-
摘要:
平陆运河建设需要长距离的深基坑开挖,会很大程度改变周边地下水流场。选择平陆运河重点开挖段为研究对象,建立三维地下水流数值模型,预测平陆运河施工期排水疏干和运营期蓄水浸没条件下的地下水流场变化。结果表明: 研究区现状地下水流场为北部郁江流域由南西向北东径流,南部钦江流域由北向南径流,而施工期和运营期地下水流场改变为地下水由东西向运河渠道段径流并排泄于运河,并随运河由北往南流入钦江。平陆运河施工期时,马道头梯级枢纽开挖深度最大,对周边地下水影响程度最大,造成地下水水位最大降深深度为63.1 m。而平陆运河运营蓄水引起地下水大范围下降的区域主要在运河各航道段,最大降深为20.8 m。模型预测结果反映了平陆运河建设对地下水流场的影响,为后续的水资源-环境管理制定监管方案和防治措施提供了数据支撑,有助于从源头上缓解运河建设可能引起的地下水环境问题。
Abstract:Pinglu Canal construction required long, deep foundation excavations that would largely alter the surrounding groundwater flow field. The key excavation section of Pinglu Canal was selected as the research object to establish a three-dimensional groundwater flow numerical model. The changes in the groundwater flow field under the condition of the drainage and drying period of Pinglu Canal construction and water storage submergence during operation were predicted. The results show that the current groundwater flow field in the study area is from south-west to north-east runoff in the northern Yujiang River basin and from north to south runoff in the southern Qinjiang River basin. And the groundwater flow field during the construction and operation phases was changed to the runoff of east-west canal channel section and discharged to the canal, and flowed into Qinjiang River with the canal from north to south. During the construction period of Pinglu Canal, the excavation depth of Madaotou cascade hubs was the largest, which had the greatest impact on the surrounding groundwater and resulted in the maximum groundwater level drawdown depth of 63.1 meters. The area with extensive groundwater level decline caused by the operation and water storage of Pinglu Canal was mainly in each navigation channel segment of the canal, with the maximum drawdown being 20.8 meters. The model prediction results have reflected the impacts of the construction of Pinglu Canal on the groundwater flow field, and provided data support for future of regulatory programs and preventive and control measures for subsequent water resource-environmental management, which could help alleviate the groundwater environmental problems that may be caused by the construction of the canal at the source.
-
-
表 1 研究区渗流参数分区及赋值
Table 1. Seepage parameter zoning and assignment values of the study area
主要岩性 渗透系数/(m·d-1) 给水度 砾岩、泥质粉砂岩(K2) 0.480 0.020 泥灰岩(T1) 3.320 0.020 泥质粉砂岩(D1) 1.410 0.030 花岗岩(T2) 1.590 0.030 泥质灰岩(S3) 1.080 0.020 泥质硅岩(S2) 0.567 0.020 灰岩夹泥灰岩(D1) 0.667 0.010 泥质粉砂岩(P3、S3、D1) 0.010 0.001 表 2 研究区模型拟合误差检验统计
Table 2. Statistics of model fitting error testing of the study area
观测点 s21 SK02 JC2 SK03 s11 SK04 JC5 平均绝对残差 0.272 0.515 0.22 0.45 0.375 0.336 0.185 标准误差 0.048 0.019 0.02 0.048 0.064 0.023 0.022 相关系数 0.538 0.711 0.854 0.675 0.741 0.707 0.902 -
[1] 韦卫华. 把平陆运河打造成世界级绿色工程[J]. 当代广西, 2022(18): 20.
Wei W H. Build Pinglu Canal into a world-class green project[J]. Contemporary Guangxi, 2022(18): 20.
[2] Zhu X B, Wu J C, Nie H J, et al. Quantitative assessment of the impact of an inter-basin surface-water transfer project on the groundwater flow and groundwater-dependent eco-environment in an oasis in arid northwestern China[J]. Hydrogeology Journal, 2018, 26(5): 1475-1485. doi: 10.1007/s10040-018-1804-4
[3] 梁全明, 杨利福. 平陆运河对沿线饮水安全的影响及对策[J]. 广西水利水电, 2023(2): 37-42.
Liang Q M, Yang L F. Impacts of Pinglu Canal on drinking water safety and countermeasures[J]. Guangxi Water Resources & Hydropower Engineering, 2023(2): 37-42.
[4] 叶飞武. 平陆运河分洪方案研究[J]. 广西水利水电, 2023(4): 91-93, 97.
Ye F W. Study of Pinglu Canal flood diversion plan[J]. Guangxi Water Resources & Hydropower Engineering, 2023(4): 91-93, 97.
[5] 靳高阳, 何俊. 平陆运河工程对钦江流域防洪的影响与思考[J]. 水利规划与设计, 2023(12): 16-18, 43.
Jin G Y, He J. Impact and reflection of the Pinglu canal project on flood control in Qinjiang river basin[J]. Water Resources Planning and Design, 2023(12): 16-18, 43.
