基于微波处理的烧结烟气NO脱除影响因素

石焱, 王帅, 关威, 胡长庆, 孔征. 基于微波处理的烧结烟气NO脱除影响因素[J]. 矿产综合利用, 2022, (1): 190-194. doi: 10.3969/j.issn.1000-6532.2022.01.027
引用本文: 石焱, 王帅, 关威, 胡长庆, 孔征. 基于微波处理的烧结烟气NO脱除影响因素[J]. 矿产综合利用, 2022, (1): 190-194. doi: 10.3969/j.issn.1000-6532.2022.01.027
Shi Yan, Wang Shuai, Guan Wei, Hu Changqing, Kong Zheng. Influencing Factors of NO Removal from Sintering Flue Gas Based on Microwave Treatment[J]. Multipurpose Utilization of Mineral Resources, 2022, (1): 190-194. doi: 10.3969/j.issn.1000-6532.2022.01.027
Citation: Shi Yan, Wang Shuai, Guan Wei, Hu Changqing, Kong Zheng. Influencing Factors of NO Removal from Sintering Flue Gas Based on Microwave Treatment[J]. Multipurpose Utilization of Mineral Resources, 2022, (1): 190-194. doi: 10.3969/j.issn.1000-6532.2022.01.027

基于微波处理的烧结烟气NO脱除影响因素

  • 基金项目: 国家自然科学基金项目(52174312);河北省自然科学基金-高端钢铁冶金联合基金项目(E2021209151);唐山市人才资助项目(A201903005)
详细信息
    作者简介: 石焱(1980-),女,教授。研究方向为冶金环保与资源综合利用
  • 中图分类号: TD989

Influencing Factors of NO Removal from Sintering Flue Gas Based on Microwave Treatment

  • 以实验室模拟的烧结烟气为研究对象,研究微波加热温度、微波处理时间、活性炭用量、烟气流量以及气体浓度等因素对微波脱硝效果的影响。试验结果表明,增大微波加热温度和提高活性炭的加入量可显著提高微波脱硝效率,微波加热温度为700℃和活性炭用量为30 g/L时,脱硝效率分别为57.6%和70.02%;微波加热时间从3 min增加到15 min,脱硝效率由55.45%增大到62.8%,影响不明显;烟气流速为0.3 L/min时,可获得71.9%的脱硝效率,并随着烟气流速增大表现出对脱硝效果的不利影响;受活性炭吸附的影响,随着烟气中NO浓度增大,NO脱除效率逐渐降低,NO浓度为200 ×10-6时,脱硝效率达到最大值80.25%。

  • 加载中
  • 图 1  微波加热温度对脱硝效率的影响

    Figure 1. 

    图 2  处理时间对脱硝效率的影响

    Figure 2. 

    图 3  活性炭用量对脱硝效率的影响

    Figure 3. 

    图 4  烟气流速对脱硝效率的影响

    Figure 4. 

    图 5  NO浓度对脱硝效率的影响

    Figure 5. 

  • [1]

    杨光, 张淑会, 杨艳双. 烧结烟气中气态污染物的减排技术现状及展望[J]. 矿产综合利用, 2021(1):45-56. doi: 10.3969/j.issn.1000-6532.2021.01.007

    YANG G, ZHANG S H, YANG Y S. Current status and prospects of emission reduction technology for gaseous pollutants in sintering flue gas[J]. Multipurpose Utilization of Mineral Resources, 2021(1):45-56. doi: 10.3969/j.issn.1000-6532.2021.01.007

    [2]

    刘正强, 唐铁龙, 刘威尔. 火法次氧化锌生产烟气适用排放标准的探讨[J]. 中国环保产业, 2018(6):53-54+57.

    LIU Z Q, TANG T L, LIU W E. Discussion on the applicable emission standard of flue gas in pyrometallurgical zinc oxide production[J]. China Environmental Protection Industry, 2018(6):53-54+57.

