Formation age and palaeoenvironment significance of Holocene peat in Sanhe- Jizhou area
-
摘要:
燕山南麓山前冲洪积平原区广泛分布泥炭层,但其形成时代存在争议,对区域气候环境的相关研究也较为薄弱。针对河北三河—天津蓟州典型泥炭剖面开展14C测年工作,结合孢粉等指标进行分析,将泥炭层成炭时代主体划分为两期,并分别研究了其形成时的环境特征。结果表明: 14C测年显示蓟州头营泥炭层成炭期为全新世早期(10 500 a B.P.),三河不老淀泥炭层主体形成于全新世晚期(3 500~2 400 a B.P.)。根据蓟州头营泥炭层及下伏地层的孢粉组合特征,结合前人在不老淀泥炭层开展的孢粉研究成果及动植物化石组合特征,推测全新世早期气候由暖湿向温凉偏湿转变。研究成果可为区域第四系划分及古环境恢复提供依据。
Abstract:The peat layer was widely distributed in piedmont alluvial plain of the southern Yan Mountains. However, its formation age is still controversial, with relatively weak relevant research of climate environment. The 14C dating work of typical peat profiles was conducted from Sanhe in Heibei Province to Jizhou in Tianjin. The peat formation time was divided into two periods, on the basis of sporopollen and other proxy indicators, and its environment characteristics were also studied. 14C dating showed that the cool-forming period of Touying peat layer in Jizhou was Early Holocene (10 500 a B.P.), and the main body of Bulaodian peat layer in Sanhe was Late Holo-cene (3 500~2 400 a B.P.). The climate of Early Holocene was inferred to be from warm and humid to cool and slightly humid, according to sporopollen assemblage features of Touying peat layer and its underlying stratum in Jizhou and the previous sporopollen research of Bulaodian peat layer and other fossil assemblage. This research could provide basis for the Quaternary stratigraphic division and paleoenvironment restoration in this area.
-
Key words:
- peat layer /
- formation age /
- paleoclimate /
- Sanhe in Hebei Province /
- Jizhou in Tianjin
-
-
图 6 头营及不老淀泥炭层成炭期与我国泥炭起始年龄累计概率密度对比图[33]
Figure 6.
表 1 研究区泥炭层14C同位素数据
Table 1. 14C isotope data of the peat layer in the study area
样品编号 泥炭层剖面 埋深/m 14C年龄/a B.P. 树轮校正后年龄/a B.P. 1σ(68.2%) 2σ(95.4%) BA171705 不老淀 4.4 3 160±30 3 444~3426(15.5%)
3 404~3 360(52.8%)3 450~3 339(92.3%)
3 284~3 272(3.1%)BA171706 不老淀 3.4 2 400±25 2 462~2 451(6.6%)
2 434~2 354(61.7%)2 492~2 348 (91.6%)
2 668~2 657(2.2%)
2 610~2 602(1.7%)2017C031 头营 3.4 9 369±40 10 656~10 617(24.5%)
10 602~10 554(28.2%)
10 541~10 512(15.6%)10 701~10 496(93.7%)
10 455~10 440(1.8%)注: 14C半衰期为5 568 a,起算年龄为公元1950年; 1σ和2σ为不同误差的树轮年轮。 -
[1] Sukumar R, Ramesh R, Pant R K, et al. A δ13C record of late Quaternary climate change from tropical peats in southern India[J]. Nature, 1993, 364(6439): 703-706. doi: 10.1038/364703a0
[2] 陶发祥, 洪业汤, 李汉鼎. 泥炭地对全球变化的贡献及对全球变化信息的自然记录[J]. 矿物岩石地球化学通报, 1995, 14(2): 92-94.
Tao F X, Hong Y T, Li H D. Peatland's contribution to global change and its natural record of global change information[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1995, 14(2): 92-94.
[3] 刘嘉麒, 韩家楙, 袁宝印, 等. 近年来中国第四纪研究与全球变化[J]. 第四纪研究, 1995, 15(2): 150-155.
Liu J Q, Han J M, Yuan B Y, et al. Recent progress of quaternary research of China and global changes[J]. Quaternary Sciences, 1995, 15(2): 150-155.
[4] 赵松龄, 于洪军, 李官保, 等. 晚更新世末期东海北部古冬季风盛衰变更的地质记录[J]. 地质力学学报, 2001, 7(4): 289-295.
Zhao S L, Yu H J, Li G B, et al. Geological record of the vicissitudes of the palaeo-monsoon in north part of the east China sea during the last stage of late Pleistocene[J]. Journal of Geomechanics, 2001, 7(4): 289-295.
[5] Mcmullen A. Peatlands and environmental change: D. Charman; Wiley, Chichester, 2002, pp. 301, price £24.95 paperback, ISBN 0 471 96990 7, price £60.00 hardback, ISBN 0 470 84410 8[J]. Land Use Policy, 2002, 19(4): 336-337. doi: 10.1016/S0264-8377(02)00044-3
[6] 孙振营, 王强, 李亚平, 等. 第四纪以来天津北部燕山隆升与山前盆地的形成[J]. 古地理学报, 2018, 20(5): 893-908.