[6] Gallardo B, Aldridge D C. Inter-basin water transfers and the expansion of aquatic invasive species[J]. Water Research, 2018, 143: 282-291. doi: 10.1016/j.watres.2018.06.056
[7] Zhuang W. Eco-environmental impact of inter-basin water transfer projects: A review[J]. Environmental Science and Pollution Research, 2016, 23(13): 12867-12879. doi: 10.1007/s11356-016-6854-3
[8] Cui H H, Zhang G H, Wang Q, et al. Study on index of groundwater ecological function crisis classification and early warning in Northwest China[J]. Water, 2022, 14(12): 1911. doi: 10.3390/w14121911
[9] Yuan R Q, Wang M, Wang S Q, et al. Water transfer imposes hydrochemical impacts on groundwater by altering the interaction of groundwater and surface water[J]. Journal of Hydrology, 2020, 583: 124617. doi: 10.1016/j.jhydrol.2020.124617
[10] 王西琴, 刘昌明, 杨志峰. 西线调水工程对水量调出区的环境影响分析[J]. 地理科学进展, 2001, 20(2): 137-145.
Wang X Q, Liu C M, Yang Z F. An analysis on the impacts on the environment in the water exporting region of western line south to north water transfer project[J]. Progress in Geography, 2001, 20(2): 137-145.
[11] Lin J J, Ma R, Hu Y L, et al. Groundwater sustainability and groundwater/surface-water interaction in arid Dunhuang Basin, Northwest China[J]. Hydrogeology Journal, 2018, 26(5): 1559-1572.
[12] 曹振东, 谭廷静, 杨明星, 等. 基于Visual MODFLOW地下水数值模拟的水源地保护研究[J]. 中国地质调查, 2023, 10(5): 91-98. doi: 10.19388/j.zgdzdc.2023.05.11
Cao Z D, Tan T J, Yang M X, et al. Research on water source protection based on Visual MODFLOW groundwater numerical simulation[J]. Geological Survey of China, 2023, 10(5): 91-98. doi: 10.19388/j.zgdzdc.2023.05.11
[13] 李铎, 毕攀, 张可, 等. 地下水应急水源地综合研究——以唐山市平原区为例[J]. 中国地质调查, 2022, 9(6): 67-75. doi: 10.19388/j.zgdzdc.2022.06.09
Li D, Bi P, Zhang K, et al. Comprehensive study on groundwater emergency sources: A case study of Tangshan plain area[J]. Geological Survey of China, 2022, 9(6): 67-75. doi: 10.19388/j.zgdzdc.2022.06.09
[14] 祁元昊, 张鑫, 焦莹, 等. 南水北调供水前后京杭运河梁济段沿岸地下水埋深变化预测研究[J]. 水利与建筑工程学报, 2012, 10(3): 145-149.
Qi Y H, Zhang X, Jiao Y, et al. Prediction for groundwater depth changes in intake area of south-to-north water transfer project in Liangji reach of Hangzhou Canal[J]. Journal of Water Resources and Architectural Engineering, 2012, 10(3): 145-149.
[15] 何剑波, 李玉山, 胡立堂, 等. "引哈济党"工程对敦煌盆地地下水位影响的数值模拟研究[J]. 水文地质工程地质, 2021, 48(6): 34-43.
He J B, Li Y S, Hu L T, et al. Numerical simulation studies of the influences of water transferring project from the Haerteng River to the Dang River on groundwater levels in the Dunhuang Basin[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 34-43.
[16] Zhao M Y, Meng X B, Wang B X, et al. Groundwater recharge modeling under water diversion engineering: a case study in Beijing[J]. Water, 2022, 14(6): 985.
[17] 潘海涛, 吴澎, 袁和平, 等. 西部陆海新通道(平陆)运河工程规划设计方案综述[J]. 水运工程, 2024(11): 1-7.
Pan H T, Wu P, Yuan H P, et al. Overview of planning and design scheme for western land-sea new corridor (Pinglu) canal project[J]. Port & Waterway Engineering, 2024(11): 1-7.
[18] Borelli M, Pavlinz B. Approach to the problem of undergroundwater leakage from the storages in karst regions[C]//Hydrologie des Roches Fissures, Proceedings of the Dubrovnik Symposium. Paris: AIME, 1965: 32-62.
[19] Saller S P, Ronayne M J, Long A J. Comparison of a karst groundwater model with and without discrete conduit flow[J]. Hydrogeology Journal, 2013, 21(7): 1555-1566.
[20] 成建梅, 陈崇希. 广西北山岩溶管道-裂隙-孔隙地下水流数值模拟初探[J]. 水文地质工程地质, 1998(4): 52-56.
Cheng J M, Chen C X. Preliminry numerical study of karst conduit fissure pore groundwater flow in Beishan area in Guangxi Province[J]. Hydrogeology & Engineering Geology, 1998(4): 52-56.
[21] 徐中平, 周训, 崔相飞, 等. 岩溶区地下水数值模拟研究进展[J]. 中国岩溶, 2018, 37(4): 475-483.
Xu Z P, Zhou X, Cui X F, et al. Research advances of numerical simulation of groundwater in karst areas[J]. Carsologica Sinica, 2018, 37(4): 475-483.
-