Evolutionary trend of shallow groundwater level in Kaifeng section of the lower Yellow River from 1980 to 2023
-
摘要:
黄河下游开封段悬河特征显著,黄河侧渗与人类活动影响导致沿黄浅层地下水水位演变趋势不明,影响因素复杂。系统梳理研究区内1980—2023年沿黄浅层地下水水位演变趋势,并分析完整水文年内浅层地下水位演变规律与主要影响因素。结果表明: 2010年之前沿黄浅层地下水水位与降雨量呈显著正相关,2010—2020年浅层地下水水位明显下降,主要受开采量大幅增加影响,2020年之后浅层地下水水位受强降雨与地下水压采影响,水位呈波动上升趋势; 沿黄包气带岩性颗粒较粗,雨水快速补给地下水,导致雨季黄河大堤外侧浅层地下水水位回升显著,而在灌溉期大堤外侧浅层地下水位显著下降3 m; 大堤内侧浅层地下水水位主要受黄河侧渗影响,地下水水位波动与黄河水位波动大体一致; 基于δ18O、δ2H稳定同位素,自黄河河道至大堤外围,黄河侧渗量从占地下水补给的80%以上逐渐减小到50%以下,距离越远黄河侧渗影响越小。系统识别黄河下游浅层地下水水位演变趋势,有助于提高地下水资源利用效率,促进黄河下游生态保护与高质量发展。
Abstract:Kaifeng section in the lower Yellow River exhibits obvious characteristics of a suspended river. The Yellow River lateral seepage and anthropogenic activities have contributed to ambiguous groundwater level trends and complex influencing factors. The 40-year evolution patterns of shallow groundwater levels along the Yellow River in the study area were systematically examined, and intra-annual hydrological dynamics and primary driving mechanisms were analyzed. The results showed that shallow groundwater level along the Yellow River was significantly positively correlated with rainfall before 2010, and the groundwater level decreased significantly from 2010 to 2020, mainly due to a significant increase in extraction. And the shallow groundwater level showed a fluctuating upward trend after 2020, due to the influence of heavy rainfall and groundwater exploitation reduction. The lithology of the vadose zone along the Yellow River is coarse, and rainwater quickly replenishes the groundwater, resulting in a significant rise in shallow groundwater level outside the Yellow River embankment during the rainy season. While shallow groundwater level outside the Yellow River embankment drops significantly by 3 m during the irrigation period. Shallow groundwater level on the inner side of the embankment is mainly affected by the lateral seepage of the Yellow River, and the fluctuation of the groundwater level is generally consistent with the fluctuation of the Yellow River water level. Based on the stable isotopes of δ18O and δ2H, the lateral seepage of the Yellow River from the river channel to the outer edge of the embankment gradually decreases from more than 80% to less than 50% of the groundwater recharge, and the influence of the lateral seepage of the Yellow River decreases with distance. This paper systematically identifies the evolutionary trend of shallow groundwater level in the lower reaches of the Yellow River, which is helpful to improve the utilization efficiency of groundwater resources, and promote the ecological protection and high-quality development of the lower reaches of the Yellow River.
-
-
表 1 研究区1980—2023年地下水水位埋深与年降雨量相关性分析
Table 1. Correlation analysis of groundwater level depth and annual rainfall from 1980 to 2023 in the study area
类型 1980—2010年 2011—2023年 年降雨量 荆隆宫乡埋深 陈桥镇埋深 地下水开采量 年降雨量 荆隆宫乡埋深 陈桥镇埋深 地下水开采量 年降雨量 1 1 荆隆宫埋深 -0.57** 1 -0.39 1 陈桥埋深 -0.60** 0.75** 1 -0.38 0.93** 1 地下水开采量 -0.604* 0.20 0.65 1 -0.25 0.89* 0.92** 1 注: *在0.05级别相关性显著; **在0.01级别相关性显著。 -
[1] 魏常兴, 刘海龄, 黄鼎成, 等. 黄河悬河的形成演化研究[J]. 水文地质工程地质, 2002, 29(1): 42-45.
Wei C X, Liu H L, Huang D C, et al. Study on the formation and evolution of the hanging river of the Yellow River[J]. Hydrogeology & Engineering Geology, 2002, 29(1): 42-45.
[2] 赵云章, 邵景力, 闫震鹏, 等. 黄河水对两侧地下水补给范围的初步研究[J]. 人民黄河, 2003, 25(1): 3-5.
