黄土丘陵沟壑区煤炭地下开采扰动下的自然恢复

王志民, 岳喜能, 秦越强, 柴晨晖, 孙宇飞, 冯欣. 黄土丘陵沟壑区煤炭地下开采扰动下的自然恢复[J]. 中国地质调查, 2025, 12(4): 93-102. doi: 10.19388/j.zgdzdc.2023.316
引用本文: 王志民, 岳喜能, 秦越强, 柴晨晖, 孙宇飞, 冯欣. 黄土丘陵沟壑区煤炭地下开采扰动下的自然恢复[J]. 中国地质调查, 2025, 12(4): 93-102. doi: 10.19388/j.zgdzdc.2023.316
WANG Zhimin, YUE Xineng, QIN Yueqiang, CHAI Chenhui, SUN Yufei, FENG Xin. Natural restoration in the loess hilly and gully region under the disturbance of underground coal mining[J]. Geological Survey of China, 2025, 12(4): 93-102. doi: 10.19388/j.zgdzdc.2023.316
Citation: WANG Zhimin, YUE Xineng, QIN Yueqiang, CHAI Chenhui, SUN Yufei, FENG Xin. Natural restoration in the loess hilly and gully region under the disturbance of underground coal mining[J]. Geological Survey of China, 2025, 12(4): 93-102. doi: 10.19388/j.zgdzdc.2023.316

黄土丘陵沟壑区煤炭地下开采扰动下的自然恢复

  • 基金项目:
    中国地质调查局“鄂尔多斯市准格尔旗煤炭矿集区生态修复支撑调查(编号:DD20208078)”项目资助
详细信息
    作者简介: 王志民(1985—),男,高级工程师,主要从事矿山生态修复支撑调查和地质灾害调查工作。Email:85689352@qq.com
    通讯作者: 冯欣(1985—),男,高级工程师,主要从事区域地质调查工作。Email:fengxin01305105@163.com
  • 中图分类号: P694

Natural restoration in the loess hilly and gully region under the disturbance of underground coal mining

More Information
  • 作为重要能源基地的鄂尔多斯市属于黄土高原,生态及其脆弱,随着煤炭的地下开采,产生了大量露天采坑、排土场和塌陷区。为研究黄土丘陵沟壑区煤炭地下开采产生的塌陷区塌陷裂缝自然修复效果及修复方法,以准格尔旗串草圪旦煤矿为研究对象,利用遥感解译、土壤测量等手段,并基于修正通用土壤流失方程(revised universal soil loss equation,RUSLE)构建边缘裂缝自然恢复模型,研究分析塌陷裂缝自然恢复特征并提出修复建议。结果显示: 黄土丘陵沟壑区塌陷出现分区特征,动态裂缝区自然修复下1 a内基本恢复,且恢复效果较佳; 边缘裂缝区自然修复效果差且长时间难以恢复,模拟恢复最长时间达26.2 a。研究证明塌陷区修复应选择基于自然的分区修复法,研究成果可为黄土丘陵沟壑区地下开采塌陷裂缝修复治理提供参考。

  • 加载中
  • 图 1  研究区地质简图

    Figure 1. 

    图 2  研究区月均降雨量及气温

    Figure 2. 

    图 3  研究区无人机航测塌陷裂缝提取

    Figure 3. 

    图 4  采样区域(a)及土壤样品采样位置(b)

    Figure 4. 

    图 5  移动变形分区与生态损伤分区特征(据文献[14]和[19]修改)

    Figure 5. 

    图 6  研究区动态裂缝恢复情况

    Figure 6. 

    图 7  土壤含水量对比

    Figure 7. 

    图 8  土壤容重对比

    Figure 8. 

    图 9  研究区1990—2020年植被覆盖度空间分布

    Figure 9. 

    图 10  植被覆盖度对比

    Figure 10. 

    图 11  土壤侵蚀模数各因子

    Figure 11. 

    图 12  研究区流量分析

    Figure 12. 

    图 13  研究区修复分区示意图

    Figure 13. 

    表 1  研究区动态裂缝统计数据

    Table 1.  Statistical data of dynamic fractures in the study area

    时间 序号 长度/m 宽度/m 下错距离/m 形状
    2021年7月 1 300 0.30 0.55 弧形
    2 100 0.15 0.43 弧形
    3 550 0.30 0.21 弧形
    4 800 0.25 0.11 直线形
    5 320 0.10 0.02 直线形
    6 900 0.51 0.01 直线形
    7 700 0.41 0.01 直线形
    8 70 0.23 0.10 直线形
    9 330 0.32 0.03 直线形
    10 550 0.43 0.02 直线形
    11 920 0.25 0.01 直线形
    12 520 0.24 0.05 直线形
    13 660 0.12 0.03 直线形
    14 580 0.35 0.11 直线形
    2022年7月 1 130 0.06 0.25 弧形
    2 70 0.03 0.12 弧形
    下载: 导出CSV

