Preliminary analysis of the geochemical prospecting indicators of Linglong type gold deposit rock and ore body in Jiaodong
-
摘要:
胶东玲珑金矿田经过长时间的探索找矿工作,形成了由地表出露的次级断裂中的石英脉型金矿、主级断裂中隐伏的蚀变岩型金矿及深部的含矿致矿岩体构成的“三位一体”玲珑型金矿找矿模型, 研究该类金矿特征, 厘定出简易高效的岩体与矿体(以下简称岩矿体)地球化学找矿标志,对预测识别深部含矿致矿岩矿体的存在及隐伏位置具有非常重要的意义。通过分析玲珑地区浅部金矿体、深部含矿致矿岩体、距离矿区较近和较远的中酸性岩体的地球化学特征,发现玲珑型金矿为与受俯冲洋壳物质混染的壳幔岩浆活动有关的金矿,烧失量、稀土元素配分模式、δEu值、Nb/Ta值、Ti/V值、Te-Au关系及SiO2-P2O5关系等能够反映岩矿体成因的地球化学特征,可以作为玲珑型金矿岩矿体的地球化学找矿标志。根据该方法对焦家金矿、三山岛金矿、辽东五龙金矿等成矿类似区进行了初步的找矿方向预测,为后续勘查工作提供了依据。研究可为玲珑型金矿的研究及深部隐伏区的找矿预测工作提供参考。
Abstract:After a long period of exploration and prospecting work, Linglong gold deposit in Jiaodong has formed a three-in-one Linglong type gold deposit prospecting model, consisting of quartz vein type gold deposits in secondary faults exposed on the surface, altered rock type gold deposits hidden in main faults, and deep ore bearing ore bodies. Studying the characteristics of gold deposit of this type and determining simple and efficient geochemical prospecting indicators for rock and ore bodies are of great significance for predicting and identifying the existence and hidden positions of deep mineralization-related ore-forming rock mass. By analyzing the geochemical characteristics of shallow gold deposits, deep ore bearing rock bodies, and intermediate acidic rock bodies located close to and far from the mining area in Linglong region, the authors found that Linglong type gold deposit is related to crustal mantle magmatic activity mixed with subducting oceanic crust materials. The geochemical characteristics, which can reflect the genesis of the rock body and ore, including loss on ignition, rare earth element distribution patterns, δEu values, Nb/Ta values, Ti/V values, Te Au relationships, and SiO2-P2O5 relationships, can be used as indicators for the geochemical exploration of Linglong type gold deposit. Based on this method, preliminary prospecting directions were predicted for similar mineralization areas such as Jiaojia gold mine, Sanshan Island gold mine, and Liaodong Wulong gold mine, providing basis for subsequent exploration work. This study could provide references for research on Linglong type gold deposits and the exploration and prediction in deep-seated hidden areas.
-
Key words:
- Jiaodong /
- Linglong type gold mines /
- rock and ore body /
- geochemistry /
- prospecting indicators
-
-
图 1 中国东部地区大地构造简图(a)与胶西北区域地质简图(b)[1]
Figure 1.
图 2 玲珑金矿田构造地质简图(据文献[3]修改)
Figure 2.
图 5 主量元素R1-R2分类图解(a)[15]及稀土元素标准化蛛网图(b)
Figure 5.
