Groundwater quality evaluation in Huachuan-Jixian-Youyi area based on principal component analysis
-
摘要:
三江平原桦川—集贤—友谊地区作为黑龙江省的关键粮食产区,其水资源状况直接关系到农业生产和生态安全。随着工农业的快速发展,水资源需求不断增加,导致研究区地下水位下降、水质恶化等一系列问题,厘清研究区地下水化学特征及影响因素,评估水体质量,对于保持农业稳定和可持续发展具有重要意义。通过野外采集地下水样,结合统计分析、Piper三线图、层次聚类分析、主成分分析、氯碱指数等方法对研究区地下水水化学特征及其成因进行分析,并对地下水水质进行评价。结果表明,钠吸附比(sodium adsorption ratio, SAR)、钠百分比(soluble sodium percentage, Na%)、残留碳酸钠(residual sodium carbonate, RSC)等均显示研究区的地下水灌溉适宜性较好。研究区地下水水化学类型主要为Ca2+-HCO3-型,局部为Ca2+-Cl-型。地下水化学组分主要受岩石风化作用控制,主要离子来源于岩盐和方解石、白云石等可溶性碳酸盐的溶解,同时氯碱指数表明阳离子交换作用也影响着地下水化学组分的形成。水质评价结果显示,桦川县、集贤县部分地区地下水水质较差,NO3-浓度超标,除受自然因素影响外,还与化肥农药的使用、矿山开采等人为活动有关。研究结果对于地下水资源的合理开发和治理具有一定的参考价值。
Abstract:Huachuan-Jixian-Youyi area in Sanjiang Plain is a key grain-producing area in Heilongjiang Province, and its water resources are directly related to agricultural production and ecological security. The demand for water resources continues to increase with the rapid development of industry and agriculture, leading to a series of problems such as declining groundwater levels and deteriorating water quality. The clarification of chemical characteristics, and the influencing factors of water quality, is of great significance to maintaining agricultural stability and sustainable development. Through collecting 15 groundwater samples in the field, the authors analgzed the groundwater chemical characteristics and causes by combining statistical analysis, piper trilinear diagram, hierarchical cluster analysis, principal component analysis, chlor-alkali index, etc., and evaluate the groundwater quality. Sodium adsorption ratio (SAR), soluble sodium percentage (Na%), and residual sodium carbonate (RSC) all showed good suitability for groundwater irrigation in the area. The main hydrochemical type was Ca2+-HCO3- type and locally Ca2+-Cl- type. The chemical composition of groundwater was mainly controlled by rock weathering, with the main ions derived from the dissolution of rock salt and soluble carbonates such as calcite and dolomite. And the chlor-alkali index indicated that cation exchange also affected the formation of groundwater chemical components. The results of the water quality evaluation showed that the groundwater quality in Huachuan County and Jixian County was poor, and the NO3- concentration exceeded the standard seriously. The overstandard was not only affected by natural factors, but also related to the use of chemical fertilizers and pesticides, mining and other human activities. The study results could provide references for the rational development and management of groundwater resources.
-
-
表 1 地下水水化学参数统计分析
Table 1. Statistical analysis of groundwater hydrochemical parameters
指标 最小值 最大值 均值 标准差 变异系数 pH值 5.74 7.10 6.55 0.36 0.05 Ca2+/(mg·L-1) 16.51 168.40 58.94 40.16 0.68 K+/(mg·L-1) 0.67 11.02 2.08 2.55 1.22 SO42-/(mg·L-1) 1.87 127.00 28.59 37.32 1.31 Cl-/(mg·L-1) 2.49 78.50 23.16 26.97 1.16 Mg2+/(mg·L-1) 5.30 37.70 15.30 9.36 0.61 Na+/(mg·L-1) 9.86 86.67 26.17 20.34 0.78 TDS/(mg·L-1) 128.00 910.00 323.40 207.39 0.64 NO3-/(mg·L-1) 0.35 225.00 31.96 71.15 2.23 fCO2/(mg·L-1) 22.30 129.73 55.41 27.99 0.51 TH/(mg·L-1) 60.59 579.63 212.13 138.62 0.65 HCO3-/(mg·L-1) 38.07 501.85 225.43 148.38 0.66 表 2 主成分结果及载荷矩阵
