Characteristics and controls of super-thick carbonate reservoirs: A case study of piedmont fold zone in T oilfield of Zagros Basin
-
摘要:
扎格罗斯山前带T油田白垩系发育厚达800 m的碳酸盐岩储集体,由于受多种因素联合控制,呈现出较强的非均质性,严重制约着油藏精细表征和开发方案的制定。基于对地震属性、岩心、测井、试井、裂缝建模等多方面资料的综合研究,明确了Shiranish组和Kometan组主要发育裂缝型储集体,Qamchuqa组白云岩发育晶间溶孔、小溶洞和裂缝,是研究区储集体最发育的层段,整体表现为明显的层控、断控和构造部位控制特征。提出了T油田储集体发育的主要控制因素: ①白云岩晶间溶孔(洞)与准同生白云岩化作用、岩溶作用、浅滩相、热液云化作用有密切的成因联系; ②褶皱与断裂作用是裂缝发育的根本原因,裂缝发育程度主要受岩性、泥质含量和基质孔隙度等因素控制; ③裂缝与基质孔隙的叠加发育程度及其纵向和平面连通差异是导致储层强非均质性的关键因素。上述认识为油田井位部署和开发方案的编制提供了重要参考依据。
Abstract:The Cretaceous carbonate reservoirs with the thickness of more than 800 m were developed in piedmont fold zone in T oilfield of Zagros Basin. Due to a variety of controlling factors, these reservoirs show strong heterogeneities, which seriously restricts fine characterization of reservoirs and the development plan. The mainly developed froctured reservoirs in Shiranish and Kometan Formation were clarified on the basis of seismic attributes, core, well logging, well testing, fracture modeling and other data. The dolostones in Qamqucha Formation have intercrystalline dissolved pores, vugs and fractures, which are the most developed reservoir units in this area. As a whole, the three formations show obvious characteristics of strata-controlled, fault-controlled and structural position control. The main causes of reservoir development in this oilfield were proposed. ① The intercrystalline dissolution pores (vugs) of dolostones were closely related to penecontemporaneous dolomitization, karstification, shoal facies and hydrothermal alteration. ② The folding and faulting were the fundamental causes of fracture development in this area, and the degree of fracture development was mainly affected by lithology, shale content and structural position. ③ The degree of fracture development superimposed matrix pores and the difference of vertical and plane connectivity were the key factors of strong heterogeneity in this oilfield. These understandings could provide the basis for well placement and development formulation.
-
Key words:
- super-thick carbonate /
- reservoir /
- development characteristic /
- control factor /
- T oilfield /
- Zagros Basin
-
-
图 8 不同岩性对应裂缝密度(左)[17]与基质孔隙度与裂缝密度交会图(右)
Figure 8.
-
[1] 童晓光, 张光亚, 王兆明, 等. 全球油气资源潜力与分布[J]. 石油勘探与开发, 2018, 45(4): 727-736.
Tong X G, Zhang G Y, Wang Z M, et al. Distribution and potential of global oil and gas resources[J]. Petroleum Exploration and Development, 2018, 45(4): 727-736.
[2] 赫鹏飞, 周航辉, 贾随良. 伊拉克库尔德地区油气藏类型及分布特征[J]. 石油地质与工程, 2018, 32(5): 6-11.
He P F, Zhou H H, Jia S L. Oil and gas reservoir types in Kurdish region of Iraq and its distribution characteristics[J]. Petroleum Geology and Engineering, 2018, 32(5): 6-11.
[3] 马永生, 蔡勋育, 赵培荣, 等. 深层超深层碳酸盐岩优质储层发育机理和"三元控储"模式——以四川普光气田为例[J]. 地质学报, 2010, 84(8): 1087-1094.
Ma Y S, Cai X Y, Zhao P R, et al. Formation mechanism of deep-buried carbonate reservoir and its model of three-element controlling reservoir: A case study from the Puguang oilfield in Sichuan[J]. Acta Geologica Sinica, 2010, 84(8): 1087-1094.
[4] 何治亮, 张军涛, 丁茜, 等. 深层-超深层优质碳酸盐岩储层形成控制因素[J]. 石油与天然气地质, 2017, 38(4): 633-644, 763.