表 1 样品主量和微量元素分析结果
Table 1. Analysis results of main and trace elements in the samples
样号 主量元素含量/% 微量元素含量/10-6 SiO2 Al2O3 Fe2O3 K2O TiO2 P2O5 CaO MgO Na2O MnO FeO LOI S V ZK1-1 55.22 17.65 2.75 2.79 0.81 0.43 5.96 2.38 3.76 0.086 3.31 4.00 0.450 99.30 ZK1-2 55.04 17.09 1.53 3.01 0.80 0.42 5.93 2.59 3.32 0.082 4.76 4.91 1.440 107.00 ZK1-3 55.16 17.61 3.00 2.87 0.78 0.41 5.97 2.41 3.59 0.081 2.96 4.83 0.980 87.40 ZK2-1 51.58 17.98 2.08 3.03 1.02 0.45 4.92 3.33 3.06 0.081 5.09 6.81 0.890 166.00 ZK2-2 60.42 17.05 1.99 3.91 0.36 0.26 3.94 1.24 3.90 0.051 1.82 5.17 1.040 37.40 ZJ-1 65.76 15.45 1.27 4.32 0.43 0.29 3.39 1.83 4.02 0.065 1.47 1.80 0.024 46.60 ZJ-2 65.84 15.38 1.28 4.37 0.43 0.29 3.30 1.88 4.04 0.073 1.54 1.47 0.004 46.90 YJ-1 70.26 14.88 0.85 4.37 0.27 0.13 2.12 0.93 4.11 0.053 0.96 1.00 0.008 25.60 SY1 92.88 1.28 1.22 0.38 0.06 0.08 0.92 0.40 0.25 0.082 0.72 1.26 0.600 5.43 SY2 80.72 3.21 5.77 1.03 0.04 0.02 0.44 0.39 0.29 0.114 3.13 4.42 4.550 3.25 SB1 71.50 11.47 5.27 4.36 0.13 0.04 0.56 0.39 0.58 0.040 0.57 3.87 3.840 19.98 SB2 74.36 4.81 11.46 1.88 0.08 0.02 0.22 0.27 0.29 0.041 0.63 6.20 8.60 4.93 样号 微量元素含量/10-6 Zr Nb Ta W Ce Pr Nd Tm Yb Lu Hf Bi Th Sm ZK1-1 69.1 7.16 0.61 2.21 136.0 15.2 51.20 0.28 1.76 0.28 2.07 0.14 9.38 7.62 ZK1-2 65.8 7.50 0.51 3.84 117.0 13.4 45.70 0.24 1.59 0.26 2.29 0.40 8.53 7.24 ZK1-3 60.3 7.35 0.52 1.96 111.0 12.6 43.50 0.23 1.49 0.24 2.00 0.20 8.28 6.70 ZK2-1 48.7 6.59 0.44 7.46 78.2 9.77 36.40 0.20 1.30 0.20 1.55 0.50 4.32 6.14 ZK2-2 92.4 6.09 0.41 5.62 131.0 14.1 44.90 0.17 1.15 0.20 2.68 0.64 11.70 6.08 ZJ-1 15.3 7.13 0.43 0.20 244.0 26.9 92.80 0.16 1.04 0.16 0.67 0.09 18.70 14.20 ZJ-2 13.6 7.14 0.43 0.18 242.0 26.8 92.00 0.16 0.94 0.16 0.70 0.08 18.90 13.90 YJ-1 14.6 5.89 0.37 0.14 106.0 12.0 40.00 0.08 0.54 0.10 0.79 0.11 14.80 6.27 SY1 13.5 1.38 0.09 0.78 7.9 0.90 3.32 0.03 0.03 0.03 0.46 0.75 0.62 0.57 SY2 15.7 2.55 0.23 0.28 9.4 1.08 3.90 0.02 0.02 0.02 0.76 0.57 0.97 0.66 SB1 46.4 4.15 0.26 2.79 32.6 3.91 13.45 0.03 0.03 0.03 1.76 2.62 2.42 1.90 SB2 22.7 2.87 0.17 0.41 14.1 1.53 5.24 0.02 0.02 0.02 0.90 0.87 2.93 0.73 样号 微量元素含量/10-6 Au含量/10-9 Eu Gd Tb Dy Ho Er La Te Y Ni Cu Cr δEu ZK1-1 2.46 6.58 0.79 3.79 0.71 2.16 74.4 0.21 18.10 4.32 28.60 11.40 1.04 66.10 ZK1-2 2.36 6.20 0.76 3.75 0.69 2.05 62.9 0.32 17.10 5.77 16.50 9.45 1.05 94.00 ZK1-3 2.29 5.77 0.69 3.38 0.64 1.88 59.1 0.26 16.30 4.99 33.90 10.60 1.10 56.70 ZK2-1 1.71 5.00 0.63 3.05 0.56 1.71 38.0 0.25 13.20 12.30 29.50 12.50 0.91 15.40 ZK2-2 2.09 5.26 0.56 