综合遥感技术在黄龙滩库区地质灾害监测中的应用

朱文彩, 陈江军, 崔学杰, 胡小庆. 综合遥感技术在黄龙滩库区地质灾害监测中的应用[J]. 中国地质调查, 2025, 12(2): 96-103. doi: 10.19388/j.zgdzdc.2024.173
引用本文: 朱文彩, 陈江军, 崔学杰, 胡小庆. 综合遥感技术在黄龙滩库区地质灾害监测中的应用[J]. 中国地质调查, 2025, 12(2): 96-103. doi: 10.19388/j.zgdzdc.2024.173
ZHU Wencai, CHEN Jiangjun, CUI Xuejie, HU Xiaoqing. Application of integrated remote sensing technology in geological disaster monitoring of Huanglongtan reservoir area[J]. Geological Survey of China, 2025, 12(2): 96-103. doi: 10.19388/j.zgdzdc.2024.173
Citation: ZHU Wencai, CHEN Jiangjun, CUI Xuejie, HU Xiaoqing. Application of integrated remote sensing technology in geological disaster monitoring of Huanglongtan reservoir area[J]. Geological Survey of China, 2025, 12(2): 96-103. doi: 10.19388/j.zgdzdc.2024.173

综合遥感技术在黄龙滩库区地质灾害监测中的应用

  • 基金项目:
    湖北省自然资源厅科技项目“十堰市堵河流域(潘口—黄龙段)地质灾害综合遥感监测(编号:HBZX-2023-020)”资助
详细信息
    作者简介: 朱文彩(1979—),男,正高级工程师,主要从事水工环地质方面的研究工作。Email:119064308@qq.com
  • 中图分类号: P642;TD167

Application of integrated remote sensing technology in geological disaster monitoring of Huanglongtan reservoir area

  • 堵河流域黄龙滩库区是南水北调的重要水源地之一,属于地质灾害高易发、高危险、高风险区,目前主要采用宏观监测、群测群防、专业监测和“四位一体”网格化管理相结合的方式进行地质灾害监测预警,存在监测手段严重不足的问题,对于利用综合遥感技术构建“天-空-地”立体化的地质灾害监测网络有着客观需求。针对黄龙滩库区存在的地质灾害监测短板,在分析库区地质灾害发育规律的基础上,将其划分为一般区、重点区和重大地质灾害区3个监测层次,一般区监测布置光学遥感解译和合成孔径雷达干涉(interferometric synthetic aperture radar,InSAR)变形监测,重点区监测增加机载激光雷达(light laser detection and ranging,LiDAR)监测,重大地质灾害区监测再增加无人机摄影测量和地面三维激光扫描监测,同时对识别出的变形区及时进行地质灾害隐患排查。通过“天-空-地”一体化的地质灾害早期识别和监测预警,可满足乡村振兴、地质环境保护和水安全保障等方面的防灾能力需求。研究对山区构建“点面双控”式的地质灾害监测预警体系具有借鉴意义。

  • 加载中
  • 图 1  黄龙滩库区地质灾害分布及易发性分区

    Figure 1. 

    图 2  黄龙滩库区地质灾害专业监测点分布

    Figure 2. 

    图 3  黄龙滩库区地质灾害综合遥感监测部署位置

    Figure 3. 

    表 1  黄龙滩库区地质灾害综合遥感监测分区及对应工作方法

    Table 1.  Deployment of comprehensive remote sensing monitoring of geological disasters and the corresponding working methods in Huanglongtan reservoir area

    监测分区 分区代号 分布区域 面积/km2 面积合计/km2 工作方法
    一般区监测 A 库区全域 1 072.88 1 072.88 ①光学遥感解译+InSAR形变监测
    重点区监测 B1 潘口乡至姚坪乡的河谷地带和集镇区 162.39 275.60 ①光学遥感解译+InSAR形变监测;
    ②机载LiDAR监测
    B2 房县大木厂镇集镇 34.11
    B3 大木厂镇至叶大乡的河谷地带和集镇区 69.27
    B4 黄龙滩水库库首 9.83
    重大地质灾害区监测 C1 潘口乡悬鼓洲村斜坡 0.42 3.00 ①光学遥感解译+InSAR形变监测;
    ②机载LiDAR监测;
    ③无人机摄影测量+地面三维激光扫描监测
    C2 城关镇撬场村斜坡 0.58
    C3 楼台乡钻炭岩斜坡 0.35
    C4 姚坪乡集镇斜坡 0.35
    C5 叶大乡麻池村斜坡 1.30
    下载: 导出CSV
  • [1]

    邵芸, 张茗, 谢酬. 地质灾害遥感综合监测现状与展望[J]. 地质与资源, 2022, 31(3): 381-394.