Zhao Y Z, Shao J L, Yan Z P, et al. Preliminary study on ground water supply range on both sides of the Yellow River[J]. Yellow River, 2003, 25(1): 3-5.
[3] 张金良. 基于悬河特性的黄河下游生态水量探讨——"黄河下游滩区生态再造与治理研究"之三[J]. 人民黄河, 2018, 40(9): 1-4. doi: 10.3969/j.issn.1000-1379.2018.09.001
Zhang J L. Study on ecological water volume of the Lower Yellow River based on perched-river characteristics: "Study on ecological reconstruction and management of the floodplains in the Lower Yellow River" (Ⅲ)[J]. Yellow River, 2018, 40(9): 1-4. doi: 10.3969/j.issn.1000-1379.2018.09.001
[4] 刘昌明, 刘小莽, 田巍, 等. 黄河流域生态保护和高质量发展亟待解决缺水问题[J]. 人民黄河, 2020, 42(9): 6-9.
Liu C M, Liu X M, Tian W, et al. Ecological protection and high-quality development of the Yellow River Basin urgently need to solve the water shortage problem[J]. Yellow River, 2020, 42(9): 6-9.
[5] 董战峰, 璩爱玉, 冀云卿. 高质量发展战略下黄河下游生态环境保护[J]. 科技导报, 2020, 38(14): 109-115.
Dong Z F, Qu A Y, Ji Y Q. On ecological environment protection of Lower reaches of Yellow River with high-quality development strategy[J]. Science & Technology Review, 2020, 38(14): 109-115.
[6] 马孟科, 马蒙, 谷瑜, 等. 河南省黄河侧渗影响带地下水环境背景值分析[J]. 中国地质调查, 2025, 12(1): 109-119. doi: 10.19388/j.zgdzdc.2024.272
Ma M K, Ma M, Gu Y, et al. Analysis of groundwater environmental background values in the Yellow River lateral seepage impact zone in Henan Province[J]. Geological Survey of China, 2025, 12(1): 109-119. doi: 10.19388/j.zgdzdc.2024.272
[7] 赵云章, 邵景力, 焦红军, 等. 黄河下游影响带地下水库的基本特征[J]. 水利学报, 2003, (4): 90-93, 100.
Zhao Y Z, Shao J L, Jiao H J, et al. Basic characteristics of groundwater reservoirs of the affected zone along the Lower Yellow River in Henan province[J]. Journal of Hydraulic Engineering, 2003, (4): 90-93, 100.
[8] 平建华, 曹剑峰, 苏小四, 等. 同位素技术在黄河下游河水侧渗影响范围研究中的应用[J]. 吉林大学学报: 地球科学版, 2004, (3): 399-404.
Ping J H, Cao J F, Su X S, et al. Application of isotopic technique in the research of the affected range of lateral seepage of the down-Yellow River water[J]. Journal of Jilin University (Earth Science Edition), 2004, (3): 399-404.
[9] 苏晨, 张学庆, 费宇红, 等. 小浪底水库运行后黄河下游侧渗影响范围及对地下水环境的影响[J]. 中国地质, 2021, 48(6): 1669-1680.
Su C, Zhang X Q, Fei Y H, et al. Lateral seepage scope of downstream of Yellow River after the operation of Xiaolangdi reservoir and its impact on groundwater environment[J]. Geology in China, 2021, 48(6): 1669-1680.
[10] 河南省水利厅. 1999—2023河南省水资源公报[R]. 河南省水利厅, 1999-2023.
Department of Water Resources of Henan Province. Henan water resource bulletin[R]. Department of Water Resources of Henan Province, 1999-2023.
[11] 孙龙, 王莉莉, 曹文庚. 黄河下游影响带(河南段)水化学演化规律研究[J]. 人民黄河, 2021, 43(12): 91-99.
Sun L, Wang L L, Cao W G. Evolution of groundwater hydrochemical characteristics in the influence zone of the Lower Yellow River in Henan[J]. Yellow River, 2021, 43(12): 91-99.
[12] 刘鑫, 左锐, 王金生, 等. 地下水位波动带三氮迁移转化过程研究进展[J]. 水文地质工程地质, 2021, 48(2): 27-36.
Liu X, Zuo R, Wang J S, et al. Advances in researches on ammonia, nitrite and nitrate on migration and transformation in the groundwater level fluctuation zone[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 27-36.