2.63 0.45 1.37 74.4 0.31 12.00 3.67 13.90 9.75 1.10 10.00 ZJ-1 4.00 10.30 1.03 3.69 0.56 1.52 134.0 0.12 15.00 33.00 4.17 38.50 0.96 3.40 ZJ-2 3.94 10.40 1.00 3.52 0.56 1.55 135.0 0.16 14.40 36.20 4.28 44.30 0.96 0.50 YJ-1 1.90 4.75 0.47 1.70 0.28 0.76 59.6 0.10 7.18 19.30 4.44 30.70 1.02 0.50 SY1 0.47 0.56 0.07 0.35 0.06 0.20 4.6 1.16 1.84 7.70 23.10 19.30 2.52 0.80 SY2 0.23 0.61 0.07 0.29 0.05 0.16 5.5 0.21 1.33 11.20 403.90 11.30 1.08 0.83 SB1 0.46 1.76 0.17 0.59 0.09 0.32 15.4 2.12 2.46 7.50 158.60 10.30 0.75 12.98 SB2 0.28 0.74 0.07 0.28 0.05 0.16 8.6 0.74 1.35 12.60 14.10 13.50 1.15 4.18 -
[1] 宋英昕, 于学峰, 李大鹏, 等. 胶东西北部北截岩体岩石成因: 锆石U-Pb年龄、岩石地球化学与Sr-Nd-Pb同位素制约[J]. 岩石学报, 2020, 36(5): 1477-1500.
Song Y X, Yu X F, Li D P, et al. Petrogenesis of the Beijie pluton from the northwestern Jiaodong Peninsula: Constraints from zircon U-Pb age, petrogeochemistry and Sr-Nd-Pb isotopes[J]. Acta Petrologica Sinica, 2020, 36(5): 1477-1500.
[2] 宋立伟, 王会军, 王铁强, 等. 综合地球物理探测在金矿预测中的应用——以胶东郑家金矿为例[J]. 中国地质调查, 2024, 11(2): 43-50. doi: 10.19388/j.zgdzdc.2024.02.06
Song L W, Wang H J, Wang T Q, et al. Application of integrated geophysical methods in gold deposit prediction: A case study of Zhengjia gold deposit in Jiaodong area[J]. Geological Survey of China, 2024, 11(2): 43-50. doi: 10.19388/j.zgdzdc.2024.02.06
[3] 李世勇, 李杰, 宋明春, 等. 胶东玲珑金矿田成矿特征和成矿作用[J]. 地质学报, 2022, 96(9): 1-27.
Li S Y, Li J, Song M C, et al. Metallogenic characteristics and mineralization of the Linglong gold field, Jiaodong Peninsula[J]. Acta Geologica Sinica, 2022, 96(9): 3234-3260.
[4] 申玉科, 郭涛, 杨玉泉, 等. 玲珑金矿田黑云母二长岩的发现及其Ar-Ar热年代学意义[J]. 地质力学学报, 2016, 22(3): 778-793.
Shen Y K, Guo T, Yang Y Q, et al. Discovery of biotite monzolite and Ar-Ar thermochronology significance in Linglong gold field[J]. Journal of Geomechanics, 2016, 22(3): 778-793.
[5] Yao X F, Cheng Z Z, Du Z Z, et al. Petrology, geochemistry, and Sr-Nd-S isotopic compositions of the ore-hosting biotite monzodiorite in the Luanjiahe gold deposit, Jiaodong Peninsula, China[J]. Journal of Earth Science, 2021, 32(1): 51-67. doi: 10.1007/s12583-020-1386-7
[6] Li Z K, Li J W, Sun H S, et al. Gold mineralized diorite beneath the Linglong ore field, North China craton: New insights into the origin of decratonization-related gold deposits[J]. GSA Bulletin, 2024, 136(1-2): 277-294.
[7] 翟裕生. 论矿床学的社会功能与思维方法[J]. 地学前缘, 2002, 9(3): 5-11.
Zhai Y S. A discussion on the social function and thinking method of ore deposit geology[J]. Earth Science Frontiers, 2002, 9(3): 5-11.