Sun Z Y, Wang Q, Li Y P, et al. The uplift of Yanshan Mountain and the formation of piedmont basin in northern Tianjin since the Quaternary[J]. Journal of Palaeogeography (Chinese Edition), 2018, 20(5): 893-908.
[7] 王强. 天津—河北沿海钻孔地层中的末次盛冰期下切河谷[J]. 地质力学学报, 2019, 25(5): 877-888.
Wang Q. Incised valley of last glacial maximum stage in the dril-ling strata on the Tianjin-Hebei coastal plain[J]. Journal of Geomechanics, 2019, 25(5): 877-888.
[8] 张辉, 李松, 司云云, 等. 贵州雷公坪山地沼泽泥炭年代学和沉积速率研究[J]. 贵州地质, 2021, 38(4): 382-386.
Zhang H, Li S, Si Y Y, et al. Study on chronology and sedimentary rate of peat in the Leigongping Mountain Marsh of Guizhou[J]. Guizhou Geology, 2021, 38(4): 382-386.
[9] Zhang H, Väliranta M, Swindles G T, et al. Recent climate change has driven divergent hydrological shifts in high-latitude peatlands[J]. Nature Communications, 2022, 13(1): 4959. doi: 10.1038/s41467-022-32711-4
[10] 张卉, 郭正堂, 赵艳. 泥炭地碳源汇功能与"双碳"目标[J]. 第四纪研究, 2023, 43(2): 324-335.
Zhang H, Guo Z T, Zhao Y. Peatland carbon cycling and its contribution to carbon peak and carbon neutrality[J]. Quaternary Sciences, 2023, 43(2): 324-335.
[11] 汪洪娇, 曾蒙秀, 彭海军, 等. 红原泥炭记录的晚冰期以来若尔盖地区粉尘通量变率及其气候影响[J]. 第四纪研究, 2023, 43(1) : 57-73.
WANG H J, Zeng M X, Peng H J, et al. Significance of climate conditions in the variability of eolian dust deposition since the last deglaciation in the Zoigê region recorded by the Hongyuan peat[J]. Quaternary Sciences, 2023, 43(1): 57-73.
[12] 潘大东, 凌超豪, 徐晓花, 等. 福建梅花山泥炭腐殖化度记录的过去千年气候变化[J]. 第四纪研究, 2023, 43(1): 95-109.
Pan D D, Ling C H, Xu X H, et al. The climate change over the past 1000 years by humification records of a peat core from Meihua Mountain in Fujian Province[J]. Quaternary Sciences, 2023, 43(1): 95-109.
[13] 董彦民, 李鸿凯, 王升忠, 等. 中全新世以来白江河泥炭沼泽的发育过程及其控制因素[J]. 中国科学: 地球科学, 2023, 53(3): 572-586.
Dong Y M, Li H K, Wang S Z, et al. The development process of a temperate montane peatland and its controlling factors since the middle Holocene[J]. Science China Earth Sciences, 2023, 66(3): 594-608.
[14] 张子斌. 北京地区全新世泥炭形成过程与形成因素的研究[J]. 海洋地质与第四纪地质, 1984, 4(4): 79-85.
Zhang Z B. Process and factors controlling Holocene turf formation in Beijing area[J]. Marine Geology & Quaternary Geology, 1984, 4(4): 79-85.
[15] 田级生. 燕山南麓泥炭地的形成与古环境[J]. 河北煤炭, 1986(1): 29-33.
Tian J S. Formation and paleoenvironment of peatlands in the southern foothills of Yan Mountains[J]. Hebei Meitan Hebei Coal, 1986(1): 29-33.
[16] 陈方吉. 北京地区全新世地层及自然环境的变化[J]. 中国科学, 1979(9): 900-907.
Chen F J. Changes of Holocene strata and natural environment in Beijing area[J]. Scientia Sinica, 1979(9): 900-907.
[17] 严富华, 叶永英, 麦学舜, 等. 从孢粉分析试论北京地区两泥炭矿的时代和形成环境[J]. 地震地质, 1981, 3(1): 51-65.
Yan F H, Ye Y Y, Mai X S, et al. On the environment and geological age of two ores in Beijing region from sporo-pollen analysis[J]. Seismology and Geology, 1981, 3(1): 51-65.
[18] 孔昭宸, 杜乃秋, 张子斌. 北京地区10 000年以来的植物群发展和气候变化[J]. 植物学报, 1982, 24(2): 172-182.
Kong Z C, Du N Q, Zhang Z B. Vegetational development and climatic changes in the last 10 000 years in Beijing[J]. Acta Botanica Sinica, 1982, 24(2): 172-182.
[19] 李曼玥, 张生瑞, 许清海, 等. 华北平原末次冰盛期以来典型时段古环境格局[J]. 中国科学: 地球科学, 2019, 49(8): 1269-1277.