[13] 刘鹏飞, 张光辉, 崔尚进, 等. 旱区湿地周边盐渍化农田生态水位阈值与"水位-水量"双控技术[J]. 水文地质工程地质, 2022, 49(5): 42-51.
Liu P F, Zhang G H, Cui S J, et al. Threshold value of ecological water table and dual control technology of the water table and its quantity in the salinized farmland around wetland in arid areas[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 42-51.
[14] 聂洪峰, 肖春蕾, 戴蒙, 等. 生态地质调查工程进展与主要成果[J]. 中国地质调查, 2021, 8(1): 1-12. doi: 10.19388/j.zgdzdc.2021.01.01
Nie H F, Xiao C L, Dai M, et al. Progresses and main achievements of ecogeological survey project[J]. Geological Survey of China, 2021, 8(1): 1-12. doi: 10.19388/j.zgdzdc.2021.01.01
[15] 刘建宇, 聂洪峰, 肖春蕾, 等. 2010—2018年中国北方沙质荒漠化变化分析[J]. 中国地质调查, 2021, 8(6): 25-34. doi: 10.19388/j.zgdzdc.2021.06.03
Liu J Y, Nie H F, Xiao C L, et al. Evolution of sandy desertification in North China from 2010 to 2018[J]. Geological Survey of China, 2021, 8(6): 25-34. doi: 10.19388/j.zgdzdc.2021.06.03
[16] 赵作章, 陈劲松, 彭尔瑞, 等. 土壤盐渍化及治理研究进展[J]. 中国农村水利水电, 2023(6): 202-208.
Zhao Z Z, Chen J S, Peng E R, et al. Research progress on soil salinization and management[J]. China Rural Water and Hydropower, 2023(6): 202-208.
[17] 万军伟, 王明珠, 刘志涛, 等. 引水补源工程对黛溪河流域地下水补给效果浅析[J]. 中国地质调查, 2020, 7(6): 86-95. doi: 10.19388/j.zgdzdc.2020.06.11
Wan J W, Wang M Z, Liu Z T, et al. Analysis of the effect of water diversion and source supplement project on groundwater recharge in Daixi River Basin[J]. Geological Survey of China, 2020, 7(6): 86-95. doi: 10.19388/j.zgdzdc.2020.06.11
[18] 崔向向, 张学庆, 田夏, 等. 黄河下游典型悬河段地表水-地下水对湿地形成条件影响[J]. 水文, 2024, 44(3): 30-35.
Cui X X, Zhang X Q, Tian X, et al. The influence of surface water and groundater on wetland conditions in the typical suspended river reach of the Lower Yellow River[J]. Journal of China Hydrology, 2024, 44(3): 30-35.
[19] 何军, 肖攀, 彭轲, 等. 江汉平原西部浅层孔隙水水文地球化学特征[J]. 中国地质调查, 2019, 6(5): 36-42. doi: 10.19388/j.zgdzdc.2019.05.04
He J, Xiao P, Peng K, et al. Hydrogeochemical characteristics of the shallow pore water in western Jianghan Plain[J]. Geological Survey of China, 2019, 6(5): 36-42. doi: 10.19388/j.zgdzdc.2019.05.04
[20] 刘久潭, 李颖智, 高宗军, 等. 拉萨河流域中下游地区水化学及地表水-地下水转化关系研究[J]. 山东科技大学学报: 自然科学版, 2020, 39(5): 10-20.
Liu J T, Li Y Z, Gao Z J, et al. Hydrochemistry and relationship between groundwater and surface water in the Middle and Lower reaches of Lhasa river Basin[J]. Journal of Shandong University of Science and Technology (Natural Science), 2020, 39(5): 10-20.
[21] 李刚, 马佰衡, 周仰效, 等. 白洋淀湖岸带地表水与地下水垂向交换研究[J]. 水文地质工程地质, 2021, 48(4): 48-54.
Li G, Ma B H, Zhou Y X, et al. A study of vertical exchange between surface water and groundwater around the banks of Baiyangdian Lake[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 48-54.
[22] 鲍怡, 胡春春, 王喆, 等. 近十年黄河流域地表水面积时空变化与影响因素分析[J]. 水文, 2024, 44(5): 92-98.
Bao Y, Hu C C, Wang Z, et al. Spatial-temporal changes and influencing factors of surface water in the Yellow River Basin in recent 10 years[J]. Journal of China Hydrology, 2024, 44(5): 92-98.
-