Susceptibility assessment of geological hazard based on analytic hierarchy process-entropy evaluation method coupling model: A case study of Qianxi County in Hebei Province
-
摘要:
迁西县地质条件复杂,人类改造自然活动频繁,地质灾害较发育,严重威胁群众生命财产安全。在分析迁西县地质灾害孕灾地质条件发育特征基础上,选取高程、坡度、坡向、起伏度、工程地质岩组、距构造距离、距道路距离、距河流距离8个评价指标构建地质灾害易发性评价指标体系,依据共线性诊断和相关性分析对指标间的独立性进行验证。运用信息量(information value,Ⅳ)法求得各评价指标信息量值,依托层次分析法(analytic hierarchy process,AHP)和熵权法(entropy evaluation method,EEM)分别确定各指标主、客观权重后,采用最小信息熵确定指标综合权重,进而建立Ⅳ模型、加权信息量(weighted information value,WIV)模型与AHP-EEM耦合模型,评价结果依据自然断点法将地质灾害易发性划分为非、低、中、高4个易发等级,并采取受试者操作特证(receiver operating characteristic, ROC)曲线开展精度验证。结果表明:AHP-EEM耦合模型精度最高,研究区高易发区、中易发区、低易发区和非易发区面积分别为270.85 km2、462.09 km2、486.13 km2、241.93 km2,占比分别为18.54%、31.63%33.27%、16.56%;AHP-EEW耦合模型AUC为0.875 6,评价结果与隐患点实际分布情况贴合度最高,符合本区域地质条件特征的易发性评价。评价结果可为本区域后期防灾减灾工作提供参考。
Abstract:Qianxi County features complex geological conditions and frequent human-induced modifications to the natural environment, resulting in significant development of geological hazards that pose serious threats to people's life and property. Based on the analysis of the geological conditions contributing to hazard development in Qianxi County, the authors selected eight assessment indicators to construct a susceptibility assessment index system, including elevation, slope gradient, slope aspect, relief amplitude, engineering geological rock groups, distance from structural features, distance from roads, and distance from rivers. The independence of these indicators was validated through correlation analysis and collinearity diagnostics. The information value (Ⅳ) method was applied to calculate the information values for each assessment indicator, and subjective and objective weights were determined using the analytic hierarchy process (AHP) and entropy evaluation method (EEM), respectively. The comprehensive weights were then derived using minimum information entropy, and three models were established, that is, Ⅳ, WIV and AHP-EEW coupling model. The susceptibility assessment results were classified into four levels (non-susceptible, low, moderate, and high) using the natural breaks method, and then validated by receiver operating characteristic (ROC) curve. The results indicated that the AHP-EEM coupling model achieved the highest accuracy, and the high, moderate, low, and non-susceptible zones covered 270.85 km2 (accounting for 18.54%), 462.09 km2 (accounting for 31.63%), 486.13 km2 (accounting for 33.27%), and 241.93 km2 (accounting for 16.56%), respectively. The AUC value of AHP-EEM coupling model was 0.875 6, demonstrating the highest alignment with the distribution of existing hazard sites and accurately reflecting regional geological conditions. The findings could provide valuable references for future disaster prevention and mitigation in this area.