[8] 翟裕生, 邓军, 王建平, 等. 深部找矿研究问题[J]. 矿床地质, 2004, 23(2): 142-148.
Zhai Y S, Deng J, Wang J P, et al. Researches on deep ore prospecting[J]. Mineral Deposits, 2004, 23(2): 142-149.
[9] 翟裕生. 关于矿床学创新问题的探讨[J]. 地学前缘, 2006, 13(3): 1-7.
Zhai Y S. Innovative research on mineral deposit geology[J]. Earth Science Frontiers, 2006, 13(3): 1-7.
[10] 翟裕生. 加强矿床地质研究, 提高找矿工作成效[J]. 矿床地质, 2010, 29(1): 3-8.
Zhai Y S. Strengthening research on mineral deposit geology to promote effectiveness of mineral exploration[J]. Mineral Deposits, 2010, 29(1): 3-8.
[11] 翟裕生. 矿床学思维方法探讨[J]. 地学前缘, 2020, 27(2): 1-12.
Zhai Y S. On the method of thinking in studying mineral depo\|sits[J]. Earth Science Frontiers, 2020, 27(2): 1-12.
[12] 陈毓川, 裴荣富, 王登红, 等. 八论矿床的成矿系列[J]. 地质学报. 2022, 96(1): 123-130.
Chen Y C, Pei R F, Wang D H, et al. A discussion on minerogenetic series of mineral deposits (Ⅷ)[J]. Acta Geologica Sinica, 2022, 96(1): 123-130.
[13] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 14506-2010硅酸盐岩石化学分析方法[S]. 北京: 中国标准出版社, 2011.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Administration. GB/T 14506-2010 Methods for Chemical Analysis of Silicate Rocks[S]. Beijing: Standards Press of China, 2011.
[14] 迟乃杰, 于学峰, 孙雨沁, 等. 胶西北丛家岩体岩石成因探讨——岩石地球化学、年代学和Sr-Nd同位素的证据[J]. 地质论评, 2023, 69(6): 2141-2157.
Chi N J, Yu X F, Sun Y Q, et al. Petrogenesis of Congjia granodiorite in northwestern Jiaodong Penisula: Constraints from geochemistry, chronology and Sr-Nd isotopes[J]. Geological Review, 2023, 69(6): 2141-2157.
[15] Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48(1/2/3/4): 43-55.
[16] 张遵忠, 顾连兴, 吴昌志, 等. 东天山印支早期尾亚石英正长岩: 成岩作用及成岩意义[J]. 岩石学报, 2006, 22(5): 1135-1149.
Zhang Z Z, Gu L X, Wu C Z, et al. Weiya quartz syenite in early Indosinina from eastern Tianshan Mountains: Petrogenesis and tectonic implications[J]. Acta Petrologica Sinica, 2006, 22(5): 1135-1149.
[17] 孔会磊, 李文渊, 任广利, 等. 西昆仑奇台达坂二长花岗岩及其暗色微粒包体对稀有金属伟晶岩形成的指示意义[J]. 岩石学报, 2023, 39(7): 2063-2084.
Kong H L, Li W Y, Ren G L, et al. Indicative significance of the Qitaidaban monzogranite and mafic microgranular enclaves to the formation of rare metal pegmatites in West Kunlun[J]. Acta Petrologica Sinica, 2023, 39(7): 2063-2084.
[18] 宋述光, 吴珍珠, 杨立明, 等. 祁连山蛇绿岩带和原特提斯洋演化[J]. 岩石学报, 2019, 35(10): 2948-2970.
Song S G, Wu Z Z, Yang L M, et al. Ophiolite belts and evolution of the Proto-Tethys Ocean in the Qilian Orogen[J]. Acta Petrologica Sinica, 2019, 35(10): 2948-2970.
[19] 宋明春, 宋英昕, 李杰, 等. 胶东型金矿热隆-伸展成矿系统[J]. 岩石学报, 2023, 39(5): 1241-1260.
Song M C, Song Y X, Li J, et al. Thermal doming-extension metallogenic system of Jiaodong type gold deposits[J]. Acta Petrologica Sinica, 2023, 39(5): 1241-1260.