He Z L, Zhang J T, Ding Q, et al. Factors controlling the formation of high-quality deep to ultra-deep carbonate reservoirs[J]. Oil & Gas Geology, 2017, 38(4): 633-644, 763.
[5] 何治亮, 高志前, 张军涛, 等. 层序界面类型及其对优质碳酸盐岩储层形成与分布的控制[J]. 石油与天然气地质, 2014, 35(6): 853-859.
He Z L, Gao Z Q, Zhang J T, et al. Types of sequence boundaries and their control over formation and distribution of quality carbonate reservoirs[J]. Oil & Gas Geology, 2014, 35(6): 853-859.
[6] 马永生, 何登发, 蔡勋育, 等. 中国海相碳酸盐岩的分布及油气地质基础问题[J]. 岩石学报, 2017, 33(4): 1007-1020.
Ma Y S, He D F, Cai X Y, et al. Distribution and fundamental science questions for petroleum geology of marine carbonate in China[J]. Acta Petrologica Sinica, 2017, 33(4): 1007-1020.
[7] 沈安江, 陈娅娜, 蒙绍兴, 等. 中国海相碳酸盐岩储层研究进展及油气勘探意义[J]. 海相油气地质, 2019, 24(4): 1-14. doi: 10.3969/j.issn.1672-9854.2019.04.001
Shen A J, Chen Y N, Meng S X, et al. The research progress of marine carbonate reservoirs in China and its significance for oil and gas exploration[J]. Marine Origin Petroleum Geology, 2019, 24(4): 1-14. doi: 10.3969/j.issn.1672-9854.2019.04.001
[8] 刘航宇, 田中元, 刘波, 等. 中东地区巨厚强非均质碳酸盐岩储层分类与预测——以伊拉克W油田中白垩统Mishrif组为例[J]. 石油学报, 2019, 40(6): 677-691.
Liu H Y, Tian Z Y, Liu B, et al. Classification and prediction of giant thick strongly heterogeneous carbonate reservoirs in the Middle East area: A case study of Mid-Cretaceous Mishrif Formation in the W oilfield of Iraq[J]. Acta Petrolei Sinica, 2019, 40(6): 677-691.
[9] Al-Qayim B, Rashid F. Reservoir characteristics of the Albian upper Qamchuqa formation carbonates, Taq Taq oilfield, Kurdistan, Iraq[J]. Journal of Petroleum Geology, 2012, 35(4): 317-341. doi: 10.1111/j.1747-5457.2012.00533.x
[10] Garland C R, Abalioglu I, Akca L. Appraisal and development of the Taq Taq field, Kurdistan region, Iraq[J]. Geological Society, London, Petroleum Geology Conference Series, 2010, 7: 801-810. doi: 10.1144/0070801
[11] 张德民, 段太忠, 郝雁, 等. 扎格罗斯盆地下白垩统Qamchuqa组白云岩储层形成机理[J]. 石油学报, 2016, 37(S1): 121-130.
Zhang D M, Duan T Z, Hao Y, et al. Formation mechanism of dolomite reservoir in the lower Cretaceous Qamchuqa formation, Zagros basin[J]. Acta Petrolei Sinica, 2016, 37(S1): 121-130.
[12] 张涛, 苏玉山, 佘刚, 等. 热液白云岩发育模式——以扎格罗斯盆地白垩系A油田为例[J]. 石油与天然气地质, 2015, 36(3): 393-401.
Zhang T, Su Y S, She G, et al. A study on the genetic model of hydrothermal dolomitization in Taq Taq oilfield, Kurdistan region, Iraq-taking oilfield A in the Cretaceous in Zagros basin as an example[J]. Oil & Gas Geology, 2015, 36(3): 393-401.
[13] 张涛, 佘刚, 李苗, 等. A油田白垩系碳酸盐岩裂缝型储层综合预测技术研究[J]. 石油物探, 2015, 54(6): 770-779.
Zhang T, She G, Li M, et al. Multi-disciplinary integration prediction of fractured carbonate reservoir in A oilfield, Zagros basin[J]. Geophysical Prospecting for Petroleum, 2015, 54(6): 770-779.
[14] 王剑, 赵汝敏, 谢楠, 等. 扎格罗斯前陆盆地构造样式与油气成藏规律[J]. 海洋地质与第四纪地质, 2016, 36(2): 143-151.