    表 2  研究区不同停采年限边缘裂缝数据

    Table 2.  Marginal fracture data for different stop-mining years in the study area

    停采时间/a 裂缝数 平均长度/m 最大平均宽度/m
    3 33 104 0.45
    6 21 85 0.49
    11 14 38 0.51
    下载: 导出CSV

    表 3  研究区各裂缝自然恢复估计时间

    Table 3.  Estimated time of natural restoration for each fracture in the study area

    编号 L /m W/m D/m 物源供给面积/hm2 侵蚀模数/ [t·(hm-2 ·a-1)] 模拟恢复时间/a 监测恢复时间/a 误差比例/ %
    138 0.50 5.0 1.984 38 15.277 5 9.10 7.2 26.4
    122 0.60 3.0 2.468 75 33.941 1 2.09 2.0 -30.0
    62 0.30 3.5 0.125 00 51.218 8 8.13 6.0 35.5
    99 0.26 1.5 0.078 13 15.277 5 26.22 4.0 555.5*
    64 0.45 2.2 0.039 19 881.650 0 1.47 1.5 -2.0
    注: *为监测未愈合模型。
    下载: 导出CSV
  • [1]

    黎炜, 陈龙乾, 赵建林. 我国煤炭开采对生态环境的破坏及对策[J]. 煤, 2011, 20(5): 35-37.

    Li W, Chen L Q, Zhao J L. Damage to the environment and countermeasures of coal mining on the ecological in China[J]. Coal, 2011, 20(5): 35-37.

    [2]

    薛娟娟. 复杂采煤条件下黄土高原矿区地面沉降和生态扰动研究——以轩岗采煤沉陷区为例[D]. 太原: 太原理工大学, 2020.

    Xue J J. Ground Surface Subsidence and Ecological Disturbance in the Mining Area of Loess Plateau with Complex Environments: A Case Study from Xuangang Coal Mining Subsidence Area[D]. Taiyuan: Taiyuan University of Technology, 2020.

    [3]

    汪云甲. 矿区生态扰动监测研究进展与展望[J]. 测绘学报, 2017, 46(10): 1705-1716. doi: 10.11947/j.AGCS.2017.20170358

    Wang Y J. Research progress and prospect on ecological disturbance monitoring in mining area[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1705-1716. doi: 10.11947/j.AGCS.2017.20170358

    [4]

    朱松丽. 我国煤炭开采生态环境保护相关政策措施评述[J]. 煤, 2007, 16(12): 1-4.

    Zhu S L. Review on policies and measures related to ecological environment protection in coal mining industry[J]. Coal, 2007, 16(12): 1-4.

    [5]

    张黎明. 山西黄土高原矿区关键扰动的自然修复机理研究[D]. 徐州: 中国矿业大学, 2017.

    Zhang L M. Study on the Mechanisms of Natural Restoration of Main Land Disturbances in Shanxi Loess Plateau Mining Area[D]. Xuzhou: China University of Mining and Technology, 2017.

    [6]

    李裕元, 邵明安. 黄土高原北部紫花苜蓿草地退化过程与植物多样性研究[J]. 应用生态学报, 2005, 16(12): 2321-2327. doi: 10.3321/j.issn:1001-9332.2005.12.019

    Li Y Y, Shao M A. Degradation process and plant diversity of alfalfa grassland in North Loess Plateau of China[J]. Chinese Journal of Applied Ecology, 2005, 16(12): 2321-2327. doi: 10.3321/j.issn:1001-9332.2005.12.019

    [7]

    王国梁, 刘国彬, 常欣, 等. 黄土丘陵区小流域植被建设的土壤水文效应[J]. 自然资源学报, 2002, 17(3): 339-344. doi: 10.3321/j.issn:1000-3037.2002.03.015

    Wang G L, Liu G B, Chang X, et al. A study on the effect of soil water on vegetation rehabilitation in watershed of loess hilly area[J]. Journal of Natural Resources, 2002, 17(3): 339-344. doi: 10.3321/j.issn:1000-3037.2002.03.015

    [8]

    郭忠升, 邵明安. 半干旱区人工林草地土壤旱化与土壤水分植被承载力[J]. 生态学报, 2003, 23(8): 1640-1647. doi: 10.3321/j.issn:1000-0933.2003.08.023

    Guo Z S, Shao M A. Soil water carrying capacity of vegetation and soil desiccation in artificial forestry and grassland in semi-arid regions of the Loess Plateau[J]. Acta Ecologica Sinica, 2003, 23(8): 1640-1647. doi: 10.3321/j.issn:1000-0933.2003.08.023

    [9]

    胡振琪, 赵艳玲. 矿山生态修复面临的主要问题及解决策略[J]. 中国煤炭, 2021, 47(9): 2-7.