[20] 丁成武, 戴盼, 江思宏, 等. 内蒙古图古日格金矿床中碲化物的发现及其地质意义[J]. 地质学报, 2022, 96(7): 2450-2463.
Ding C W, Dai P, Jiang S H, et al. Discovery and geological signi\|ficance of tellurides in the Tugurige gold deposit in Inner Mongolia[J]. Acta Geologica Sinica, 2022, 96(7): 2450-2463.
[21] 阳琼艳. 胶东玲珑金矿中生代岩浆作用与金成矿动力学研究[D]. 北京: 中国地质大学(北京), 2013.
Yang Q Y. Mesozoic Magmatism and Metallogenic Geodynamics of Lniglong Gold Deposit in Jiaodong Peninsula, Eastern North China Craton[D]. Beijing: China University of Geosciences (Beijing), 2013.
[22] Koua K A D. 胶东白垩纪花岗岩中的镁铁质微粒包体岩石成因及其对大规模金矿形成的意义[D]. 武汉: 中国地质大学, 2022.
Koua K A D. Petrogenesis of Mafic Microgranular Enclaves Hosted in Cretaceous Granitic Intrusions and Implication for the Large-Scale Gold Mineralization in the Jiaodong Gold Province, North China[D]. Wuhan: China University of Geosciences, 2022.
[23] 于晓卫, 王来明, 刘汉栋, 等. 胶东地区早白垩世郭家岭期花岗岩[J]. 山东国土资源, 2021, 37(9): 12-25.
Yu X W, Wang L M, Liu H D, et al. Study on early Cretaceous Guojialing granite in Jiaodong area[J]. Shandong Land and Resources, 2021, 37(9): 12-25.
[24] 王立功, 祝德成, 郭瑞朋, 等. 胶西北仓上、三山岛岩体二长花岗岩地球化学、锆石U-Pb年龄及Lu-Hf同位素研究[J]. 地质学报, 2018, 92(10): 2081-2095.
Wang L G, Zhu D C, Guo R P, et al. Geochemistry, zircon U-Pb age and Lu-Hf isotopes of the Cangshang and Sanshandao monzogranites in the Northwestern Jiaodong Peninsula, China[J]. Acta Geologica Sinica, 2018, 92(10): 2081-2095.
[25] 于晓卫, 王来明, 任天龙, 等. 胶西北地区钻孔揭露隐伏郭家岭期花岗岩的地球化学、锆石U-Pb年龄及Lu-Hf同位素特征[J]. 地质学报, 2023, 97(2): 417-432.
Yu X W, Wang L M, Ren T L, et al. Geochemistry, zircon U-Pb age and Lu-Hf isotope of the concealed Guojialing granite revealed by boreholes in the northwestern Jiaodong region[J]. Acta Geologica Sinica, 2023, 97(2): 417-432.
[26] 王中亮, 赵荣新, 张庆, 等. 胶西北高Ba-Sr郭家岭型花岗岩岩浆混合成因: 岩石地球化学与Sr-Nd同位素约束[J]. 岩石学报, 2014, 30(9): 2595-2608.
Wang Z L, Zhao R X, Zhang Q, et al. Magma mixing for the high Ba-Sr Guojialing-type granitoids in Northwest Jiaodong Peninsula: constraints from petrogeochemistry and Sr-Nd isotopes[J]. Acta Petrologica Sinica, 2014, 30(9): 2595-2608.
[27] 于晓卫, 王来明, 刘汉栋, 等. 胶东中生代花岗岩与金矿关系及成矿期划分[J]. 地质学报, 2023, 97(6): 1848-1873.
Yu X W, Wang L M, Liu H D, et al. The relationship between Mesozoic granite, gold deposits and the division of metallogenic period in eastern Shandong[J]. Acta Geologica Sinica, 2023, 97(6): 1848-1873.
[28] 顾玉超. 辽东五龙金矿区中生代构造-岩浆作用对金成矿制约[D]. 北京: 中国地质大学(北京), 2019.
Gu Y C. The Mesozoic Tectonic-Magmatic Constraints on the Gold Mineralization in Wulong Gold Mining Area, Eastern Liaoning[D]. Beijing: China University of Geosciences (Beijing), 2019.
-