Li M Y, Zhang S R, Xu Q H, et al. Spatial patterns of vegetation and climate in the North China Plain during the Last Glacial Maximum and Holocene climatic optimum[J]. Scientia Sinica (Terrae), 2019, 62(8): 1279-1287.
[20] 童国榜, 张俊牌, 严富华, 等. 华北平原东部地区晚更新世以来的孢粉序列与气候分期[J]. 地震地质, 1991, 13(3): 259-268.
Tong G B, Zhang J P, Yan F H, et al. Sporo-pollen sequence and division of climatic period in the eastern North China plain since late Pleistocene[J]. Seismology and Geology, 1991, 13(3): 259-268.
[21] 钟金岳, 张则友, 邱淑彰, 等. 华北平原与长江下游平原泥炭地的类型及形成时代[J]. 地理科学, 1983, 3(4): 329-337.
Zhong J Y, Zhang Z Y, Qiu S Z, et al. Types and formative periods of peatland in Huabei Paain and the lower reaches of Yangtze river plain[J]. Scientia Geographica Sinica, 1983, 3(4): 329-337.
[22] 高凤岐. 河北省泥炭矿床的分类、分区和分期[J]. 煤炭学报, 1981(3): 34-43.
Gao F Q. Classification, regionalization and periodization of the peat deposits in Hebei province[J]. Journal of China Coal Society, 1981(3): 34-43.
[23] Andersson J G. Essays on the Cenozoic of Northern China[M]. [s. l. ]: Memoir of the Geological Survey of China, 1923: 84-92.
[24] 王竹泉. 中国泥煤资源分布之规律及其预测[J]. 第四纪研究, 1958, 1(2): 1-7.
Wang Z Q. Distribution and prediction of peat resources in China[J]. Quaternary Sciences, 1958, 1(2): 1-7.
[25] 刘金陵, 李文漪, 孙孟蓉, 等. 燕山南麓泥炭的孢粉组合[J]. 第四纪研究, 1965, 4(1): 105-117.
Liu J L, Li W Y, Sun M R, et al. Palynological assemblages of peat in southern Yan Mountains[J]. Quaternary Sciences, 1965, 4(1): 105-117.
[26] 吕可欣, 石光耀, 张欢, 等. 河北平原三河市S9钻孔第四纪孢粉记录及其气候指示意义[J]. 中国地质调查, 2022, 9(1): 64-72. doi: 10.19388/j.zgdzdc.2022.01.07
Lv K X, Shi G Y, Zhang H, et al. Quaternary palynological records and climatic signifiance of S9 borehole in Sanhe city of Hebei plain[J]. Geological Survey of China, 2022, 9(1): 64-72. doi: 10.19388/j.zgdzdc.2022.01.07
[27] Reimer P, Austin W E N, Bard E, et al. The IntCal20 northern Hemisphere radiocarbon age calibration curve (0~55 cal kBP)[J]. Radiocarbon, 2020, 62(4): 725-757. doi: 10.1017/RDC.2020.41
[28] Faegri K, Kaland P E, Krzywinski K. Textbook of Pollen Analysis[J]. Journal of Biogeography, 1989, 12(12): 328.
[29] 周昆叔. 对北京市附近两个埋藏泥炭沼的调查及其孢粉分析[J]. 第四纪研究, 1965, 4(1): 118-142.
Zhou K S. Investigation and pollen analysis of two buried peat bogs near Beijing[J]. Quaternary Sciences, 1965, 4(1): 118-142.
[30] 贾兰坡, 李有恒, 袁振新, 等. 北京东郊泥炭层中的动物遗骸和角质工具[J]. 古脊椎动物与古人类, 1972, 15(2): 188-193.
Jia L P, Li Y H, Yuan Z X, et al. Animal remains and cuticle tools in peat beds in the eastern suburbs of Beijing[J]. Vertebrata Palasiatica, 1972, 15(2): 188-193.
[31] 竺可桢. 中国近五千年来气候变迁的初步研究[J]. 考古学报, 1972(1): 118-142.
Zhu K Z. A preliminary study of climate change in China over the past 5, 000 years[J]. Acta Archaeologica Sinica, 1972(1): 118-142.
[32] 中国社会科学院考古研究所C14实验室, 国家地震局地质研究所C14实验室. 北京地区一批地质样品的C14年代测定[J]. 地质科学, 1980(2): 201-202.
Radiocarbon Dating Laboratory, Institute of Archaeology, Chinese Academy of Sociology, Radiocarbon Dating Lalioratory, Institute of Geology, State Seismological Bureau. Radiocarbon dating of geological samples from Beijing region[J]. Scientia Geologica Sinica, 1980(2): 201-202.
[33] 乐秀琴, 吴海斌, 张文超, 等. 中国末次冰盛期以来泥炭发育与气候变化[J]. 第四纪研究, 2021, 41(4): 1021-1030.
Le X Q, Wu H B, Zhang W C, et al. Peatland initiation in China associated with climate changes since the last Glacial Maximum[J]. Quaternary Sciences, 2021, 41(4): 1021-1030.
-