Table 2. Principal component results and load matrix
指标 主成分F1 主成分F2 主成分F3 Ca2+ 0.964 -0.158 -0.040 K+ -0.123 -0.175 0.950 SO42- 0.665 0.665 0.091 Cl- 0.696 0.679 0.145 Mg2+ 0.966 -0.074 0.016 Na+ 0.892 -0.097 0.202 TDS 0.994 -0.011 0.068 NO3- 0.764 0.265 0.047 fCO2 0.761 -0.09 -0.355 TH 0.975 -0.137 -0.022 HCO3- 0.621 0.721 -0.039 pH值 -0.195 0.861 -0.062 特征值 7.122 2.332 1.113 方差贡献率/% 59.353 19.433 9.272 累积贡献率/% 59.353 78.786 88.058 表 3 主成分得分系数矩阵及指标权重
Table 3. Principal component score coefficient matrix and index weight
指标 主成分F1 主成分F2 主成分F3 综合得分系数F 权重 Ca2+ 0.361 -0.104 -0.038 0.217 0.096 K+ -0.046 -0.114 0.900 0.039 0.017 SO42- 0.249 0.435 0.086 0.273 0.121 Cl- 0.261 0.445 0.137 0.288 0.128 Mg2+ 0.362 -0.049 0.015 0.235 0.104 Na+ 0.334 -0.064 0.192 0.231 0.102 TDS 0.372 -0.007 0.064 0.256 0.113 NO3- 0.286 0.174 0.044 0.236 0.104 fCO2 0.285 -0.059 -0.337 0.144 0.064 TH 0.366 -0.090 -0.021 0.224 0.099 HCO3- 0.233 -0.472 -0.037 0.049 0.022 pH值 -0.073 0.564 -0.059 0.069 0.030 表 4 研究区水质分析结果
Table 4. Results of water quality analysis in the study area
点位 Ca2+ K+ SO42- Cl- Mg2+ Na+ TDS NO3- fCO2 TH HCO3- pH值 综合得分 排名 HCS01 0.848 0.987 0.985 0.990 0.955 0.964 0.925 1.000 0.849 0.875 0.679 1.000 0.936 2 HCS02 0.681 0.800 1.000 1.000 0.694 0.898 0.776 1.000 0.547 0.677 0.388 1.000 0.823 9 HCS03 0.994 0.887 0.846 0.933 0.993 0.947 1.000 1.000 0.736 0.992 0.903 0.605 0.932 3 HCS04 0.795 0.863 0.192 0.099 0.639 0.908 0.772 0.989 0.736 0.747 1.000 0.001 0.619 13 HCS05 0.834 0.001 0.892 0.831 0.784 0.681 0.799 0.972 1.000 0.815 0.567 1.000 0.824 8 HCS06 1.000 0.959 0.806 0.801 1.000 0.931 0.990 0.996 0.717 1.000 0.955 0.421 0.905 4 JXS01 0.509 0.962 0.960 0.962 0.664 0.929 0.712 1.000 0.925 0.553 0.261 1.000 0.802 10 JXS02 0.930 1.000 0.975 0.919 0.970 0.942 0.963 1.000 0.717 0.938 0.784 1.000 0.938 1 JXS03 0.909 0.857 0.733 0.722 0.906 0.754 0.887 0.999 0.981 0.899 0.784 1.000 0.857 6 JXS04 0.893 0.990 0.854 0.762 0.871 1.000 0.895 0.770 0.868 0.877 0.925 0.711 0.861 5 JXS05 0.001 0.981 0.001 0.001 0.001 0.001 0.001 0.196 0.001 0.001 0.090 0.947 0.068 15 JXS06 0.429 0.943 0.686 0.091 0.306 0.677 0.377 0.010 0.736 0.395 0.761 0.961 0.427 14 YYS01 0.545 0.877 0.913 0.891 0.370 0.431 0.559 1.000 0.415 0.494 0.001 1.000 0.647 12 YYS02 0.756 0.947 0.985 0.998 0.617 0.873 0.824 0.969 0.736 0.708 0.470 1.000 0.840 7 YYS03 0.675 0.903 0.972 0.923 0.599 0.880 0.772 1.000 0.415 0.650 0.373 1.000 0.788 11 -
[1] Nguyen T G, Phan K A, Huynh T H N. Application of integrated-weight water quality index in groundwater quality evaluation[J]. Civil Engineering Journal, 2022, 8(11): 2661-2674. doi: 10.28991/CEJ-2022-08-11-020
[2] Kumar S, Sangeetha B. Assessment of ground water quality in Madurai city by using geospatial techniques[J]. Groundwater for Sustainable Development, 2020, 10: 100297. doi: 10.1016/j.gsd.2019.100297
[3] 孟瑞芳, 杨会峰, 白华, 等. 海河流域大清河平原区地下水化学特征及演化规律分析[J]. 岩矿测试, 2023, 42(2): 383-395.
Meng R F, Yang H F, Bai H, et al. Chemical characteristics and evolutionary patterns of groundwater in the Daqing River Plain area of Haihe Basin[J]. Rock and Mineral Analysis, 2023, 42(2): 383-395.
