伟, 张剑, 白雪, 等. 多类型地震数据融合技术及软件应用[J]. 山东科技大学学报: 自然科学版, 2023, 42(6): 19-29.

    Zhang W, Zhang J, Bai X, et al. Multiformat seismic data fusion technology and software application. Journal of Shandong University of Science and Technology(Natural Science), 2023, 42(6): 19-29.

  • 加载中

(1)

(2)

计量
  • 文章访问数:  38
  • PDF下载数:  16
  • 施引文献:  0
出版历程
收稿日期:  2023-02-27
修回日期:  2025-07-21
刊出日期:  2025-08-25

目录