    Shao Y, Zhang M, Xie C. Present situation and prospect of comprehensive monitoring in geological hazard by remote sensing[J]. Geology and Resources, 2022, 31(3): 381-394.

    [2]

    自然资源部. 自然资源部关于印发《地质灾害防治三年行动实施纲要(2019—2021年)》的通知[R]. 北京: 自然资源部, 2019.

    China Mineral Resources. Notice of the China Mineral Resources on Printing and Distributing the Three Year Action Plan for the Prevention and Control of Geological Disasters (2019—2021)[R]. Beijing: China Mineral Resources, 2019.

    [3]

    中华人民共和国自然资源部. 《地质灾害隐患综合遥感识别技术规程》(征求意见稿)[R]. 北京: 中华人民共和国自然资源部, 2023.

    Ministry of Natural Resources, People's Republic of China. Code of Practice for Potential Geological Hazards Identification by Comprehensive Remote Sensing[R]. Beijing: Ministry of Natural Resources, People's Republic of China, 2023.

    [4]

    何倩, 范洪冬, 段晓晔, 等. 三维激光扫描与DInSAR联合监测矿区地表动态沉降方法[J]. 煤矿安全, 2017, 48(12): 70-73, 77.

    He Q, Fan H D, Duan X Y, et al. A combining method of 3D laser scanning and DInSAR for monitoring surface dynamic subsidence in mining area[J]. Coal Mine Safety, 2017, 48(12): 70-73, 77.

    [5]

    许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报: 信息科学版, 2019, 44(7): 957-966.

    Xu Q, Dong X J, Li W L. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966.

    [6]

    黄海峰, 张瑞, 周红, 等. 小尺度山区地质灾害隐患的无人机精细化识别方法与实践[J]. 测绘通报, 2024(1): 6-11.

    Huang H F, Zhang R, Zhou H, et al. Refined identification method and practice of unmanned aerial vehicle for geological hazards in small-scale mountainous areas[J]. Bulletin of Surveying and Mapping, 2024(1): 6-11.

    [7]

    湖北省国土资源厅地质环境处. 2014年湖北省地质环境工作成果简述及2015年工作要点[J]. 资源环境与工程, 2015, 29(2): 113-114.

    Geological environment division of the Hubei Province Department of land and resources. A brief introduction to the achievements of geological environment work in Hubei Province in 2014 and the key points of work in 2015[J]. Resources Environment & Engineering, 2015, 29(2): 113-114.

    [8]

    中共中央国务院关于推进防灾减灾救灾体制机制改革的意见[J]. 中国减灾, 2017(3): 12-17.

    Opinions of the CPC Central Committee and the State Council on promoting the reform of disaster prevention, mitigation and relief system and mechanism[J]. China Disaster Reduction, 2017(3): 12-17.

    [9]

    自然资源部. 自然资源部关于印发《全国地质灾害防治"十四五"规划》的通知[EB/OL]. (2022-12-07). https://www.gov.cn/zhengce/zhengceku/2023-01/04/content_5734957.htm.

    Ministry of Natural Resources, People's Republic of China. Notice of the China Mineral Resources on printing and distributing the "14th five year plan" for national geological disaster prevention and control[EB/OL]. (2022-12-07). https://www.gov.cn/zhengce/zhengceku/2023-01/04/content_5734957.htm.

    [10]

    汪民. 关于地质灾害防治需要关注的几个问题[J]. 中国地质灾害与防治学报, 2022, 33(1): 1-5.

    Wang M. Several issues concerning the prevention and control of geological disasters[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 1-5.

    [11]

    武维毓, 周建波, 王光辉, 等. 基于卫星遥感的水电站边坡安全风险识别及应用研究[J]. 大坝与安全, 2022(3): 10-14.

    Wu W Y, Zhou J B, Wang G H, et al Safety risk identification of hydropower station slope based on satellite remote sensing and its application[J]. Dam & Safety, 2022(3): 10-14.

    [12]

    杨铭. 移动测量在超精细三维场景制作中的应用研究[J]. 城市勘测, 2017(5): 53-56, 65.

    Yang M. Research on the application of mobile mapping in hyperfine 3D scene building[J]. Urban Geotechnical Investigation & Surveying, 2017(5): 53-56, 65.

