Different Treatments of Zinc Oxide Ore in Caustic Leaching Process
-
摘要:
氧化锌矿资源化利用是当前锌冶炼行业重要关注点。通过超声波辅助和常规机械搅拌碱浸处理氧化锌矿对比实验,考查实验因素温度、时间、初始碱浓度、超声波功率/搅拌速率等对锌浸出率的影响。结果表明,超声波辅助浸出效果优于常规浸出,在较优实验参数超声波功率400 W、温度65℃、时间40 min、初始碱浓度4 mol/L、液固比10∶1下重复实验,Zn平均浸出率为91.62%。超声波辅助浸出可大幅缩短反应时间。超声波在浸出提取锌的过程中发挥重要作用。
Abstract:Resource recycling of Zinc oxide ore is an important concern in zinc smelting industry at present. In this study, comparison of ultrasonic-assisted and traditional treatment of zinc oxide ore with caustic leaching process was investigated. Effects of experimental factors temperature, time, initial alkali concentration, ultrasonic power, and agitation rate, on zinc leaching rate, were examined. Results showed that zinc leaching rate of ultrasonic assisted process was better than that of traditional process. The optimal parameters were ultrasonic power of 400 W, temperature of 65℃, time of 40 min, initial alkali concentration of 4 mol/L, and liquid to solid ratio of 10∶1, and the average leaching rate of zinc under optimal conditions was 91.62%. Ultrasonic-assisted leaching can shorten the reaction time greatly. Ultrasonic played a notable effect in zinc oxide ore leaching process.
-
Key words:
- Zinc oxide ore /
- Caustic leaching process /
- Ultrasonic /
- Zinc
-
-
表 1 氧化锌矿元素分析/%
Table 1. Ultimate analysis of zinc oxide ore
Zn Fe Ca Al Cd Mn Si O S 9.72 1.03 4.51 1.17 1.84 10.28 3.02 26.44 5.21 表 2 原料中锌物相分析/%
Table 2. Zinc phase distributions of sample
物相 ZnO ZnCO3 Zn2SiO4 其他 总量 锌含量 2.52 3.41 3.43 0.36 9.72 表 3 Zn(II)-H2O系主要反应E-pH计算结果(298 K)
Table 3. E-pH of main reactions in Zn(II)-H2O system (298 K)
序号 反应方程 电势E/pH方程 ① Zn2+ + 2e = Zn E = −0.7658 + 0.02958 lg aZn2+ ② Zn2+ + 2H2O = Zn(OH)2(s) + 2H+ pH = 6.1703 + 0.5 lg aZn2+ ③ Zn(OH)2(s) + 2H+ + 2e = Zn + 2H2O E = −0.4007 − 0.0591pH ④ ZnO22− + 2H+ = Zn(OH)2(s) pH = 14.258 + 0.5lg aZnO2-2 ⑤ ZnO22− + 4H+ + 2e = Zn + 2H2O E = 0.4429 + 0.02958lgaZn2+ − 0.1183pH ⑥ 2H+ + 2e = H2O E = −0.0591pH ⑦ O2 + 4H+ + 4e = 2O2− E = 1.229 − 0.0591pH -
[1] 申亚芳, 张馨圆, 王乐, 等. 氧化锌矿处理方法现状[J]. 矿产综合利用, 2020(2):23-28.
SHEN Y F, ZHANG X Y, WANG L, et al. Preparation of zinc and its compounds from zinc oxide ore[J]. Multipurpose Utilization of Mineral Resources, 2020(2):23-28.
[2] 王磊, 徐智达, 申晓毅. 中低品位氧化锌矿综合利用试验[J]. 矿产综合利用, 2019(2):37-41.
WANG L, XU Z D, SHEN X Y. Experimental research on comprehensive utilization of a low-grade zinc oxide ore by sulfate acid leaching[J]. Multipurpose Utilization of Mineral Resources, 2019(2):37-41.
[3] CHEN A, ZHAO Z W, JIA X, et al. Alkaline leaching Zn and its concomitant metals from refractory hemimorphite zinc oxide ore[J]. Hydrometallurgy, 2009, 97(3):228-232.
[4] 朱兴彩, 杨坤. 超声波强化低品位氧化锌矿在NH3-(NH4)2SO4-H2O体系中的浸出[J]. 矿冶, 2018(1):37-40.
ZHU X C, YANG K. Ultrasonic enhanced leaching of low-grade zinc oxide ore in NH3-(NH4)2SO4-H2O system[J]. Mining and Metallurgy, 2018(1):37-40.
[5] YUAN J, XIAO J, LI F, et al. Co-treatment of spent cathode carbon in caustic and acid leaching process under ultrasonic assisted for preparation of SiC[J]. Ultrasonics Sonochemistry, 2018, 41:608-618. doi: 10.1016/j.ultsonch.2017.10.027
[6] 周绍奇, 伏少鹏, 卜祥宁, 等. 超声乳化煤油乳滴尺寸对泡沫性质及隐晶质石墨浮选的影响[J]. 矿产综合利用, 2020(2):182-187.
ZHOU S Q, FU S P, BO X N, et al. Effect of droplet size of ultrasonic emulsification kerosene emulsion on foam properties and the flotation of cryptocrystalline graphite[J]. Multipurpose Utilization of Mineral Resources, 2020(2):182-187.
[7] 陈广, 单勇, 曾茂青, 等. 难选氧化铜矿的超声波助浸研究[J]. 有色金属(冶炼部分), 2017(8):9-12.
CHEN G, SHAN Y, ZENG M Q, et al. Research on ultrasonic-assisted leaching of refractory copper oxide ore[J]. Nonferrous Metals (Extractive Metallurgy), 2017(8):9-12.
[8] WEN J, JIANG T, GAO H, et al. Comparison of ultrasound-assisted and regular leaching of vanadium and chromium from roasted high chromium vanadium slag[J]. JOM, 2018, 70:1-6. doi: 10.1007/s11837-017-2680-4
-