[4] 王巧焕, 卢玉东. 内蒙古腰坝绿洲地下水化学特征及成因分析[J]. 华中农业大学学报, 2021, 40(5): 81-88.
Wang Q H, Lu Y D. Hydrochemical characteristics and causes of groundwater in Yaoba Oasis of Inner Mongolia[J]. Journal of Huazhong Agricultural University, 2021, 40(5): 81-88.
[5] 张浩, 张一丁, 黄彦, 等. 不同灌溉模式水稻耗水规律和生长特性研究[J]. 节水灌溉, 2023(4): 25-31.
Zhang H, Zhang Y D, Huang Y, et al. Study on water consumption and growth characteristics of rice under different irrigation modes[J]. Water Saving Irrigation, 2023(4): 25-31.
[6] 李晨洋. 三江平原井渠结合灌区水资源可持续利用对策[J]. 节水灌溉, 2013(1): 41-43. doi: 10.3969/j.issn.1007-4929.2013.01.011
Li C Y. Countermeasures for sustainable utilization of water resources in well & canal combination irrigation district of Sanjiang Plain[J]. Water Saving Irrigation, 2013(1): 41-43. doi: 10.3969/j.issn.1007-4929.2013.01.011
[7] 吴泽新, 武瑶, 于叶翔, 等. 三江平原松花江流域地下水环境变化及其控制因素[J]. 水电能源科学, 2024, 42(9): 38-42.
Wu Z X, Wu Y, Yu Y X, et al. Groundwater environment changes and control factors in Songhua River Basin of Sanjiang Plain[J]. Water Resources and Power, 2024, 42(9): 38-42.
[8] 毛飞剑, 何义亮, 徐智敏, 等. 基于单因子水质标识指数法的东江河源段水质评价[J]. 安全与环境学报, 2014, 14(5): 327-331.
Mao F J, He Y L, Xu Z M, et al. Water quality evaluation of Heyuan reach of Dongjiang River based on the single factor water quality identification index[J]. Journal of Safety and Environment, 2014, 14(5): 327-331.
[9] 傅金祥, 陈喆, 马兴冠, 等. 改良模糊综合评价法在水质评价中的应用[J]. 环境工程, 2011, 29(6): 120-123, 127.
Fu J X, Chen Z, Ma X G, et al. Application of improved fuzzy comprehensive evaluation method in water quality assessment[J]. Environmental Engineering, 2011, 29(6): 120-123, 127.
[10] 高卫东. 基于主成分分析的矿区地下水水质评价[J]. 节水灌溉, 2009(4): 58-60. doi: 10.3969/j.issn.1007-4929.2009.04.017
Gao W D. Water quality evaluation of groundwater in mining area based on principal component analysis[J]. Water Saving Irrigation, 2009(4): 58-60. doi: 10.3969/j.issn.1007-4929.2009.04.017
[11] 杨磊磊, 卢文喜, 黄鹤, 等. 改进内梅罗污染指数法和模糊综合法在水质评价中的应用[J]. 水电能源科学, 2012, 30(6): 41-44. doi: 10.3969/j.issn.1000-7709.2012.06.012
Yang L L, Lu W X, Huang H, et al. Application of improved Nemerow pollution exponential method and fuzzy comprehensive evaluation method used in water quality assessment[J]. Water Resources and Power, 2012, 30(6): 41-44. doi: 10.3969/j.issn.1000-7709.2012.06.012
[12] 舒持恺, 杨侃, 王启明, 等. 河流健康评价中赋权方法的研究[J]. 水电能源科学, 2017, 35(2): 61-65.
Shu C K, Yang K, Wang Q M, et al. Study on weighting method in river health evaluation[J]. Water Resources and Power, 2017, 35(2): 61-65.
[13] 尹喜霖, 柏钰春, 王勇, 等. 三江平原地下水资源潜力评价[J]. 水文地质工程地质, 2004, 31(6): 5-10.
Yin X L, Bai Y C, Wang Y, et al. Potential evaluation of groundwater resources of Sanjiang Plain in Heilongjiang Province[J]. Hydrogeology & Engineering Geology, 2004, 31(6): 5-10.
[14] 刘伟朋, 崔虎群, 刘伟坡, 等. 三江平原地下水流场演化趋势及影响因素[J]. 水文地质工程地质, 2021, 48(1): 10-17.
Liu W P, Cui H Q, Liu W P, et al. An analysis of the evolution trend and influencing factors of the groundwater flow field in the Sanjiang Plain[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 10-17.