-
-
表 1 研究区评价指标共线性统计
Table 1. Statistical table of collinearity among assessment indicators in the study area
评价指标 容差 VIF值 坡度 0.611 1.636 高程 0.841 1.190 工程地质岩组 0.866 1.155 起伏度 0.577 1.732 距构造距离 0.865 1.156 距河流距离 0.812 1.231 距道路距离 0.797 1.255 坡向 0.835 1.198 表 2 研究区评价指标相关性统计
Table 2. Statistical table of correlation among assessment indicators in the study area
评价指标 坡度 高程 工程地质岩组 起伏度 距构造距离 距河流距离 距道路距离 坡向 坡度 1 高程 -0.138 1 工程地质岩组 0.035 0.095 1 起伏度 0.178 -0.239 -0.045 1 距构造距离 -0.076 -0.007 0.071 -0.154 1 距河流距离 -0.121 0.079 0.254 -0.045 -0.071 1 距道路距离 0.03 -0.106 0.235 -0.03 0.285 0.217 1 坡向 0.183 0.122 0.181 0.061 -0.169 0.232 -0.088 1 表 3 研究区各评价指标信息量值
Table 3. Information values of the assessment indicators in the study area
评价指标 评价指标分级 隐患点个数/处 分级栅格面积/km2 信息量值 加权信息量值 AHP-EEM耦合权重信息量值 距道路距离 [0, 600] m 90 690.73 0.272 0 0.073 3 0.071 2 (600, 1 200] m 40 362.92 0.104 6 0.028 2 0.027 4 (1 200, 1 800] m 12 194.61 -0.763 8 -0.205 9 -0.200 0 (1 800, 2 400] m 2 98.76 -1.589 6 -0.428 4 -0.416 3 (2 400, 3 000] m 2 51.31 -0.934 9 -0.252 0 -0.244 8 >3 000 m 1 52.28 -1.646 7 -0.443 8 -0.431 3 高程 [0, 110] m 3 183.21 -1.805 9 -0.048 2 -0.055 3 (110, 170] m 22 379.84 -0.542 6 -0.014 5 -0.016 6 (170, 220] m 37 260.58 0.354 2 0.009 5 0.010 8 (220, 270] m 47 216.00 0.781 0 0.020 9 0.023 9 (270, 340] m 29 210.24 0.325 2 0.008 7 0.010 0 (340, 410] m 6 109.60 -0.598 9 -0.016 0 -0.018 3 (410, 804] m 0 85.67 0 0 0 工程地质岩组 薄层稀裂状坚硬碎屑岩组 11 120.52 -0.075 0 -0.004 2 -0.004 0 第四系松散土体 31 366.31 -0.150 6 -0.008 5 -0.008 0 碎裂状坚硬变质岩组 77 587.30 0.287 2 0.016 1 0.015 3 稀裂状坚硬岩浆岩组 12 104.29 0.156 7 0.008 8 0.008 3 中厚层稀裂状中等岩溶化坚硬碳酸盐岩组 13 285.30 -0.769 7 -0.043 3 -0.040 9 坡度 (0°, 10°] 5 146.11 -1.062 8 -0.110 7 -0.095 9 (10°, 20°] 8 279.09 -1.239 9 -0.129 2 -0.111 8 (20°, 28°] 8 240.49 -1.091 1 -0.113 7 -0.098 4 (28°, 36°] 28 222.19 0.240 8 0.025 1 0.021 7 (36°, 45°] 40 213.69 0.636 5 0.066 3 0.057 4 (45°, 53°] 41 151.94 1.002 2 0.104 4 0.090 4 (53°, 63°] 8 133.18 -0.500 1 -0.052 1 -0.045 1 (63°, 85°] 6 67.13 -0.102 7 -0.010 7 -0.009 3 距构造距离 (0, 600] m 62 356.25 0.560 9 0.097 2 0.092 6 (600, 1 200] m 49 291.19 0.527 3 0.091 3 0.087 0 (1 200, 1 800] m 22 245.28 -0.101 9 -0.017 7 -0.016 8 (1 800, 2 400] m 7 189.82 -0.990 8 -0.171 6 -0.163 6 (2 400, 3 000] m 4 129.66 -1.169 2 -0.202 5 -0.193 0 >3 000 m 0 237.67 0 0 0 距河流距离 (0, 600] m 58 286.46 0.712 8 0.183 5 0.206 6 (600, 1 200] m 50 241.15 0.736 5 0.189 6 0.213 5 (1 200, 1 800] m 20 212.97 -0.055 5 -0.014 3 -0.016 1 (1 800, 2 400] m 7 187.57 -0.978 3 -0.251 8 -0.283 6 (2 400, 3 