    Hu Z Q, Zhao Y L. Main problems in ecological restoration of mines and their solutions[J]. China Coal, 2021, 47(9): 2-7.

    [10]

    田学斌. 走出基于自然的生态文明之路[N]. 北京日报, 2018-11-05(013).

    Tian X B. Walking out the road of ecological civilization based on nature[N]. Beijing Daily, 2018-11-05(013).

    [11]

    李全生, 郭俊廷, 张凯, 等. 西部煤炭集约化开采损伤传导机理与源头减损关键技术[J]. 煤炭学报, 2021, 46(11): 3636-3644.

    Li Q S, Guo J T, Zhang K, et al. Damage conduction mechanism and key technologies of damage reduction in sources for intensive coal mining in western China[J]. Journal of China Coal Society, 2021, 46(11): 3636-3644.

    [12]

    李全生, 贺安民, 曹志国. 神东矿区现代煤炭开采技术下地表生态自修复研究[J]. 煤炭工程, 2012, 44(12): 120-122.

    Li Q S, He A M, Cao Z G. Research on surface ecological self-restoration under modern coal mining technology in Shendong Mining area[J]. Coal Engineering, 2012, 44(12): 120-122.

    [13]

    薛皓, 肖春蕾, 郭艺璇. 基于自然的解决方案对中国生态保护修复工作的启示[J]. 中国地质调查, 2021, 8(6): 96-104. doi: 10.19388/j.zgdzdc.2021.06.09

    Xue H, Xiao C L, Guo Y X. Nature-based Solutions implications for the ecological conservation and restoration in China[J]. Geological Survey of China, 2021, 8(6): 96-104. doi: 10.19388/j.zgdzdc.2021.06.09

    [14]

    胡振琪, 龙精华, 王新静. 论煤矿区生态环境的自修复、自然修复和人工修复[J]. 煤炭学报, 2014, 39(8): 1751-1757.

    Hu Z Q, Long J H, Wang X J. Self-healing, natural restoration and artificial restoration of ecological environment for coal mining[J]. Journal of China Coal Society, 2014, 39(8): 1751-1757.

    [15]

    聂洪峰, 肖春蕾, 任伟祥, 等. 生态地质研究进展与展望[J]. 中国地质调查, 2021, 8(6): 1-8. doi: 10.19388/j.zgdzdc.2021.06.01

    Nie H F, Xiao C L, Ren W X, et al. Progress and prospect of ecogeological research[J]. Geological Survey of China, 2021, 8(6): 1-8. doi: 10.19388/j.zgdzdc.2021.06.01

    [16]

    王丽, 雷少刚, 卞正富. 系统视角下中国西部煤炭开采生态损伤与自然修复研究综述[J]. 资源开发与市场, 2017, 33(10): 1188-1192.

    Wang L, Lei S G, Bian Z F. Review on study of ecological damage and natural recovery in the coal mining subsidence area in western China[J]. Resource Development & Market, 2017, 33(10): 1188-1192.

    [17]

    Lehman C L, Tilman D. Biodiversity, stability, and productivity in competitive communities[J]. The American Naturalist, 2000, 156(5): 534-552.

    [18]

    秦越强, 王志民, 周业泽, 等. 准格尔旗煤炭矿集区生态环境问题与修复措施[J]. 现代矿业, 2021, 37(6): 169-174.

    Qin Y Q, Wang Z M, Zhou Y Z, et al. Ecological environment problems and restoration measures in Zhungeer coal mining area[J]. Modern Mining, 2021, 37(6): 169-174.

    [19]

    何国清, 杨伦, 凌赓娣, 等. 矿山开采沉陷学[M]. 徐州: 中国矿业大学出版社, 1991.

    He G Q, Yang L, Ling G D, et al. Science of Mining Subsidence[M]. Xuzhou: China University of Mining and Technology Press, 1991.

    [20]

    李庆和. 基于GIS和USLE的准格尔旗土壤侵蚀量估算[J]. 水土保持应用技术, 2018(4): 16-18.

    Li Q H. Estimation of soil erosion in Junge Banner based on GIS and USLE[J]. Technology of Soil and Water Conservation, 2018(4): 16-18.

    [21]

    崔雪梅. 内蒙古黄土丘陵区土壤侵蚀研究——以准格尔旗为例[D]. 呼和浩特: 内蒙古农业大学, 2012.

    Cui X M. The Research on the Soil Erosion of Zhungeer County in Loess Hilly Region of Inner Mongolia[D]. Hohhot: Inner Mongolia Agricultural University, 2012.

  • 加载中

(13)

(3)

计量
  • 文章访问数:  18
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2023-11-15
修回日期:  2024-10-29
刊出日期:  2025-08-25

目录