    [3]

    王世磊, 章贤臻, 李运姣, 等. 天然锰矿低温NH3-SCR烟气脱硝催化活性研究[J]. 矿产综合利用, 2020(1):76-82.

    WANG S L, ZHANG X Z, LI Y J, et al. Performance of low temperature no catalytic oxidation activity of natural manganese ore catalysts[J]. Multipurpose Utilization of Mineral Resources, 2020(1):76-82.

    [4]

    肖德超, 张军红, 何志军, 等. 微波制备高效脱硫脱硝吸附剂及性能[J]. 矿产综合利用, 2020(5):71-76.

    XIAO D C, ZHANG J H, HE Z J, et al. Microwave preparation and properties of high- efficiency desulfurization and denitrification adsorbent[J]. Multipurpose Utilization of Mineral Resources, 2020(5):71-76.

    [5]

    佟志芳, 毕诗文, 杨毅宏. 微波加热在冶金领域中应用研究现状[J]. 材料与冶金学报, 2004(02):117-120. doi: 10.3969/j.issn.1671-6620.2004.02.008

    TONG Z F, BIS W, YANG Y H. Research status of application of microwave heating in metallurgical field[J]. Journal of Materials and Metallurgy, 2004(02):117-120. doi: 10.3969/j.issn.1671-6620.2004.02.008

    [6]

    鲍瑞, 易健宏. 微波烧结技术在硬质合金制备中的应用[J]. 中国有色金属学报, 2014, 24(6):1544-1561.

    BAO R, YI J H. Application of microwave sintering technology in the preparation of cemented carbide[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(6):1544-1561.

    [7]

    唐军旺. 微波辐射下NO转化的研究[D]. 大连: 中国科学院大连化学物理研究所, 2001.

    TANG J W. Study on NO conversion under microwave irradiation [D]. Dalian: Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 2001.

    [8]

    朱政. 微波—煤基炭脱除焦炉烟气NOx的研究[D]. 武汉: 武汉科技大学, 2015.

    ZHU Z. Study on the removal of NOx from coke oven flue gas by microwave and coal-based charcoal [D]. Wuhan: Wuhan University of Science and Technology, 2015.

    [9]

    石焱, 孔征, 赵莹, 等. 微波辐照活性炭处理烧结烟气质量损失影响因素[J]. 钢铁钒钛, 2019, 40(4):74-78.

    SHI Y, KONG Z, ZHAO Y, et al. Influence factors on quality loss of sintering flue gas treated by microwave irradiation activated carbon[J]. Iron and Steel Vanadium and Titanium, 2019, 40(4):74-78.

    [10]

    马双忱, 姚娟娟, 金鑫, 等. 微波辐照活性炭床脱硫脱硝动力学研究[J]. 中国科学:技术科学, 2011, 41(09):1234-1239.

    MA S C, YAO J J, JIN X, et al. Microwave-irradiated activated carbon for desulfurization and denitrification[J]. Science China:Technical Science, 2011, 41(09):1234-1239.

    [11]

    叶春松, 胡爱辉, 张弦, 等. 微波改性活性炭深度处理高盐废水性能研究[J]. 现代化工, 2016, 36(8):133-137.

    YE C S, HU A H, ZHANG X, et al. Research on the advanced treatment of high-salt wastewater by microwave modified activated carbon[J]. Modern Chemical Industry, 2016, 36(8):133-137.

    [12]

    石焱, 赵鑫, 冯英英, 等. 微波-吸波介质处理炼焦烟气中五环多环芳烃[J]. 现代化工, 2017, 37(12):76-78+80.

    SHI Y, ZHAO X, FENG Y Y, et al. Treatment of pentacyclic polycyclic aromatic hydrocarbons (PAHs) in coking flue gas by microwave and absorbing medium[J]. Modern Chemical Industry, 2017, 37(12):76-78+80.

  • 加载中

(5)

计量
  • 文章访问数:  1332
  • PDF下载数:  108
  • 施引文献:  0
出版历程
收稿日期:  2020-12-01
刊出日期:  2022-02-25

目录