000] m 6 164.78 -1.002 9 -0.258 2 -0.290 7 >3 000 m 3 357.68 -2.471 1 -0.636 1 -0.716 4 坡向 北 4 164.29 -1.432 9 -0.057 6 -0.061 9 东北 4 110.51 -1.036 5 -0.041 7 -0.044 8 东 8 164.51 -0.741 1 -0.029 8 -0.032 0 东南 8 251.83 -1.166 9 -0.046 9 -0.050 4 南 10 159.53 -0.487 3 -0.019 6 -0.021 0 西南 9 109.40 -0.215 4 -0.008 7 -0.009 3 西 41 178.33 0.812 3 0.032 7 0.035 1 西北 60 272.81 0.768 0 0.030 9 0.033 2 起伏度 (0, 35] m 4 255.67 -1.828 4 -0.132 7 -0.120 7 (35, 55] m 6 302.55 -1.591 3 -0.115 5 -0.105 0 (55, 75] m 45 302.63 0.423 4 0.030 7 0.027 9 (75, 100] m 48 278.43 0.571 3 0.041 5 0.037 7 (100, 120] m 25 144.08 0.577 8 0.041 9 0.038 1 (120, 145] m 8 106.38 -0.258 4 -0.018 8 -0.017 1 (145, 185] m 6 69.58 -0.121 4 -0.008 8 -0.008 0 (185, 254] m 2 19.57 0.048 2 0.003 5 0.003 2 表 4 研究区各评价指标判断矩阵及指标权重
Table 4. Judgment matrix and indicator weight for the assessment indicators in the study area
评价指标 评价指标 权重 距道路距离 距河流距离 距构造距离 坡度 起伏度 工程地质岩组 坡向 高程 距道路距离 1 1 2 3 4 5 6 8 26.95 距河流距离 1 1 2 3 4 4 5 8 25.74 距构造距离 0.500 0.500 1 2 3 3 5 7 17.32 坡度 0.333 0.333 0.500 1 2 2 3 4 10.42 起伏度 0.250 0.250 0.333 0.500 1 2 2 3 7.26 工程地质岩组 0.200 0.250 0.333 0.500 0.500 1 2 2 5.621 坡向 0.167 0.200 0.200 0.333 0.500 0.500 1 2 4.023 高程 0.125 0.125 0.143 0.250 0.333 0.500 0.500 1 2.665 表 5 评价指标权重值
Table 5. Weights of assessment indicators
评价指标 AHP权重(W1i) EEM权重(W2i) 综合权重(Wi) 起伏度 0.072 6 0.059 5 0.066 0 坡度 0.104 2 0.077 4 0.090 2 高程 0.026 7 0.034 8 0.030 6 工程地质岩组 0.056 2 0.049 8 0.053 1 距构造距离 0.173 2 0.156 0 0.165 1 距河流距离 0.257 4 0.323 8 0.289 9 距道路距离 0.269 5 0.252 5 0.261 9 坡向 0.040 2 0.046 1 0.043 2 表 6 研究区地质灾害易发分区面积统计
Table 6. Summary of geological hazard susceptibility zoning in the study area
易发性等级 Ⅳ模型 WIV模型 AHP-EEM耦合模型 灾害点数量/处 灾害点密度/ (处·100 km-2) 面积/ km2 面积占比/% 灾害点数量/处 灾害点密度/ (处·100 km-2) 面积/ km2 面积占比/% 灾害点数量/处 灾害点密度/ (处·100 km-2) 面积/ km2 面积占比/% 非易发 4 1.78 224.63 15.38 4 1.78 224.56 15.37 2 0.83 241.93 16.56 低易发 25 7.30 342.52 23.44 21 4.59 457.89 31.34 18 3.70 486.13 33.27 中易发 41 8.40 488.38 33.43 40 8.24 485.37 33.22 47 10.17 462.09 31.63 高易发 74 18.25 405.47 27.75 79 26.95 293.18 20.07 77 28.43 270.85 18.54 -
[1] 孙剑锋, 马超, 胡金树, 等. 基于灰色关联度与层次分析法耦合的地质灾害易发性评价--以浙江省云和县崇头镇为例[J]. 工程地质学报, 2023, 31(2): 538-551.
Sun J F, Ma C, Hu J S, et al. Susceptibility evaluation of geological hazard by coupling grey relational degree and analytic hierarchy process: A case of Chongtou town, Yunhe county, Zhejiang Province[J]. Journal of Engineering Geology, 2023, 31(2): 538-551.
[2] 王璇, 师芸, 陈浩. CF耦合LR模型的地质灾害易发性评价[J]. 测绘通报, 2022(11): 112-117.