    [13]

    刘文, 王猛, 王朋, 等. 国道219沿线崩滑地质灾害隐患遥感调查及发育分布规律[J]. 中国地质调查, 2023, 10(5): 99-108. doi: 10.19388/j.zgdzdc.2023.05.12

    Liu W, Wang M, Wang P, et al. Remote sensing investigation and development distribution regularity of collapse and landslide geological hazard potentials along National Highway 219[J]. Geological Survey of China, 2023, 10(5): 99-108. doi: 10.19388/j.zgdzdc.2023.05.12

    [14]

    吕磊. 基于三维激光扫描的城市构筑物模型重建[D]. 青岛: 山东科技大学, 2020.

    Lv L. Model Reconstruction of Urban Structures Based on 3D Laser Scanning[D]. Qingdao: Shandong University of Science and Technology, 2020.

    [15]

    陈卓, 刘涛, 段明新, 等. 基于遥感技术的哈尔滨巴彦-方正地区生态状况评价[J]. 中国地质调查, 2023, 10(6): 111-119. doi: 10.19388/j.zgdzdc.2023.06.13

    Chen Z, Liu T, Duan M X, et al. Ecological assessment in Bayan-Fangzheng area of Harbin based on remote sensing method[J]. Geological Survey of China, 2023, 10(6): 111-119. doi: 10.19388/j.zgdzdc.2023.06.13

    [16]

    王文涛. 倾斜航空摄影技术在茂密植被山区地质灾害调查中的应用[J]. 中国地质调查, 2024, 11(2): 116-122. doi: 10.19388/j.zgdzdc.2024.02.14

    Wang W T. Application of oblique aerial photography technology in the geological hazard investigation in dense vegetation mountainous areas[J]. Geological Survey of China, 2024, 11(2): 116-122. doi: 10.19388/j.zgdzdc.2024.02.14

    [17]

    孙小勇, 魏龙, 唐华, 等. 基于GIS的崩滑地质灾害孕灾地质条件分析——以西藏嘉黎县为例[J]. 中国地质调查, 2024, 11(4): 92-100. doi: 10.19388/j.zgdzdc.2023.219

    Sun X Y, Wei L, Tang H, et al. Analysis of the disaster-pregnancy geological conditions of collapse and landslide based on GIS: A case study of Jiali County in Tibet[J]. Geological Survey of China, 2024, 11(4): 92-100. doi: 10.19388/j.zgdzdc.2023.219

    [18]

    汤志刚, 钱静, 谢梦雨, 等. 基于InSAR监测数据的采煤沉陷特征及稳定性分析——以江苏省沛县矿地融合示范区为例[J]. 中国地质调查, 2024, 11(4): 132-139. doi: 10.19388/j.zgdzdc.2023.267

    Tang Z G, Qian J, Xie M Y, et al. Analysis of coal mining subsidence characteristics and stability based on InSAR monitoring data: A case study of the Mining and Land Integration Demonstration Zone in Pei County of Jiangsu Province[J]. Geological Survey of China, 2024, 11(4): 132-139. doi: 10.19388/j.zgdzdc.2023.267

    [19]

    范雪婷, 李明巨, 张大骞, 等. 基于多主影像相干目标小基线InSAR技术的无锡市地表沉降监测[J]. 现代测绘, 2018, 41(3): 1-5.

    Fan X T, Li M J, Zhang D Q, et al. Monitoring of surface subsidence in Wuxi City with MCTSB-InSAR method[J]. Modern Surveying and Mapping, 2018, 41(3): 1-5.

    [20]

    王绚, 范宣梅, 杨帆, 等. 植被茂密山区地质灾害遥感解译方法研究[J]. 武汉大学学报: 信息科学版, 2020, 45(11): 1771-1781.

    Wang X, Fan X M, Yang F, et al. Remote sensing interpretation method of geological hazards in lush mountainous area[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1771-1781.

    [21]

    蒲川豪, 许强, 赵宽耀, 等. 基于遥感分析的延安新区平山造城工程地面沉降及植被恢复特征研究[J]. 工程地质学报, 2020, 28(3): 597-609.

    Pu C H, Xu Q, Zhao K Y, et al. Remote sensing analysis of land subsidence and vegeta-tion restoration characteristics in excavation and fill-ing areas of mountain region for urban extension in Yan'an[J]. Journal of Engineering Geology, 2020, 28(3): 597-609.

  • 加载中

(3)

(1)

计量
  • 文章访问数:  48
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2024-03-25
修回日期:  2024-11-05
刊出日期:  2025-04-25

目录