[15] 张伟, 陈文彬, 李健, 等. 广安市平行岭谷区地下水化学特征及控制因素分析[J]. 中国地质调查, 2024, 11(4): 72-81. doi: 10.19388/j.zgdzdc.2023.229
Zhang W, Chen W B, Li J, et al. Groundwater chemical characteristics and analysis of the controlling factors in parallel ridge valley area of Guang'an City[J]. Geological Survey of China, 2024, 11(4): 72-81. doi: 10.19388/j.zgdzdc.2023.229
[16] 李泽岩, 曹文庚, 王卓然, 等. 内蒙古河套灌区浅层地下水化学特征和灌溉适宜性分析[J]. 现代地质, 2022, 36(2): 418-426.
Li Z Y, Cao W G, Wang Z R, et al. Hydrochemical characterization and irrigation suitability analysis of shallow groundwater in Hetao Irrigation District, Inner Mongolia[J]. Geoscience, 2022, 36(2): 418-426.
[17] 邹嘉文, 刘飞, 张靖坤. 南水北调典型受水区浅层地下水水化学特征及成因[J]. 中国环境科学, 2022, 42(5): 2260-2268.
Zou J W, Liu F, Zhang J K. Hydrochemical characteristics and formation mechanism of shallow groundwater in typical water-receiving areas of the South-to-North Water Diversion Project[J]. China Environmental Science, 2022, 42(5): 2260-2268.
[18] El-Rawy M, Fathi H, Abdalla F, et al. An integrated principal component and hierarchical cluster analysis approach for groundwater quality assessment in Jazan, Saudi Arabia[J]. Water, 2023, 15(8): 1466. http://openurl.ebsco.com/contentitem/doi:10.3390%2Fw15081466?sid=ebsco:plink:crawler&id=ebsco:doi:10.3390%2Fw15081466
[19] 杨芳, 杨盼, 卢路, 等. 基于主成分分析法的洞庭湖水质评价[J]. 人民长江, 2019, 50(S2): 42-45, 58.
Yang F, Yang P, Lu L, et al. Water quality assessment of Dongting Lake based on principal component analysis[J]. Yangtze River, 2019, 50(S2): 42-45, 58.
[20] 高惠璇. 应用多元统计分析[M]. 北京: 北京大学出版社, 2005.
Gao H X. Applied Multivariate Statistical Analysis[M]. Beijing: Peking University Press, 2005.
[21] Brindha K, Kavitha R. Hydrochemical assessment of surface water and groundwater quality along Uyyakondan channel, south India[J]. Environmental Earth Sciences, 2015, 73(9): 5383-5393. http://www.researchgate.net/profile/Brindha_Karthikeyan/publication/275585139_Hydrochemical_assessment_of_surface_water_and_groundwater_quality_along_Uyyakondan_channel_south_India/links/56d6774308aebabdb4005d12.pdf
[22] 文冬光, 孙继朝, 何江涛, 等. GB/T 14848—2017地下水质量标准[S]. 北京: 中国标准出版社, 2017.
Wen D G, Sun J C, He J T, et al. GB/T 14848—2017 Standard for Groundwater Quality[S]. Beijing: Standards Press of China, 2017.
[23] 李晓波, 李杭, 杨宝萍, 等. 泰安市旧县水源地水化学特征及成因分析[J]. 环境工程技术学报, 2022, 12(6): 2002-2010.
Li X B, Li H, Yang B P, et al. Hydrochemical characteristics and formation mechanism of water source area in Jiuxian County, Tai'an City[J]. Journal of Environmental Engineering Technology, 2022, 12(6): 2002-2010.
[24] 朱秀群, 蓝芙宁, 赵一, 等. 云南省南洞岩溶水系统水化学特征及其成因分析[J]. 人民长江, 2021, 52(5): 37-43.
Zhu X Q, Lan F N, Zhao Y, et al. Hydrochemical characteristics and causes of Nandong karst water system in Yunnan Province[J]. Yangtze River, 2021, 52(5): 37-43.
[25] 王建国, 周卫, 高顺宝, 等. 水-土相互作用对浅层地下水硬度升高的影响[J]. 中国矿业, 2012, 21(3): 107-110.
Wang J G, Zhou W, Gao S B, et al. Influence on increasing of shallow groundwater hardness with water-soil interaction[J]. China Mining Magazine, 2012, 21(3): 107-110.
[26] 刘潇, 薛莹, 纪毓鹏, 等. 基于主成分分析法的黄河口及其邻近水域水质评价[J]. 中国环境科学, 2015, 35(10): 3187-3192.
Liu X, Xue Y, Ji Y P, et al. An assessment of water quality in the Yellow River estuary and its adjacent waters based on principal component analysis[J]. China Environmental Science, 2015, 35(10): 3187-3192.
[27] Taşan M, Demir Y, Taşan S. Groundwater quality assessment using principal component analysis and hierarchical cluster analysis in Alaçam, Turkey[J]. Water Supply, 2022, 22(3): 3431-3447.
-