Wang X, Shi Y, Chen H. Evaluation of geological hazard susceptibility based on certainty factors coupling logistic regression[J]. Bulletin of Surveying and Mapping, 2022(11): 112-117.
[3] 毕结昂, 徐佩华, 宋盛渊, 等. 基于信息量-逻辑回归耦合模型的玛纳斯河流域地质灾害易发性评价[J]. 工程地质学报, 2022, 30(5): 1549-1560.
Bi J A, Xu P H, Song S Y, et al. Assessment of the susceptibility to geological hazards in the Manas river basin based on the coupled information value-logistic regression model[J]. Journal of Engineering Geology, 2022, 30(5): 1549-1560.
[4] 翟文华, 王小东, 吴明堂, 等. 基于频率比模型和随机森林模型耦合的地质灾害易发性评价[J]. 自然灾害学报, 2023, 32(6): 74-82.
Zhai W H, Wang X D, Wu M T, et al. Geological disaster susceptibility evaluation based on coupling of frequency ratio model and random forest model[J]. Journal of Natural Disasters, 2023, 32(6): 74-82.
[5] 周天游, 刘畅, 薛鹏, 等. 基于不同机器学习的震后滑坡易发性建模研究[J]. 自然灾害学报, 2023, 32(5): 177-185.
Zhou T Y, Liu C, Xue P, et al. Post-seismic landslide susceptibility modeling based on different machine learning methods[J]. Journal of Natural Disasters, 2023, 32(5): 177-185.
[6] 徐澯, 宫阿都, 包文轩. 基于机器学习的不可移动文物暴雨灾害风险评估--以山西省为例[J]. 自然灾害学报, 2023, 32(4): 25-35.
Xu C, Gong A D, Bao W X. Machine learning-based storm disaster risk assessment of immovable cultural relics: A case study of Shanxi Province[J]. Journal of Natural Disasters, 2023, 32(4): 25-35.
[7] 牛全福, 熊超, 雷姣姣, 等. 基于FFPI模型的甘肃陇南山区山洪灾害风险评价[J]. 自然灾害学报, 2023, 32(4): 36-47.
Niu Q F, Xiong C, Lei J J, et al. Risk assessment of flash flood disasters in Longnan mountain area of Gansu Province based on FFPI model[J]. Journal of Natural Disasters, 2023, 32(4): 36-47.
[8] 杨得虎, 朱杰勇, 刘帅, 等. 罗平县崩滑易发性评价模型对比研究[J]. 地质灾害与环境保护, 2023, 34(4): 41-49.
Yang D H, Zhu J Y, Liu S, et al. Comparative study on evaluation models of landslide susceptibility in Luoping County, Yunnan Province[J]. Journal of Geological Hazards and Environment Preservation, 2023, 34(4): 41-49.
[9] 于喜坤, 张紫昭, 史光明, 等. 基于确定性系数与信息量耦合模型的新疆额敏县地质灾害易发性评价[J]. 工程地质学报, 2023, 31(4): 1333-1349.
Yu X K, Zhang Z Z, Shi G M, et al. Evaluation of geological hazard susceptibility in Emin county, Xinjiang based on deterministic coefficient and information coupling model[J]. Journal of Engineering Geology, 2023, 31(4): 1333-1349.
[10] 胡杨, 张紫昭, 林世河. 基于证据权与逻辑回归耦合的新疆伊犁河谷地区滑坡易发性评价[J]. 工程地质学报, 2023, 31(4): 1350-1363.
Hu Y, Zhang Z Z, Lin S H. Evaluation of landslide susceptibility in Ili valley, Xinjiang based on the coupling of WOE model and logistic regression[J]. Journal of Engineering Geology, 2023, 31(4): 1350-1363.
[11] 杜国梁, 张永双, 吕文明, 等. 基于加权信息量模型的藏东南地区滑坡易发性评价[J]. 灾害学, 2016, 31(2): 226-234.
Du G L, Zhang Y S, Lv W M, et al. Landslide susceptibility assessment based on weighted information value model in southeast Tibet[J]. Journal of Catastrophology, 2016, 31(2): 226-234.
[12] 茹曼, 郑燕, 张斌, 等. 基于SVM-RF模型的地质灾害易发性评价--以河南省博爱县青天河景区为例[J]. 地质与资源, 2023, 32(5): 633-641.