Wang J, Zhao R M, Xie N, et al. Structural style of Zagros foreland basin and its bearing on oil and gas accumulation[J]. Marine Geology & Quaternary Geology, 2016, 36(2): 143-151.
[15] Setudehnia A. The Mesozoic sequence in south-west Iran and adjacent areas[J]. Journal of Petroleum Geology, 1978, 1(1): 3-42. http://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1747-5457.1978.tb00599.x
[16] Sharland, P.R., R. Archer, D.M. Casey, et al., Arabian Plate Sequence Stratigraphy[M]: Bahrain, Gulf Petrolink, GeoArabia Special Publication 2001: 372-373.
[17] 仲米虹, 吴晓丹, 仲米剑, 等. 扎格罗斯盆地油气成藏特征及分布规律[J]. 地质与勘探, 2019, 55(6): 1528-1539.
Zhong M H, Wu X D, Zhong M J, et al. Hydrocarbon accumulation features and distribution of oil and gas in the Zagros basin[J]. Geology and Exploration, 2019, 55(6): 1528-1539.
[18] Reif D, Decker K, Grasemann B, et al. Fracture patterns in the Zagros fold-and-thrust belt, Kurdistan Region of Iraq[J]. Tectonophysics, 2012, 576-577: 46-62.
[19] Al-Qayim B, Rashid F. Reservoir characteristics of the Albian upper Qamchuqa formation carbonates, Taq Taq oilfield, Kurdistan, Iraq[J]. Journal of Petroleum Geology, 2012, 35(4): 317-341. http://www.keyanzhidian.com/doc/detail?id=2013366471
[20] Weyl P K. Porosity through dolomitization: conservation-of-mass requirements[J]. Journal of Sedimentary Research, 1960, 30(1): 85-90.
[21] 李洁梅, 吴军来, 陈赞. 巴西桑托斯盆地湖相微生物碳酸盐岩储层内幕刻画及定量表征方法[J]. 中国地质调查, 2023, 10(2): 19-27. doi: 10.19388/j.zgdzdc.2023.02.03
Li J M, Wu J L, Chen Z. Internal characterization and quantitative characterization of lacustrine microbial carbonate reservoirs in Santos basin of Brazil[J]. Geological Survey of China, 2023, 10(2): 19-27. doi: 10.19388/j.zgdzdc.2023.02.03
[22] Garland C R, Abalioglu I, Akca L. Appraisal and development of the Taq Taq field, Kurdistan region, Iraq[J]. Geological Society, London, Petroleum Geology Conference Series, 2010, 7: 801-810. http://www.researchgate.net/publication/286959122_Appraisal_and_development_of_the_Taq_Taq_field_Kurdistan_region_Iraq
[23] 贺永忠, 陈厚国, 谢渊, 等. 上扬子东南缘寒武系碳酸盐岩台缘滩的发现与油气地质意义——以贵州石阡—岑巩为例[J]. 中国地质调查, 2015, 2(5): 38-44. http://zgdzdc.com.cn/cn/article/id/126
He Y Z, Chen H G, Xie Y, et al. Discovery of Cambrian carbonate platform margin shoal in the southeastern margin of upper Yangtze platform and its geological significance-example from Shiqian·Cengong area of Guizhou Province[J]. 中国地质调查, 2015, 2(5): 38-44. http://zgdzdc.com.cn/cn/article/id/126
[24] 袁士义, 宋新民, 冉启全. 裂缝性油藏开发技术[M]. 北京: 石油工业出版社, 2004: 3-5.
Awdal A H, Braathen A, Wennberg O P, et al. The characteristics of fracture networks in the Shiranish formation of the Bina Bawi Anticline; comparison with the Taq Taq Field, Zagros, Kurdistan, NE Iraq[J]. Petroleum Geoscience, 2013, 19(2): 139-155.
[25] Yuan S Y, Song X M, Ran Q Q. Development Technique on Fractured Reservoir[M]. Beijing: Petroleum Industry Press, 2004: 3-5.
[26] Stephenson B J, Koopman A, Hillgartner H, et al. Structural and stratigraphic controls on fold-related fracturing in the Zagros Mountains, Iran: implications for reservoir development[J]. Fractured Reservoirs, 2007, 270(1): 1-21.
-