Ru M, Zheng Y, Zhang B, et al. Assessment of geological disaster susceptibility based on SVM-RF model: A case study of Qingtian river scenic area in Boai county, Henan province[J]. Geology and Resources, 2023, 32(5): 633-641.
[13] 崔金芳. 山地丘陵区生态系统服务价值时空演变与驱动机制研究[D]. 哈尔滨: 东北农业大学, 2023.
Cui J F. Spatio-temporal Evolution and Driving Mechanism of Ecosystem Service Value in Mountainous and Hilly Region[D]. Harbin: Northeast Agricultural University, 2023.
[14] 文士茵, 庞国兴. 河北省迁西县地质灾害分析及其防治对策[J]. 地下水, 2014, 36(2): 135-137.
Wen S Y, Pang G X. Analysis of geological hazards in Qiangxi county, Hebei province and countermeasures to prevent and control them[J]. Ground Water, 2014, 36(2): 135-137.
[15] 王瑶. 基于多重共线性修正下的多元线性回归--以河南省经济发展影响因素分析为例[D]. 伊犁: 伊犁师范大学, 2023.
Wang Y. Multiple Linear Regression Based on Multiple Cointegration Correction: Taking the analysis of Economic Development Impact Factors in Henan Provinceas as an Example[D]. Yili: Yili Normal University, 2023.
[16] 杜国梁, 杨志华, 袁颖, 等. 基于逻辑回归-信息量的川藏交通廊道滑坡易发性评价[J]. 水文地质工程地质, 2021, 48(5): 102-111.
Du G L, Yang Z H, Yuan Y, et al. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression-information value method[J]. Hydrogeology&Engineering Geology, 2021, 48(5): 102-111.
[17] 王宁涛, 彭轲, 黎清华, 等. 基于RS和GIS的地质灾害易发性定量评价: 以湖北省五峰县为例[J]. 地学前缘, 2012, 19(6): 221-229.
Wang N T, Peng K, Li Q H, et al. Quantitative evaluation of geological disaster liability based on RS&GIS analysis: A case study of Wufeng County, Hubei Province[J]. Earth Science Frontiers, 2012, 19(6): 221-229.
[18] Mondal S, Maiti R. Integrating the Analytical Hierarchy Process (AHP) and the Frequency Ratio (FR) model in landslide susceptibility mapping of Shiv-Khola watershed, Darjeeling Himalaya[J]. International Journal of Disaster Risk Science, 2013, 4(4): 200-212.
[19] 李军, 周成虎. 基于栅格GIS滑坡风险评价方法中格网大小选取分析[J]. 遥感学报, 2003, 7(2): 86-92.
Li J, Zhou C H. Appropriate grid size for terrain based landslide risk assessment in Lantau Island, Hong Kong[J]. Journal of Remote Sensing, 2003, 7(2): 86-92.
[20] 张蕊, 郭荣昌, 贺攀, 等. 基于改进突变理论的滑坡危险性评价[J]. 中国地质灾害与防治学报, 2023, 34(1): 121-128.
Zhang R, Guo R C, He P, et al. Landslide hazard assessment based on improved catastrophe theory[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 121-128.
[21] 夏兴生, 朱秀芳, 李月臣, 等. 基于AHP-PCA熵组合权重模型的三峡库区(重庆段)农业生态环境脆弱性评价[J]. 南方农业学报, 2016, 47(4): 548-556.
Xia X S, Zhu X F, Li Y C, et al. Evaluation for vulnerability of agroecological environment in Three Gorges Reservoir area (Chongqing section) based on AHP-PCA entropy combination weight mode[J]. Journal of Southern Agriculture, 2016, 47(4): 548-556.
[22] 刘瑞, 罗书斌, 徐源, 等. 基于地理信息系统与斜坡单元的峨边县地质灾害易发性评价[J]. 科学技术与工程, 2023, 23(18): 7678-7685.
Liu R, Luo S B, Xu Y, et al. Geological hazard vulnerability assessment in Ebian county based on geographic information system and slope unit[J]. Science Technology and Engineering, 2023, 23(18): 7678-7685.
-